tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/dhd_pcie.c

6163 lines
166 KiB
C
Raw Permalink Normal View History

2022-02-16 09:13:02 -06:00
/*
* DHD Bus Module for PCIE
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: dhd_pcie.c 665937 2017-07-19 08:48:14Z $
*/
/* include files */
#include <typedefs.h>
#include <bcmutils.h>
#include <bcmdevs.h>
#include <siutils.h>
#include <hndsoc.h>
#include <hndpmu.h>
#include <sbchipc.h>
#include <hnd_armtrap.h>
#if defined(DHD_DEBUG)
#include <hnd_cons.h>
#endif /* defined(DHD_DEBUG) */
#include <dngl_stats.h>
#include <pcie_core.h>
#include <dhd.h>
#include <dhd_bus.h>
#include <dhd_flowring.h>
#include <dhd_proto.h>
#include <dhd_dbg.h>
#include <dhdioctl.h>
#include <sdiovar.h>
#include <bcmmsgbuf.h>
#include <pcicfg.h>
#include <dhd_pcie.h>
#include <bcmpcie.h>
#include <bcmendian.h>
#ifdef DHDTCPACK_SUPPRESS
#include <dhd_ip.h>
#endif /* DHDTCPACK_SUPPRESS */
#ifdef BCMEMBEDIMAGE
#include BCMEMBEDIMAGE
#endif /* BCMEMBEDIMAGE */
#ifdef PCIE_OOB
#include "ftdi_sio_external.h"
#endif /* PCIE_OOB */
#define CISTPL_BRCM_HNBU 0x80
#define HNBU_CUSTOM1 0x82
#define HNBU_CUSTOM2 0x83
#define CISTPL_NULL 0x00
#define CISTPL_END 0xff
#define CISTPL_OFFSET 0xC0
#ifdef CUSTOMER_HW2
#define STARTBUSY_BIT_POLL_MAX_TIME 50
#endif /* CUSTOMER_HW2 */
#define MAX_WKLK_IDLE_CHECK 3 /* times wake_lock checked before deciding not to suspend */
#define ARMCR4REG_BANKIDX (0x40/sizeof(uint32))
#define ARMCR4REG_BANKPDA (0x4C/sizeof(uint32))
/* Temporary war to fix precommit till sync issue between trunk & precommit branch is resolved */
#if defined(SUPPORT_MULTIPLE_BOARD_REV)
extern unsigned int system_rev;
#endif /* SUPPORT_MULTIPLE_BOARD_REV */
/* DHD module parameter */
extern uint32 hw_module_variant;
#define HW_MODULE_VARIANT_SHIFT 8
#define HW_MODULE_VARIANT_MASK 0xFF
int dhd_dongle_memsize;
int dhd_dongle_ramsize;
static int dhdpcie_checkdied(dhd_bus_t *bus, char *data, uint size);
#ifdef DHD_DEBUG
static int dhdpcie_bus_readconsole(dhd_bus_t *bus);
#endif /* DHD_DEBUG */
#if defined(DHD_FW_COREDUMP)
struct dhd_bus *g_dhd_bus = NULL;
static int dhdpcie_mem_dump(dhd_bus_t *bus);
#endif /* DHD_FW_COREDUMP */
static int dhdpcie_bus_membytes(dhd_bus_t *bus, bool write, ulong address, uint8 *data, uint size);
static int dhdpcie_bus_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid,
const char *name, void *params,
int plen, void *arg, int len, int val_size);
static int dhdpcie_bus_lpback_req(struct dhd_bus *bus, uint32 intval);
static int dhdpcie_bus_dmaxfer_req(struct dhd_bus *bus,
uint32 len, uint32 srcdelay, uint32 destdelay);
static int dhdpcie_bus_download_state(dhd_bus_t *bus, bool enter);
static int _dhdpcie_download_firmware(struct dhd_bus *bus);
static int dhdpcie_download_firmware(dhd_bus_t *bus, osl_t *osh);
static int dhdpcie_bus_write_vars(dhd_bus_t *bus);
static bool dhdpcie_bus_process_mailbox_intr(dhd_bus_t *bus, uint32 intstatus);
static bool dhdpci_bus_read_frames(dhd_bus_t *bus);
static int dhdpcie_readshared(dhd_bus_t *bus);
static void dhdpcie_init_shared_addr(dhd_bus_t *bus);
static bool dhdpcie_dongle_attach(dhd_bus_t *bus);
static void dhdpcie_bus_dongle_setmemsize(dhd_bus_t *bus, int mem_size);
static void dhdpcie_bus_release_dongle(dhd_bus_t *bus, osl_t *osh,
bool dongle_isolation, bool reset_flag);
static void dhdpcie_bus_release_malloc(dhd_bus_t *bus, osl_t *osh);
static int dhdpcie_downloadvars(dhd_bus_t *bus, void *arg, int len);
static uint8 dhdpcie_bus_rtcm8(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm8(dhd_bus_t *bus, ulong offset, uint8 data);
static void dhdpcie_bus_wtcm16(dhd_bus_t *bus, ulong offset, uint16 data);
static uint16 dhdpcie_bus_rtcm16(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm32(dhd_bus_t *bus, ulong offset, uint32 data);
static uint32 dhdpcie_bus_rtcm32(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm64(dhd_bus_t *bus, ulong offset, uint64 data);
static uint64 dhdpcie_bus_rtcm64(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_cfg_set_bar0_win(dhd_bus_t *bus, uint32 data);
static void dhdpcie_bus_reg_unmap(osl_t *osh, ulong addr, int size);
static int dhdpcie_cc_nvmshadow(dhd_bus_t *bus, struct bcmstrbuf *b);
static int dhdpcie_sromotp_customvar(dhd_bus_t *bus, uint32 *customvar1, uint32 *customvar2);
static void dhdpcie_send_mb_data(dhd_bus_t *bus, uint32 h2d_mb_data);
static void dhd_fillup_ring_sharedptr_info(dhd_bus_t *bus, ring_info_t *ring_info);
extern void dhd_dpc_kill(dhd_pub_t *dhdp);
#ifdef BCM_AUTO_FWCRC
extern int dhd_check_firmware_image(char* memptr, char *pfw_path);
#endif
#ifdef BCMEMBEDIMAGE
static int dhdpcie_download_code_array(dhd_bus_t *bus);
#endif /* BCMEMBEDIMAGE */
#ifdef EXYNOS_PCIE_DEBUG
extern void exynos_pcie_register_dump(int ch_num);
#endif /* EXYNOS_PCIE_DEBUG */
#define PCI_VENDOR_ID_BROADCOM 0x14e4
static void dhd_bus_set_device_wake(struct dhd_bus *bus, bool val);
extern void wl_nddbg_wpp_log(const char *format, ...);
#ifdef PCIE_OOB
static void dhd_bus_doorbell_timeout_reset(struct dhd_bus *bus);
#define DHD_DEFAULT_DOORBELL_TIMEOUT 200 /* ms */
static uint dhd_doorbell_timeout = DHD_DEFAULT_DOORBELL_TIMEOUT;
#define HOST_WAKE 4 /* GPIO_0 (HOST_WAKE) - Output from WLAN */
#define DEVICE_WAKE 5 /* GPIO_1 (DEVICE_WAKE) - Input to WLAN */
#define BIT_WL_REG_ON 6
#define BIT_BT_REG_ON 7
int gpio_handle_val = 0;
unsigned char gpio_port = 0;
unsigned char gpio_direction = 0;
#define OOB_PORT "ttyUSB0"
#endif /* PCIE_OOB */
static bool dhdpcie_check_firmware_compatible(uint32 f_api_version, uint32 h_api_version);
/* IOVar table */
enum {
IOV_INTR = 1,
IOV_MEMBYTES,
IOV_MEMSIZE,
IOV_SET_DOWNLOAD_STATE,
IOV_DEVRESET,
IOV_VARS,
IOV_MSI_SIM,
IOV_PCIE_LPBK,
IOV_CC_NVMSHADOW,
IOV_RAMSIZE,
IOV_RAMSTART,
IOV_SLEEP_ALLOWED,
IOV_PCIE_DMAXFER,
IOV_PCIE_SUSPEND,
IOV_PCIEREG,
IOV_PCIECFGREG,
IOV_PCIECOREREG,
IOV_PCIESERDESREG,
IOV_BAR0_SECWIN_REG,
IOV_SBREG,
IOV_DONGLEISOLATION,
IOV_LTRSLEEPON_UNLOOAD,
IOV_METADATA_DBG,
IOV_RX_METADATALEN,
IOV_TX_METADATALEN,
IOV_TXP_THRESHOLD,
IOV_BUZZZ_DUMP,
IOV_DUMP_RINGUPD_BLOCK,
IOV_DMA_RINGINDICES,
IOV_DB1_FOR_MB,
IOV_FLOW_PRIO_MAP,
#ifdef DHD_PCIE_RUNTIMEPM
IOV_IDLETIME,
#endif /* DHD_PCIE_RUNTIMEPM */
IOV_RXBOUND,
IOV_TXBOUND,
IOV_HANGREPORT,
#ifdef PCIE_OOB
IOV_OOB_BT_REG_ON,
IOV_OOB_ENABLE
#endif /* PCIE_OOB */
};
const bcm_iovar_t dhdpcie_iovars[] = {
{"intr", IOV_INTR, 0, IOVT_BOOL, 0 },
{"membytes", IOV_MEMBYTES, 0, IOVT_BUFFER, 2 * sizeof(int) },
{"memsize", IOV_MEMSIZE, 0, IOVT_UINT32, 0 },
{"dwnldstate", IOV_SET_DOWNLOAD_STATE, 0, IOVT_BOOL, 0 },
{"vars", IOV_VARS, 0, IOVT_BUFFER, 0 },
{"devreset", IOV_DEVRESET, 0, IOVT_BOOL, 0 },
{"pcie_lpbk", IOV_PCIE_LPBK, 0, IOVT_UINT32, 0 },
{"cc_nvmshadow", IOV_CC_NVMSHADOW, 0, IOVT_BUFFER, 0 },
{"ramsize", IOV_RAMSIZE, 0, IOVT_UINT32, 0 },
{"ramstart", IOV_RAMSTART, 0, IOVT_UINT32, 0 },
{"pciereg", IOV_PCIEREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pciecfgreg", IOV_PCIECFGREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pciecorereg", IOV_PCIECOREREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pcieserdesreg", IOV_PCIESERDESREG, 0, IOVT_BUFFER, 3 * sizeof(int32) },
{"bar0secwinreg", IOV_BAR0_SECWIN_REG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sbreg", IOV_SBREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"pcie_dmaxfer", IOV_PCIE_DMAXFER, 0, IOVT_BUFFER, 3 * sizeof(int32) },
{"pcie_suspend", IOV_PCIE_SUSPEND, 0, IOVT_UINT32, 0 },
#ifdef PCIE_OOB
{"oob_bt_reg_on", IOV_OOB_BT_REG_ON, 0, IOVT_UINT32, 0 },
{"oob_enable", IOV_OOB_ENABLE, 0, IOVT_UINT32, 0 },
#endif /* PCIE_OOB */
{"sleep_allowed", IOV_SLEEP_ALLOWED, 0, IOVT_BOOL, 0 },
{"dngl_isolation", IOV_DONGLEISOLATION, 0, IOVT_UINT32, 0 },
{"ltrsleep_on_unload", IOV_LTRSLEEPON_UNLOOAD, 0, IOVT_UINT32, 0 },
{"dump_ringupdblk", IOV_DUMP_RINGUPD_BLOCK, 0, IOVT_BUFFER, 0 },
{"dma_ring_indices", IOV_DMA_RINGINDICES, 0, IOVT_UINT32, 0},
{"metadata_dbg", IOV_METADATA_DBG, 0, IOVT_BOOL, 0 },
{"rx_metadata_len", IOV_RX_METADATALEN, 0, IOVT_UINT32, 0 },
{"tx_metadata_len", IOV_TX_METADATALEN, 0, IOVT_UINT32, 0 },
{"db1_for_mb", IOV_DB1_FOR_MB, 0, IOVT_UINT32, 0 },
{"txp_thresh", IOV_TXP_THRESHOLD, 0, IOVT_UINT32, 0 },
{"buzzz_dump", IOV_BUZZZ_DUMP, 0, IOVT_UINT32, 0 },
{"flow_prio_map", IOV_FLOW_PRIO_MAP, 0, IOVT_UINT32, 0 },
#ifdef DHD_PCIE_RUNTIMEPM
{"idletime", IOV_IDLETIME, 0, IOVT_INT32, 0 },
#endif /* DHD_PCIE_RUNTIMEPM */
{"rxbound", IOV_RXBOUND, 0, IOVT_UINT32, 0 },
{"txbound", IOV_TXBOUND, 0, IOVT_UINT32, 0 },
{"fw_hang_report", IOV_HANGREPORT, 0, IOVT_BOOL, 0 },
{NULL, 0, 0, 0, 0 }
};
#define MAX_READ_TIMEOUT 5 * 1000 * 1000
#ifndef DHD_RXBOUND
#define DHD_RXBOUND 64
#endif
#ifndef DHD_TXBOUND
#define DHD_TXBOUND 64
#endif
uint dhd_rxbound = DHD_RXBOUND;
uint dhd_txbound = DHD_TXBOUND;
/* Register/Unregister functions are called by the main DHD entry
* point (e.g. module insertion) to link with the bus driver, in
* order to look for or await the device.
*/
int
dhd_bus_register(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
return dhdpcie_bus_register();
}
void
dhd_bus_unregister(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
dhdpcie_bus_unregister();
return;
}
/** returns a host virtual address */
uint32 *
dhdpcie_bus_reg_map(osl_t *osh, ulong addr, int size)
{
return (uint32 *)REG_MAP(addr, size);
}
void
dhdpcie_bus_reg_unmap(osl_t *osh, ulong addr, int size)
{
REG_UNMAP((void*)(uintptr)addr);
return;
}
/**
* 'regs' is the host virtual address that maps to the start of the PCIe BAR0 window. The first 4096
* bytes in this window are mapped to the backplane address in the PCIEBAR0Window register. The
* precondition is that the PCIEBAR0Window register 'points' at the PCIe core.
*
* 'tcm' is the *host* virtual address at which tcm is mapped.
*/
dhd_bus_t* dhdpcie_bus_attach(osl_t *osh,
volatile char *regs, volatile char *tcm, void *pci_dev)
{
dhd_bus_t *bus;
/* customvar1 and customvar2 are customer configurable CIS tuples in OTP.
* In dual chip (PCIE) scenario, customvar2 is used as a hint to detect
* the chip variants and load the right firmware and NVRAM
*/
/* Below vars are set to 0x0 as OTPed value can not take 0x0 */
uint32 customvar1 = 0x0;
uint32 customvar2 = 0x0;
uint32 otp_hw_module_variant = 0x0;
DHD_TRACE(("%s: ENTER\n", __FUNCTION__));
do {
if (!(bus = MALLOCZ(osh, sizeof(dhd_bus_t)))) {
DHD_ERROR(("%s: MALLOC of dhd_bus_t failed\n", __FUNCTION__));
break;
}
bus->regs = regs;
bus->tcm = tcm;
bus->osh = osh;
/* Save pci_dev into dhd_bus, as it may be needed in dhd_attach */
bus->dev = (struct pci_dev *)pci_dev;
dll_init(&bus->const_flowring);
/* Attach pcie shared structure */
if (!(bus->pcie_sh = MALLOCZ(osh, sizeof(pciedev_shared_t)))) {
DHD_ERROR(("%s: MALLOC of bus->pcie_sh failed\n", __FUNCTION__));
break;
}
/* dhd_common_init(osh); */
if (dhdpcie_dongle_attach(bus)) {
DHD_ERROR(("%s: dhdpcie_probe_attach failed\n", __FUNCTION__));
break;
}
if (!hw_module_variant) {
/* For single wifi module */
goto enumerate_module;
}
/* read otp variables customvar1 and customvar2 */
if (dhdpcie_sromotp_customvar(bus, &customvar1, &customvar2)) {
DHD_ERROR(("%s: dhdpcie_sromotp_customvar failed\n", __FUNCTION__));
break;
}
if (!customvar2) {
DHD_ERROR(("%s: customvar2 is not OTPed, hw_module_variant=0x%x\n",
__FUNCTION__, hw_module_variant));
goto enumerate_module;
}
/* customvar2=0xNNMMLLKK, LL is module variant */
otp_hw_module_variant = (customvar2 >> HW_MODULE_VARIANT_SHIFT) &
HW_MODULE_VARIANT_MASK;
if (hw_module_variant != otp_hw_module_variant) {
DHD_ERROR(("%s: Not going to enumerate this module as "
"hw_module_variant=0x%x and "
"OTPed-module_variant=0x%x didn't match\n",
__FUNCTION__, hw_module_variant, otp_hw_module_variant));
break;
}
DHD_ERROR(("%s: Going to enumerate this module as "
"hw_module_variant=0x%x and "
"OTPed-module_variant=0x%x match\n",
__FUNCTION__, hw_module_variant, otp_hw_module_variant));
enumerate_module:
/* software resources */
if (!(bus->dhd = dhd_attach(osh, bus, PCMSGBUF_HDRLEN))) {
DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__));
break;
}
bus->dhd->busstate = DHD_BUS_DOWN;
bus->db1_for_mb = TRUE;
bus->dhd->hang_report = TRUE;
bus->irq_registered = FALSE;
bus->d3_ack_war_cnt = 0;
DHD_TRACE(("%s: EXIT SUCCESS\n",
__FUNCTION__));
#ifdef DHD_FW_COREDUMP
g_dhd_bus = bus;
#endif
return bus;
} while (0);
DHD_TRACE(("%s: EXIT FAILURE\n", __FUNCTION__));
if (bus && bus->pcie_sh) {
MFREE(osh, bus->pcie_sh, sizeof(pciedev_shared_t));
}
if (bus) {
MFREE(osh, bus, sizeof(dhd_bus_t));
}
return NULL;
}
uint
dhd_bus_chip(struct dhd_bus *bus)
{
ASSERT(bus->sih != NULL);
return bus->sih->chip;
}
uint
dhd_bus_chiprev(struct dhd_bus *bus)
{
ASSERT(bus);
ASSERT(bus->sih != NULL);
return bus->sih->chiprev;
}
void *
dhd_bus_pub(struct dhd_bus *bus)
{
return bus->dhd;
}
void *
dhd_bus_sih(struct dhd_bus *bus)
{
return (void *)bus->sih;
}
void *
dhd_bus_txq(struct dhd_bus *bus)
{
return &bus->txq;
}
/** Get Chip ID version */
uint dhd_bus_chip_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chip;
}
/** Get Chip Rev ID version */
uint dhd_bus_chiprev_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chiprev;
}
/** Get Chip Pkg ID version */
uint dhd_bus_chippkg_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chippkg;
}
/** Read and clear intstatus. This should be called with interupts disabled or inside isr */
uint32
dhdpcie_bus_intstatus(dhd_bus_t *bus)
{
uint32 intstatus = 0;
uint32 intmask = 0;
if ((bus->sih->buscorerev == 6) || (bus->sih->buscorerev == 4) ||
(bus->sih->buscorerev == 2)) {
intstatus = dhdpcie_bus_cfg_read_dword(bus, PCIIntstatus, 4);
dhdpcie_bus_cfg_write_dword(bus, PCIIntstatus, 4, intstatus);
intstatus &= I_MB;
} else {
/* this is a PCIE core register..not a config register... */
intstatus = si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxInt, 0, 0);
/* this is a PCIE core register..not a config register... */
intmask = si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask, 0, 0);
/*
* The fourth argument to si_corereg is the "mask" fields of the register to update
* and the fifth field is the "value" to update. Now if we are interested in only
* few fields of the "mask" bit map, we should not be writing back what we read
* By doing so, we might clear/ack interrupts that are not handled yet.
*/
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxInt, bus->def_intmask,
intstatus);
intstatus &= intmask;
/* Is device removed. intstatus & intmask read 0xffffffff */
if (intstatus == (uint32)-1) {
DHD_ERROR(("%s: !!!!!!Device Removed or dead chip.\n", __FUNCTION__));
intstatus = 0;
#ifdef CUSTOMER_HW4_DEBUG
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
bus->dhd->hang_reason = HANG_REASON_PCIE_LINK_DOWN;
dhd_os_send_hang_message(bus->dhd);
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) && OEM_ANDROID */
#endif /* CUSTOMER_HW4_DEBUG */
}
intstatus &= bus->def_intmask;
}
return intstatus;
}
/**
* Name: dhdpcie_bus_isr
* Parameters:
* 1: IN int irq -- interrupt vector
* 2: IN void *arg -- handle to private data structure
* Return value:
* Status (TRUE or FALSE)
*
* Description:
* Interrupt Service routine checks for the status register,
* disable interrupt and queue DPC if mail box interrupts are raised.
*/
int32
dhdpcie_bus_isr(dhd_bus_t *bus)
{
uint32 intstatus = 0;
uint16 val = 0;
do {
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* verify argument */
if (!bus) {
DHD_ERROR(("%s : bus is null pointer, exit \n", __FUNCTION__));
break;
}
if (bus->dhd->dongle_reset) {
break;
}
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: BUS is down, not processing the interrupt \r\n",
__FUNCTION__));
break;
}
/* Wi-Fi chip registers to legacy PCIe interrupt, which shared by all root ports
and end points. instatus filters out the irqs which are not from Wi-Fi chip,
but when Wi-Fi chip is in D3hot instatus register is not accessible. So adding
D3hot check before proceeding with isr routine */
pci_read_config_word(bus->dev, bus->dev->pm_cap + PCI_PM_CTRL, &val);
if ((val & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot) {
DHD_ERROR(("%s: chip is in D3 state, not processing the interrupt \r\n",
__FUNCTION__));
break;
}
intstatus = dhdpcie_bus_intstatus(bus);
/* Check if the interrupt is ours or not */
if (intstatus == 0) {
break;
}
/* save the intstatus */
bus->intstatus = intstatus;
/* Overall operation:
* - Mask further interrupts
* - Read/ack intstatus
* - Take action based on bits and state
* - Reenable interrupts (as per state)
*/
/* Count the interrupt call */
bus->intrcount++;
/* read interrupt status register!! Status bits will be cleared in DPC !! */
bus->ipend = TRUE;
dhdpcie_bus_intr_disable(bus); /* Disable interrupt!! */
bus->intdis = TRUE;
#if defined(PCIE_ISR_THREAD)
DHD_TRACE(("Calling dhd_bus_dpc() from %s\n", __FUNCTION__));
DHD_OS_WAKE_LOCK(bus->dhd);
while (dhd_bus_dpc(bus));
DHD_OS_WAKE_UNLOCK(bus->dhd);
#else
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd); /* queue DPC now!! */
#endif /* defined(SDIO_ISR_THREAD) */
DHD_TRACE(("%s: Exit Success DPC Queued\n", __FUNCTION__));
return TRUE;
} while (0);
DHD_TRACE(("%s: Exit Failure\n", __FUNCTION__));
return FALSE;
}
#ifdef EXYNOS_PCIE_LINKDOWN_RECOVERY
dhd_pub_t *link_recovery = NULL;
#endif /* EXYNOS_PCIE_LINKDOWN_RECOVERY */
static bool
dhdpcie_dongle_attach(dhd_bus_t *bus)
{
osl_t *osh = bus->osh;
void *regsva = (void*)bus->regs;
uint16 devid = bus->cl_devid;
uint32 val;
sbpcieregs_t *sbpcieregs;
DHD_TRACE(("%s: ENTER\n", __FUNCTION__));
#ifdef EXYNOS_PCIE_LINKDOWN_RECOVERY
link_recovery = bus->dhd;
#endif /* EXYNOS_PCIE_LINKDOWN_RECOVERY */
bus->alp_only = TRUE;
if (bus->sih != NULL) {
DHD_INFO(("%s sih is not null\n", __FUNCTION__));
return 0;
}
/* Set bar0 window to si_enum_base */
dhdpcie_bus_cfg_set_bar0_win(bus, SI_ENUM_BASE);
/* Checking PCIe bus status with reading configuration space */
val = OSL_PCI_READ_CONFIG(osh, PCI_CFG_VID, sizeof(uint32));
if ((val & 0xFFFF) != VENDOR_BROADCOM) {
DHD_ERROR(("%s : failed to read PCI configuration space!\n", __FUNCTION__));
goto fail;
}
/* si_attach() will provide an SI handle and scan the backplane */
if (!(bus->sih = si_attach((uint)devid, osh, regsva, PCI_BUS, bus,
&bus->vars, &bus->varsz))) {
DHD_ERROR(("%s: si_attach failed!\n", __FUNCTION__));
goto fail;
}
si_setcore(bus->sih, PCIE2_CORE_ID, 0);
sbpcieregs = (sbpcieregs_t*)(bus->regs);
/* WAR where the BAR1 window may not be sized properly */
W_REG(osh, &sbpcieregs->configaddr, 0x4e0);
val = R_REG(osh, &sbpcieregs->configdata);
W_REG(osh, &sbpcieregs->configdata, val);
/* Get info on the ARM and SOCRAM cores... */
/* Should really be qualified by device id */
if ((si_setcore(bus->sih, ARM7S_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCM3_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCA7_CORE_ID, 0))) {
bus->armrev = si_corerev(bus->sih);
} else {
DHD_ERROR(("%s: failed to find ARM core!\n", __FUNCTION__));
goto fail;
}
if (si_setcore(bus->sih, SYSMEM_CORE_ID, 0)) {
if (!(bus->orig_ramsize = si_sysmem_size(bus->sih))) {
DHD_ERROR(("%s: failed to find SYSMEM memory!\n", __FUNCTION__));
goto fail;
}
/* also populate base address */
bus->dongle_ram_base = CA7_4365_RAM_BASE;
} else if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(bus->orig_ramsize = si_socram_size(bus->sih))) {
DHD_ERROR(("%s: failed to find SOCRAM memory!\n", __FUNCTION__));
goto fail;
}
} else {
/* cr4 has a different way to find the RAM size from TCM's */
if (!(bus->orig_ramsize = si_tcm_size(bus->sih))) {
DHD_ERROR(("%s: failed to find CR4-TCM memory!\n", __FUNCTION__));
goto fail;
}
/* also populate base address */
switch ((uint16)bus->sih->chip) {
case BCM4339_CHIP_ID:
case BCM4335_CHIP_ID:
bus->dongle_ram_base = CR4_4335_RAM_BASE;
break;
case BCM4358_CHIP_ID:
case BCM4356_CHIP_ID:
case BCM4354_CHIP_ID:
case BCM43567_CHIP_ID:
case BCM43569_CHIP_ID:
case BCM4350_CHIP_ID:
case BCM43570_CHIP_ID:
bus->dongle_ram_base = CR4_4350_RAM_BASE;
break;
case BCM4360_CHIP_ID:
bus->dongle_ram_base = CR4_4360_RAM_BASE;
break;
CASE_BCM4345_CHIP:
bus->dongle_ram_base = (bus->sih->chiprev < 6) /* changed at 4345C0 */
? CR4_4345_LT_C0_RAM_BASE : CR4_4345_GE_C0_RAM_BASE;
break;
CASE_BCM43602_CHIP:
bus->dongle_ram_base = CR4_43602_RAM_BASE;
break;
case BCM4349_CHIP_GRPID:
/* RAM base changed from 4349c0(revid=9) onwards */
bus->dongle_ram_base = ((bus->sih->chiprev < 9) ?
CR4_4349_RAM_BASE : CR4_4349_RAM_BASE_FROM_REV_9);
break;
default:
bus->dongle_ram_base = 0;
DHD_ERROR(("%s: WARNING: Using default ram base at 0x%x\n",
__FUNCTION__, bus->dongle_ram_base));
}
}
bus->ramsize = bus->orig_ramsize;
if (dhd_dongle_memsize)
dhdpcie_bus_dongle_setmemsize(bus, dhd_dongle_memsize);
pr_info("DHD: dongle ram size is set to %d(orig %d) at 0x%x\n",
bus->ramsize, bus->orig_ramsize, bus->dongle_ram_base);
bus->srmemsize = si_socram_srmem_size(bus->sih);
bus->def_intmask = PCIE_MB_D2H_MB_MASK | PCIE_MB_TOPCIE_FN0_0 | PCIE_MB_TOPCIE_FN0_1;
/* Set the poll and/or interrupt flags */
bus->intr = (bool)dhd_intr;
bus->wait_for_d3_ack = 1;
bus->suspended = FALSE;
#ifdef PCIE_OOB
gpio_handle_val = get_handle(OOB_PORT);
if (gpio_handle_val < 0)
{
DHD_ERROR(("%s: Could not get GPIO handle.\n", __FUNCTION__));
ASSERT(FALSE);
}
gpio_direction = 0;
ftdi_set_bitmode(gpio_handle_val, 0, BITMODE_BITBANG);
/* Note BT core is also enabled here */
gpio_port = 1 << BIT_WL_REG_ON | 1 << BIT_BT_REG_ON | 1 << DEVICE_WAKE;
gpio_write_port(gpio_handle_val, gpio_port);
gpio_direction = 1 << BIT_WL_REG_ON | 1 << BIT_BT_REG_ON | 1 << DEVICE_WAKE;
ftdi_set_bitmode(gpio_handle_val, gpio_direction, BITMODE_BITBANG);
bus->oob_enabled = TRUE;
/* drive the Device_Wake GPIO low on startup */
bus->device_wake_state = TRUE;
dhd_bus_set_device_wake(bus, FALSE);
dhd_bus_doorbell_timeout_reset(bus);
#endif /* PCIE_OOB */
DHD_TRACE(("%s: EXIT: SUCCESS\n", __FUNCTION__));
return 0;
fail:
if (bus->sih != NULL) {
si_detach(bus->sih);
bus->sih = NULL;
}
DHD_TRACE(("%s: EXIT: FAILURE\n", __FUNCTION__));
return -1;
}
int
dhpcie_bus_unmask_interrupt(dhd_bus_t *bus)
{
dhdpcie_bus_cfg_write_dword(bus, PCIIntmask, 4, I_MB);
return 0;
}
int
dhpcie_bus_mask_interrupt(dhd_bus_t *bus)
{
dhdpcie_bus_cfg_write_dword(bus, PCIIntmask, 4, 0x0);
return 0;
}
void
dhdpcie_bus_intr_enable(dhd_bus_t *bus)
{
DHD_TRACE(("enable interrupts\n"));
if (bus && bus->sih && !bus->is_linkdown) {
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
dhpcie_bus_unmask_interrupt(bus);
} else {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask,
bus->def_intmask, bus->def_intmask);
}
} else {
DHD_ERROR(("****** %s: failed ******\n", __FUNCTION__));
DHD_ERROR(("bus: %p sih: %p bus->is_linkdown %d\n",
bus, bus ? bus->sih : NULL, bus ? bus->is_linkdown: -1));
}
}
void
dhdpcie_bus_intr_disable(dhd_bus_t *bus)
{
DHD_TRACE(("%s Enter\n", __FUNCTION__));
if (bus && bus->sih && !bus->is_linkdown) {
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
dhpcie_bus_mask_interrupt(bus);
} else {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask,
bus->def_intmask, 0);
}
} else {
DHD_ERROR(("****** %s: failed ******\n", __FUNCTION__));
DHD_ERROR(("bus: %p sih: %p bus->is_linkdown %d\n",
bus, bus ? bus->sih : NULL, bus ? bus->is_linkdown: -1));
}
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
/*
* dhdpcie_advertise_bus_cleanup advertises that clean up is under progress
* to other bus user contexts like Tx, Rx, IOVAR, WD etc and it waits for other contexts
* to gracefully exit. All the bus usage contexts before marking busstate as busy, will check for
* whether the busstate is DHD_BUS_DOWN or DHD_BUS_DOWN_IN_PROGRESS, if so
* they will exit from there itself without marking dhd_bus_busy_state as BUSY.
*/
static void
dhdpcie_advertise_bus_cleanup(dhd_pub_t *dhdp)
{
unsigned long flags;
int timeleft;
DHD_GENERAL_LOCK(dhdp, flags);
dhdp->busstate = DHD_BUS_DOWN_IN_PROGRESS;
DHD_GENERAL_UNLOCK(dhdp, flags);
timeleft = dhd_os_busbusy_wait_negation(dhdp, &dhdp->dhd_bus_busy_state);
if (timeleft == 0) {
DHD_ERROR(("%s : Timeout due to dhd_bus_busy_state=0x%x\n",
__FUNCTION__, dhdp->dhd_bus_busy_state));
BUG_ON(1);
}
return;
}
static void
dhdpcie_bus_remove_prep(dhd_bus_t *bus)
{
unsigned long flags;
DHD_TRACE(("%s Enter\n", __FUNCTION__));
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DOWN;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
if (bus->sih == NULL) {
return;
}
dhd_os_sdlock(bus->dhd);
dhdpcie_bus_intr_disable(bus);
if (!bus->dhd->dongle_isolation) {
pcie_watchdog_reset(bus->osh, bus->sih, (sbpcieregs_t *)(bus->regs));
}
dhd_os_sdunlock(bus->dhd);
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
/** Detach and free everything */
void
dhdpcie_bus_release(dhd_bus_t *bus)
{
bool dongle_isolation = FALSE;
osl_t *osh = NULL;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
osh = bus->osh;
ASSERT(osh);
if (bus->dhd) {
dhdpcie_advertise_bus_cleanup(bus->dhd);
dongle_isolation = bus->dhd->dongle_isolation;
dhdpcie_bus_remove_prep(bus);
if (bus->intr) {
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
dhdpcie_bus_release_dongle(bus, osh, dongle_isolation, TRUE);
dhd_detach(bus->dhd);
dhd_free(bus->dhd);
bus->dhd = NULL;
}
/* unmap the regs and tcm here!! */
if (bus->regs) {
dhdpcie_bus_reg_unmap(osh, (ulong)bus->regs, DONGLE_REG_MAP_SIZE);
bus->regs = NULL;
}
if (bus->tcm) {
dhdpcie_bus_reg_unmap(osh, (ulong)bus->tcm, DONGLE_TCM_MAP_SIZE);
bus->tcm = NULL;
}
dhdpcie_bus_release_malloc(bus, osh);
/* Detach pcie shared structure */
if (bus->pcie_sh) {
MFREE(osh, bus->pcie_sh, sizeof(pciedev_shared_t));
bus->pcie_sh = NULL;
}
#ifdef DHD_DEBUG
if (bus->console.buf != NULL)
MFREE(osh, bus->console.buf, bus->console.bufsize);
#endif
/* Finally free bus info */
MFREE(osh, bus, sizeof(dhd_bus_t));
}
DHD_TRACE(("%s: Exit\n", __FUNCTION__));
} /* dhdpcie_bus_release */
void
dhdpcie_bus_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag)
{
DHD_TRACE(("%s: Enter bus->dhd %p bus->dhd->dongle_reset %d \n", __FUNCTION__,
bus->dhd, bus->dhd->dongle_reset));
if ((bus->dhd && bus->dhd->dongle_reset) && reset_flag) {
DHD_TRACE(("%s Exit\n", __FUNCTION__));
return;
}
if (bus->sih) {
if (!dongle_isolation)
pcie_watchdog_reset(bus->osh, bus->sih, (sbpcieregs_t *)(bus->regs));
if (bus->ltrsleep_on_unload) {
si_corereg(bus->sih, bus->sih->buscoreidx,
OFFSETOF(sbpcieregs_t, u.pcie2.ltr_state), ~0, 0);
}
if (bus->sih->buscorerev == 13)
pcie_serdes_iddqdisable(bus->osh, bus->sih, (sbpcieregs_t *)(bus->regs));
if (bus->sih != NULL) {
si_detach(bus->sih);
bus->sih = NULL;
}
if (bus->vars && bus->varsz)
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
uint32
dhdpcie_bus_cfg_read_dword(dhd_bus_t *bus, uint32 addr, uint32 size)
{
uint32 data = OSL_PCI_READ_CONFIG(bus->osh, addr, size);
return data;
}
/** 32 bit config write */
void
dhdpcie_bus_cfg_write_dword(dhd_bus_t *bus, uint32 addr, uint32 size, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, addr, size, data);
}
void
dhdpcie_bus_cfg_set_bar0_win(dhd_bus_t *bus, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, PCI_BAR0_WIN, 4, data);
}
void
dhdpcie_bus_dongle_setmemsize(struct dhd_bus *bus, int mem_size)
{
int32 min_size = DONGLE_MIN_MEMSIZE;
/* Restrict the memsize to user specified limit */
DHD_ERROR(("user: Restrict the dongle ram size to %d, min accepted %d\n",
dhd_dongle_memsize, min_size));
if ((dhd_dongle_memsize > min_size) &&
(dhd_dongle_memsize < (int32)bus->orig_ramsize))
bus->ramsize = dhd_dongle_memsize;
}
void
dhdpcie_bus_release_malloc(dhd_bus_t *bus, osl_t *osh)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd && bus->dhd->dongle_reset)
return;
if (bus->vars && bus->varsz) {
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s: Exit\n", __FUNCTION__));
return;
}
/** Stop bus module: clear pending frames, disable data flow */
void dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex)
{
uint32 status;
unsigned long flags;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!bus->dhd)
return;
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: already down by net_dev_reset\n", __FUNCTION__));
goto done;
}
DHD_DISABLE_RUNTIME_PM(bus->dhd);
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DOWN;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
dhdpcie_bus_intr_disable(bus);
status = dhdpcie_bus_cfg_read_dword(bus, PCIIntstatus, 4);
dhdpcie_bus_cfg_write_dword(bus, PCIIntstatus, 4, status);
if (!dhd_download_fw_on_driverload) {
dhd_dpc_kill(bus->dhd);
}
/* Clear rx control and wake any waiters */
dhd_os_set_ioctl_resp_timeout(IOCTL_DISABLE_TIMEOUT);
dhd_wakeup_ioctl_event(bus->dhd, IOCTL_RETURN_ON_BUS_STOP);
done:
return;
}
/** Watchdog timer function */
bool dhd_bus_watchdog(dhd_pub_t *dhd)
{
unsigned long flags;
#ifdef DHD_DEBUG
dhd_bus_t *bus;
bus = dhd->bus;
DHD_GENERAL_LOCK(dhd, flags);
if (dhd->busstate == DHD_BUS_DOWN ||
dhd->busstate == DHD_BUS_DOWN_IN_PROGRESS) {
DHD_GENERAL_UNLOCK(dhd, flags);
return FALSE;
}
dhd->dhd_bus_busy_state |= DHD_BUS_BUSY_IN_WD;
DHD_GENERAL_UNLOCK(dhd, flags);
#ifdef DHD_PCIE_RUNTIMEPM
dhdpcie_runtime_bus_wake(dhd, TRUE, __builtin_return_address(0));
#endif /* DHD_PCIE_RUNTIMEPM */
/* Poll for console output periodically */
if (dhd->busstate == DHD_BUS_DATA && dhd_console_ms != 0) {
bus->console.count += dhd_watchdog_ms;
if (bus->console.count >= dhd_console_ms) {
bus->console.count -= dhd_console_ms;
/* Make sure backplane clock is on */
if (dhdpcie_bus_readconsole(bus) < 0)
dhd_console_ms = 0; /* On error, stop trying */
}
}
#endif /* DHD_DEBUG */
#ifdef PCIE_OOB
/* If haven't communicated with device for a while, deassert the Device_Wake GPIO */
if (dhd_doorbell_timeout != 0 && !(bus->dhd->busstate == DHD_BUS_SUSPEND) &&
dhd_timeout_expired(&bus->doorbell_timer)) {
dhd_bus_set_device_wake(bus, FALSE);
}
#endif /* PCIE_OOB */
DHD_GENERAL_LOCK(dhd, flags);
dhd->dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_WD;
DHD_GENERAL_UNLOCK(dhd, flags);
return TRUE;
} /* dhd_bus_watchdog */
#define DEADBEEF_PATTERN 0xADDEADDE // "DeadDead"
#define MEMCHECKINFO "/data/.memcheck.info"
static int
dhd_get_memcheck_info(void)
{
struct file *fp = NULL;
uint32 mem_val = 0;
int ret = 0;
char *filepath = MEMCHECKINFO;
fp = filp_open(filepath, O_RDONLY, 0);
if (IS_ERR(fp)) {
DHD_INFO(("[WIFI_SEC] %s: File [%s] doesn't exist\n", __FUNCTION__, filepath));
goto done;
} else {
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
ret = kernel_read(fp, (char *)&mem_val, 4, 0);
#else
ret = kernel_read(fp, 0, (char *)&mem_val, 4);
#endif
if (ret < 0) {
DHD_ERROR(("[WIFI_SEC] %s: File read error, ret=%d\n", __FUNCTION__, ret));
filp_close(fp, NULL);
goto done;
}
mem_val = bcm_atoi((char *)&mem_val);
DHD_INFO(("[WIFI_SEC]%s: MEMCHECK ENABLED = %d\n", __FUNCTION__, mem_val));
filp_close(fp, NULL);
}
done:
return mem_val;
}
static int
dhdpcie_mem_check(struct dhd_bus *bus)
{
int bcmerror = BCME_OK;
int offset = 0;
int len = 0;
uint8 *memblock = NULL, *memptr;
int size = bus->ramsize;
int i;
uint32 memcheck_enabled;
/* Read memcheck info from the file */
/* 0 : Disable */
/* 1 : "Dead Beef" pattern write */
/* 2 : "Dead Beef" pattern write and checking the pattern value */
memcheck_enabled = dhd_get_memcheck_info();
DHD_INFO(("%s: memcheck_enabled: %d \n", __FUNCTION__, memcheck_enabled));
if (memcheck_enabled == 0) {
return bcmerror;
}
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((ulong)memblock % DHD_SDALIGN) {
memptr += (DHD_SDALIGN - ((ulong)memblock % DHD_SDALIGN));
}
for (i = 0; i < MEMBLOCK; i = i + 4) {
*(ulong*)(memptr + i) = DEADBEEF_PATTERN;
}
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0) ||
si_setcore(bus->sih, ARMCA7_CORE_ID, 0)) {
if (offset == 0) {
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
/* Write "DeadBeef" pattern with MEMBLOCK size */
while (size) {
len = MIN(MEMBLOCK, size);
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, (uint8 *)memptr, len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
if (memcheck_enabled == 2) {
bcmerror = dhdpcie_bus_membytes(bus, FALSE, offset, (uint8 *)memptr, len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on read %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
} else {
for (i = 0; i < len; i = i+4) {
if ((*(uint32*)(memptr + i)) != DEADBEEF_PATTERN) {
DHD_ERROR(("%s: error on reading pattern at "
"0x%08x\n", __FUNCTION__, (offset + i)));
bcmerror = BCME_ERROR;
goto err;
}
}
}
}
offset += MEMBLOCK;
size -= MEMBLOCK;
}
DHD_ERROR(("%s: Writing the Dead Beef pattern is Done \n", __FUNCTION__));
err:
if (memblock) {
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
}
return bcmerror;
}
/* Download firmware image and nvram image */
int
dhd_bus_download_firmware(struct dhd_bus *bus, osl_t *osh,
char *pfw_path, char *pnv_path)
{
int ret;
bus->fw_path = pfw_path;
bus->nv_path = pnv_path;
DHD_INFO(("%s: firmware path=%s, nvram path=%s\n",
__FUNCTION__, bus->fw_path, bus->nv_path));
dhdpcie_mem_check(bus);
ret = dhdpcie_download_firmware(bus, osh);
return ret;
}
static int
dhdpcie_download_firmware(struct dhd_bus *bus, osl_t *osh)
{
int ret = 0;
#if defined(BCM_REQUEST_FW)
uint chipid = bus->sih->chip;
uint revid = bus->sih->chiprev;
char fw_path[64] = "/lib/firmware/brcm/bcm"; /* path to firmware image */
char nv_path[64]; /* path to nvram vars file */
bus->fw_path = fw_path;
bus->nv_path = nv_path;
switch (chipid) {
case BCM43570_CHIP_ID:
bcmstrncat(fw_path, "43570", 5);
switch (revid) {
case 0:
bcmstrncat(fw_path, "a0", 2);
break;
case 2:
bcmstrncat(fw_path, "a2", 2);
break;
default:
DHD_ERROR(("%s: revid is not found %x\n", __FUNCTION__,
revid));
break;
}
break;
default:
DHD_ERROR(("%s: unsupported device %x\n", __FUNCTION__,
chipid));
return 0;
}
/* load board specific nvram file */
snprintf(bus->nv_path, sizeof(nv_path), "%s.nvm", fw_path);
/* load firmware */
snprintf(bus->fw_path, sizeof(fw_path), "%s-firmware.bin", fw_path);
#endif /* BCM_REQUEST_FW */
DHD_OS_WAKE_LOCK(bus->dhd);
ret = _dhdpcie_download_firmware(bus);
DHD_OS_WAKE_UNLOCK(bus->dhd);
return ret;
}
static int
dhdpcie_download_code_file(struct dhd_bus *bus, char *pfw_path)
{
int bcmerror = BCME_ERROR;
int offset = 0;
int len = 0;
char *imgbuf = NULL;
uint8 *memblock = NULL, *memptr;
int offset_end = bus->ramsize;
DHD_INFO(("%s: download firmware %s\n", __FUNCTION__, pfw_path));
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
#ifdef BCM_AUTO_FWCRC
/* Firmware binary crc validation before downloading */
if (dhd_check_firmware_image(memptr, pfw_path)) {
DHD_ERROR(("check image failed\n"));
goto err;
}
#endif
/* Should succeed in opening image if it is actually given through registry
* entry or in module param.
*/
imgbuf = dhd_os_open_image(pfw_path);
if (imgbuf == NULL)
goto err;
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
DHD_INFO_HW4(("%s: dongle_ram_base: 0x%x ramsize: 0x%x tcm: %p\n",
__FUNCTION__, bus->dongle_ram_base, bus->ramsize, bus->tcm));
/* Download image with MEMBLOCK size */
while ((len = dhd_os_get_image_block((char*)memptr, MEMBLOCK, imgbuf))) {
if (len < 0) {
DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len));
bcmerror = BCME_ERROR;
goto err;
}
/* check if CR4/CA7 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0) ||
si_setcore(bus->sih, ARMCA7_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
offset_end += offset;
}
}
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, (uint8 *)memptr, len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
if (offset >= offset_end) {
DHD_ERROR(("%s: invalid address access to %x (offset end: %x)\n",
__FUNCTION__, offset, offset_end));
bcmerror = BCME_ERROR;
goto err;
}
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
if (imgbuf)
dhd_os_close_image(imgbuf);
return bcmerror;
} /* dhdpcie_download_code_file */
#ifdef CUSTOMER_HW4_DEBUG
#define MIN_NVRAMVARS_SIZE 128
#endif /* CUSTOMER_HW4_DEBUG */
static int
dhdpcie_download_nvram(struct dhd_bus *bus)
{
int bcmerror = BCME_ERROR;
uint len;
char * memblock = NULL;
char *bufp;
char *pnv_path;
bool nvram_file_exists;
bool nvram_uefi_exists = FALSE;
bool local_alloc = FALSE;
pnv_path = bus->nv_path;
nvram_file_exists = ((pnv_path != NULL) && (pnv_path[0] != '\0'));
/* First try UEFI */
len = MAX_NVRAMBUF_SIZE;
dhd_get_download_buffer(bus->dhd, NULL, NVRAM, &memblock, &len);
/* If UEFI empty, then read from file system */
if ((len == 0) || (memblock[0] == '\0')) {
if (nvram_file_exists) {
len = MAX_NVRAMBUF_SIZE;
dhd_get_download_buffer(bus->dhd, pnv_path, NVRAM, &memblock, &len);
if ((len <= 0 || len > MAX_NVRAMBUF_SIZE)) {
goto err;
}
}
else {
/* For SROM OTP no external file or UEFI required */
bcmerror = BCME_OK;
}
} else {
nvram_uefi_exists = TRUE;
}
DHD_INFO(("%s: dhd_get_download_buffer len %d\n", __FUNCTION__, len));
if (len > 0 && len <= MAX_NVRAMBUF_SIZE) {
bufp = (char *) memblock;
#ifdef CACHE_FW_IMAGES
if (bus->processed_nvram_params_len) {
len = bus->processed_nvram_params_len;
}
if (!bus->processed_nvram_params_len) {
bufp[len] = 0;
if (nvram_uefi_exists || nvram_file_exists) {
len = process_nvram_vars(bufp, len);
bus->processed_nvram_params_len = len;
}
} else
#else
{
bufp[len] = 0;
if (nvram_uefi_exists || nvram_file_exists) {
len = process_nvram_vars(bufp, len);
}
}
#endif /* CACHE_FW_IMAGES */
DHD_INFO(("%s: process_nvram_vars len %d\n", __FUNCTION__, len));
#ifdef CUSTOMER_HW4_DEBUG
if (len < MIN_NVRAMVARS_SIZE) {
DHD_ERROR(("%s: invalid nvram size in process_nvram_vars \n",
__FUNCTION__));
bcmerror = BCME_ERROR;
goto err;
}
#endif /* CUSTOMER_HW4_DEBUG */
if (len % 4) {
len += 4 - (len % 4);
}
bufp += len;
*bufp++ = 0;
if (len)
bcmerror = dhdpcie_downloadvars(bus, memblock, len + 1);
if (bcmerror) {
DHD_ERROR(("%s: error downloading vars: %d\n",
__FUNCTION__, bcmerror));
}
}
err:
if (memblock) {
if (local_alloc) {
MFREE(bus->dhd->osh, memblock, MAX_NVRAMBUF_SIZE);
} else {
dhd_free_download_buffer(bus->dhd, memblock, MAX_NVRAMBUF_SIZE);
}
}
return bcmerror;
}
#ifdef BCMEMBEDIMAGE
int
dhdpcie_download_code_array(struct dhd_bus *bus)
{
int bcmerror = -1;
int offset = 0;
unsigned char *p_dlarray = NULL;
unsigned int dlarray_size = 0;
unsigned int downloded_len, remaining_len, len;
char *p_dlimagename, *p_dlimagever, *p_dlimagedate;
uint8 *memblock = NULL, *memptr;
downloded_len = 0;
remaining_len = 0;
len = 0;
p_dlarray = dlarray;
dlarray_size = sizeof(dlarray);
p_dlimagename = dlimagename;
p_dlimagever = dlimagever;
p_dlimagedate = dlimagedate;
if ((p_dlarray == 0) || (dlarray_size == 0) ||(dlarray_size > bus->ramsize) ||
(p_dlimagename == 0) || (p_dlimagever == 0) || (p_dlimagedate == 0))
goto err;
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
while (downloded_len < dlarray_size) {
remaining_len = dlarray_size - downloded_len;
if (remaining_len >= MEMBLOCK)
len = MEMBLOCK;
else
len = remaining_len;
memcpy(memptr, (p_dlarray + downloded_len), len);
/* check if CR4/CA7 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0) ||
si_setcore(bus->sih, SYSMEM_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, (uint8 *)memptr, len);
downloded_len += len;
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
#ifdef DHD_DEBUG
/* Upload and compare the downloaded code */
{
unsigned char *ularray = NULL;
unsigned int uploded_len;
uploded_len = 0;
bcmerror = -1;
ularray = MALLOC(bus->dhd->osh, dlarray_size);
if (ularray == NULL)
goto upload_err;
/* Upload image to verify downloaded contents. */
offset = bus->dongle_ram_base;
memset(ularray, 0xaa, dlarray_size);
while (uploded_len < dlarray_size) {
remaining_len = dlarray_size - uploded_len;
if (remaining_len >= MEMBLOCK)
len = MEMBLOCK;
else
len = remaining_len;
bcmerror = dhdpcie_bus_membytes(bus, FALSE, offset,
(uint8 *)(ularray + uploded_len), len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto upload_err;
}
uploded_len += len;
offset += MEMBLOCK;
}
if (memcmp(p_dlarray, ularray, dlarray_size)) {
DHD_ERROR(("%s: Downloaded image is corrupted (%s, %s, %s).\n",
__FUNCTION__, p_dlimagename, p_dlimagever, p_dlimagedate));
goto upload_err;
} else
DHD_ERROR(("%s: Download, Upload and compare succeeded (%s, %s, %s).\n",
__FUNCTION__, p_dlimagename, p_dlimagever, p_dlimagedate));
upload_err:
if (ularray)
MFREE(bus->dhd->osh, ularray, dlarray_size);
}
#endif /* DHD_DEBUG */
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
return bcmerror;
} /* dhdpcie_download_code_array */
#endif /* BCMEMBEDIMAGE */
static int
_dhdpcie_download_firmware(struct dhd_bus *bus)
{
int bcmerror = -1;
bool embed = FALSE; /* download embedded firmware */
bool dlok = FALSE; /* download firmware succeeded */
/* Out immediately if no image to download */
if ((bus->fw_path == NULL) || (bus->fw_path[0] == '\0')) {
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
DHD_ERROR(("%s: no fimrware file\n", __FUNCTION__));
return 0;
#endif
}
/* Keep arm in reset */
if (dhdpcie_bus_download_state(bus, TRUE)) {
DHD_ERROR(("%s: error placing ARM core in reset\n", __FUNCTION__));
goto err;
}
/* External image takes precedence if specified */
if ((bus->fw_path != NULL) && (bus->fw_path[0] != '\0')) {
if (dhdpcie_download_code_file(bus, bus->fw_path)) {
DHD_ERROR(("%s: dongle image file download failed\n", __FUNCTION__));
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
goto err;
#endif
} else {
embed = FALSE;
dlok = TRUE;
}
}
#ifdef BCMEMBEDIMAGE
if (embed) {
if (dhdpcie_download_code_array(bus)) {
DHD_ERROR(("%s: dongle image array download failed\n", __FUNCTION__));
goto err;
} else {
dlok = TRUE;
}
}
#else
BCM_REFERENCE(embed);
#endif
if (!dlok) {
DHD_ERROR(("%s: dongle image download failed\n", __FUNCTION__));
goto err;
}
/* EXAMPLE: nvram_array */
/* If a valid nvram_arry is specified as above, it can be passed down to dongle */
/* dhd_bus_set_nvram_params(bus, (char *)&nvram_array); */
/* External nvram takes precedence if specified */
if (dhdpcie_download_nvram(bus)) {
DHD_ERROR(("%s: dongle nvram file download failed\n", __FUNCTION__));
goto err;
}
/* Take arm out of reset */
if (dhdpcie_bus_download_state(bus, FALSE)) {
DHD_ERROR(("%s: error getting out of ARM core reset\n", __FUNCTION__));
goto err;
}
bcmerror = 0;
err:
return bcmerror;
} /* _dhdpcie_download_firmware */
#define CONSOLE_LINE_MAX 192
#ifdef DHD_DEBUG
static int
dhdpcie_bus_readconsole(dhd_bus_t *bus)
{
dhd_console_t *c = &bus->console;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return -1;
/* Read console log struct */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, (uint8 *)&c->log, sizeof(c->log))) < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = ltoh32(c->log.buf_size);
if ((c->buf = MALLOC(bus->dhd->osh, c->bufsize)) == NULL)
return BCME_NOMEM;
}
idx = ltoh32(c->log.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return BCME_ERROR;
/* Skip reading the console buffer if the index pointer has not moved */
if (idx == c->last)
return BCME_OK;
/* Read the console buffer */
addr = ltoh32(c->log.buf);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, c->buf, c->bufsize)) < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line. Instead, back up
* the buffer pointer and output this line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
printf("CONSOLE: %s\n", line);
}
}
break2:
return BCME_OK;
} /* dhdpcie_bus_readconsole */
#endif /* DHD_DEBUG */
static int
dhdpcie_checkdied(dhd_bus_t *bus, char *data, uint size)
{
int bcmerror = 0;
uint msize = 512;
char *mbuffer = NULL;
char *console_buffer = NULL;
uint maxstrlen = 256;
char *str = NULL;
trap_t tr;
pciedev_shared_t *pciedev_shared = bus->pcie_sh;
struct bcmstrbuf strbuf;
uint32 console_ptr, console_size, console_index;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, i, addr;
int rv;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (DHD_NOCHECKDIED_ON()) {
return 0;
}
if (data == NULL) {
/*
* Called after a rx ctrl timeout. "data" is NULL.
* allocate memory to trace the trap or assert.
*/
size = msize;
mbuffer = data = MALLOC(bus->dhd->osh, msize);
if (mbuffer == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, msize));
bcmerror = BCME_NOMEM;
goto done;
}
}
if ((str = MALLOC(bus->dhd->osh, maxstrlen)) == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, maxstrlen));
bcmerror = BCME_NOMEM;
goto done;
}
if ((bcmerror = dhdpcie_readshared(bus)) < 0) {
goto done;
}
bcm_binit(&strbuf, data, size);
bcm_bprintf(&strbuf, "msgtrace address : 0x%08X\nconsole address : 0x%08X\n",
pciedev_shared->msgtrace_addr, pciedev_shared->console_addr);
if ((pciedev_shared->flags & PCIE_SHARED_ASSERT_BUILT) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "Assrt not built in dongle\n");
}
if ((bus->pcie_sh->flags & (PCIE_SHARED_ASSERT|PCIE_SHARED_TRAP)) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "No trap%s in dongle",
(bus->pcie_sh->flags & PCIE_SHARED_ASSERT_BUILT)
?"/assrt" :"");
} else {
if (bus->pcie_sh->flags & PCIE_SHARED_ASSERT) {
/* Download assert */
bcm_bprintf(&strbuf, "Dongle assert");
if (bus->pcie_sh->assert_exp_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->assert_exp_addr,
(uint8 *)str, maxstrlen)) < 0) {
goto done;
}
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " expr \"%s\"", str);
}
if (bus->pcie_sh->assert_file_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->assert_file_addr,
(uint8 *)str, maxstrlen)) < 0) {
goto done;
}
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " file \"%s\"", str);
}
bcm_bprintf(&strbuf, " line %d ", bus->pcie_sh->assert_line);
}
if (bus->pcie_sh->flags & PCIE_SHARED_TRAP) {
bus->dhd->dongle_trap_occured = TRUE;
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->trap_addr, (uint8*)&tr, sizeof(trap_t))) < 0) {
goto done;
}
bcm_bprintf(&strbuf,
"\nTRAP type 0x%x @ epc 0x%x, cpsr 0x%x, spsr 0x%x, sp 0x%x,"
" lp 0x%x, rpc 0x%x"
"\nTrap offset 0x%x, r0 0x%x, r1 0x%x, r2 0x%x, r3 0x%x, "
"r4 0x%x, r5 0x%x, r6 0x%x, r7 0x%x\n\n",
ltoh32(tr.type), ltoh32(tr.epc), ltoh32(tr.cpsr), ltoh32(tr.spsr),
ltoh32(tr.r13), ltoh32(tr.r14), ltoh32(tr.pc),
ltoh32(bus->pcie_sh->trap_addr),
ltoh32(tr.r0), ltoh32(tr.r1), ltoh32(tr.r2), ltoh32(tr.r3),
ltoh32(tr.r4), ltoh32(tr.r5), ltoh32(tr.r6), ltoh32(tr.r7));
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_ptr, sizeof(console_ptr))) < 0) {
goto printbuf;
}
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log.buf_size);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_size, sizeof(console_size))) < 0) {
goto printbuf;
}
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log.idx);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_index, sizeof(console_index))) < 0) {
goto printbuf;
}
console_ptr = ltoh32(console_ptr);
console_size = ltoh32(console_size);
console_index = ltoh32(console_index);
if (console_size > CONSOLE_BUFFER_MAX ||
!(console_buffer = MALLOC(bus->dhd->osh, console_size))) {
goto printbuf;
}
if ((rv = dhdpcie_bus_membytes(bus, FALSE, console_ptr,
(uint8 *)console_buffer, console_size)) < 0) {
goto printbuf;
}
for (i = 0, n = 0; i < console_size; i += n + 1) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
ch = console_buffer[(console_index + i + n) % console_size];
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
/* Don't use DHD_ERROR macro since we print
* a lot of information quickly. The macro
* will truncate a lot of the printfs
*/
printf("CONSOLE: %s\n", line);
}
}
}
}
printbuf:
if (bus->pcie_sh->flags & (PCIE_SHARED_ASSERT | PCIE_SHARED_TRAP)) {
printf("%s: %s\n", __FUNCTION__, strbuf.origbuf);
/* wake up IOCTL wait event */
dhd_wakeup_ioctl_event(bus->dhd, IOCTL_RETURN_ON_TRAP);
#if defined(DHD_FW_COREDUMP)
/* save core dump or write to a file */
if (bus->dhd->memdump_enabled) {
bus->dhd->memdump_type = DUMP_TYPE_DONGLE_TRAP;
dhdpcie_mem_dump(bus);
}
#endif /* DHD_FW_COREDUMP */
}
done:
if (mbuffer)
MFREE(bus->dhd->osh, mbuffer, msize);
if (str)
MFREE(bus->dhd->osh, str, maxstrlen);
if (console_buffer)
MFREE(bus->dhd->osh, console_buffer, console_size);
return bcmerror;
} /* dhdpcie_checkdied */
/* Custom copy of dhdpcie_mem_dump() that can be called at interrupt level */
void dhdpcie_mem_dump_bugcheck(dhd_bus_t *bus, uint8 *buf)
{
int ret = 0;
int size; /* Full mem size */
int start; /* Start address */
int read_size = 0; /* Read size of each iteration */
uint8 *databuf = buf;
if (bus == NULL) {
return;
}
start = bus->dongle_ram_base;
/* Get full mem size */
size = bus->ramsize;
/* Read mem content */
while (size)
{
read_size = MIN(MEMBLOCK, size);
if ((ret = dhdpcie_bus_membytes(bus, FALSE, start, databuf, read_size))) {
return;
}
/* Decrement size and increment start address */
size -= read_size;
start += read_size;
databuf += read_size;
}
bus->dhd->soc_ram = buf;
bus->dhd->soc_ram_length = bus->ramsize;
return;
}
#if defined(DHD_FW_COREDUMP)
static int
dhdpcie_mem_dump(dhd_bus_t *bus)
{
int ret = 0;
int size; /* Full mem size */
int start = bus->dongle_ram_base; /* Start address */
int read_size = 0; /* Read size of each iteration */
uint8 *buf = NULL, *databuf = NULL;
#ifdef EXYNOS_PCIE_DEBUG
exynos_pcie_register_dump(1);
#endif /* EXYNOS_PCIE_DEBUG */
#ifdef SUPPORT_LINKDOWN_RECOVERY
if (bus->is_linkdown) {
DHD_ERROR(("%s: PCIe link was down so skip\n", __FUNCTION__));
return BCME_ERROR;
}
#endif /* SUPPORT_LINKDOWN_RECOVERY */
/* Get full mem size */
size = bus->ramsize;
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP)
buf = DHD_OS_PREALLOC(bus->dhd, DHD_PREALLOC_MEMDUMP_BUF, size);
bzero(buf, size);
#else
buf = MALLOC(bus->dhd->osh, size);
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */
if (!buf) {
DHD_ERROR(("%s: Out of memory (%d bytes)\n", __FUNCTION__, size));
return BCME_ERROR;
}
/* Read mem content */
DHD_TRACE_HW4(("Dump dongle memory"));
databuf = buf;
while (size)
{
read_size = MIN(MEMBLOCK, size);
if ((ret = dhdpcie_bus_membytes(bus, FALSE, start, databuf, read_size)))
{
DHD_ERROR(("%s: Error membytes %d\n", __FUNCTION__, ret));
if (buf) {
MFREE(bus->dhd->osh, buf, size);
}
bus->dhd->memdump_success = FALSE;
return BCME_ERROR;
}
DHD_TRACE(("."));
/* Decrement size and increment start address */
size -= read_size;
start += read_size;
databuf += read_size;
}
bus->dhd->memdump_success = TRUE;
DHD_TRACE_HW4(("%s FUNC: Copy fw image to the embedded buffer \n", __FUNCTION__));
dhd_save_fwdump(bus->dhd, buf, bus->ramsize);
dhd_schedule_memdump(bus->dhd, buf, bus->ramsize);
return ret;
}
int
dhd_bus_mem_dump(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
if (bus->suspended) {
DHD_ERROR(("%s: Bus is suspend so skip\n", __FUNCTION__));
return 0;
}
return dhdpcie_mem_dump(bus);
}
#ifdef BCMDHDX
int
dhdx_dongle_mem_dump()
{
if (!g_dhd_bus) {
DHD_ERROR(("%s: Bus is NULL\n", __FUNCTION__));
return -ENODEV;
}
if (g_dhd_bus->suspended) {
DHD_ERROR(("%s: Bus is suspend so skip\n", __FUNCTION__));
return 0;
}
g_dhd_bus->dhd->memdump_enabled = DUMP_MEMFILE_BUGON;
g_dhd_bus->dhd->memdump_type = DUMP_TYPE_AP_ABNORMAL_ACCESS;
return dhdpcie_mem_dump(g_dhd_bus);
}
EXPORT_SYMBOL(dhdx_dongle_mem_dump);
#else
int
dhd_dongle_mem_dump()
{
if (!g_dhd_bus) {
DHD_ERROR(("%s: Bus is NULL\n", __FUNCTION__));
return -ENODEV;
}
if (g_dhd_bus->suspended) {
DHD_ERROR(("%s: Bus is suspend so skip\n", __FUNCTION__));
return 0;
}
g_dhd_bus->dhd->memdump_enabled = DUMP_MEMFILE_BUGON;
g_dhd_bus->dhd->memdump_type = DUMP_TYPE_AP_ABNORMAL_ACCESS;
return dhdpcie_mem_dump(g_dhd_bus);
}
EXPORT_SYMBOL(dhd_dongle_mem_dump);
#endif /* BCMDHDX */
#endif /* DHD_FW_COREDUMP */
int
dhd_socram_dump(dhd_bus_t *bus)
{
#if defined(DHD_FW_COREDUMP)
return (dhdpcie_mem_dump(bus));
#else
return -1;
#endif
}
/**
* Transfers bytes from host to dongle using pio mode.
* Parameter 'address' is a backplane address.
*/
static int
dhdpcie_bus_membytes(dhd_bus_t *bus, bool write, ulong address, uint8 *data, uint size)
{
uint dsize;
int detect_endian_flag = 0x01;
bool little_endian;
if (write && bus->is_linkdown) {
DHD_ERROR(("%s: PCIe link was down\n", __FUNCTION__));
return BCME_ERROR;
}
/* Detect endianness. */
little_endian = *(char *)&detect_endian_flag;
/* In remap mode, adjust address beyond socram and redirect
* to devram at SOCDEVRAM_BP_ADDR since remap address > orig_ramsize
* is not backplane accessible
*/
/* Determine initial transfer parameters */
dsize = sizeof(uint64);
/* Do the transfer(s) */
if (write) {
while (size) {
if (size >= sizeof(uint64) && little_endian &&
#ifdef CONFIG_64BIT
!(address % 8) &&
#endif /* CONFIG_64BIT */
1) {
dhdpcie_bus_wtcm64(bus, address, *((uint64 *)data));
} else {
dsize = sizeof(uint8);
dhdpcie_bus_wtcm8(bus, address, *data);
}
/* Adjust for next transfer (if any) */
if ((size -= dsize)) {
data += dsize;
address += dsize;
}
}
} else {
while (size) {
if (size >= sizeof(uint64) && little_endian &&
#ifdef CONFIG_64BIT
!(address % 8) &&
#endif /* CONFIG_64BIT */
1) {
*(uint64 *)data = dhdpcie_bus_rtcm64(bus, address);
} else {
dsize = sizeof(uint8);
*data = dhdpcie_bus_rtcm8(bus, address);
}
/* Adjust for next transfer (if any) */
if ((size -= dsize) > 0) {
data += dsize;
address += dsize;
}
}
}
return BCME_OK;
} /* dhdpcie_bus_membytes */
/**
* Transfers one transmit (ethernet) packet that was queued in the (flow controlled) flow ring queue
* to the (non flow controlled) flow ring.
*/
int BCMFASTPATH
dhd_bus_schedule_queue(struct dhd_bus *bus, uint16 flow_id, bool txs)
{
flow_ring_node_t *flow_ring_node;
int ret = BCME_OK;
#ifdef DHD_LOSSLESS_ROAMING
dhd_pub_t *dhdp = bus->dhd;
#endif
DHD_INFO(("%s: flow_id is %d\n", __FUNCTION__, flow_id));
/* ASSERT on flow_id */
if (flow_id >= bus->max_sub_queues) {
DHD_ERROR(("%s: flow_id is invalid %d, max %d\n", __FUNCTION__,
flow_id, bus->max_sub_queues));
return 0;
}
flow_ring_node = DHD_FLOW_RING(bus->dhd, flow_id);
#ifdef DHD_LOSSLESS_ROAMING
if ((dhdp->dequeue_prec_map & (1 << flow_ring_node->flow_info.tid)) == 0) {
DHD_INFO(("%s: tid %d is not in precedence map. block scheduling\n",
__FUNCTION__, flow_ring_node->flow_info.tid));
return BCME_OK;
}
#endif /* DHD_LOSSLESS_ROAMING */
{
unsigned long flags;
void *txp = NULL;
flow_queue_t *queue;
#ifdef DHD_LOSSLESS_ROAMING
struct ether_header *eh;
uint8 *pktdata;
#endif /* DHD_LOSSLESS_ROAMING */
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status != FLOW_RING_STATUS_OPEN) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
return BCME_NOTREADY;
}
while ((txp = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTORPHAN(txp);
/*
* Modifying the packet length caused P2P cert failures.
* Specifically on test cases where a packet of size 52 bytes
* was injected, the sniffer capture showed 62 bytes because of
* which the cert tests failed. So making the below change
* only Router specific.
*/
#ifdef DHDTCPACK_SUPPRESS
if (bus->dhd->tcpack_sup_mode != TCPACK_SUP_HOLD) {
ret = dhd_tcpack_check_xmit(bus->dhd, txp);
if (ret != BCME_OK) {
DHD_ERROR(("%s: dhd_tcpack_check_xmit() error.\n",
__FUNCTION__));
}
}
#endif /* DHDTCPACK_SUPPRESS */
#ifdef DHD_LOSSLESS_ROAMING
pktdata = (uint8 *)PKTDATA(OSH_NULL, txp);
eh = (struct ether_header *) pktdata;
if (eh->ether_type == hton16(ETHER_TYPE_802_1X)) {
uint8 prio = (uint8)PKTPRIO(txp);
/* Restore to original priority for 802.1X packet */
if (prio == PRIO_8021D_NC) {
PKTSETPRIO(txp, dhdp->prio_8021x);
}
}
#endif /* DHD_LOSSLESS_ROAMING */
/* Attempt to transfer packet over flow ring */
ret = dhd_prot_txdata(bus->dhd, txp, flow_ring_node->flow_info.ifindex);
if (ret != BCME_OK) { /* may not have resources in flow ring */
DHD_INFO(("%s: Reinserrt %d\n", __FUNCTION__, ret));
dhd_prot_txdata_write_flush(bus->dhd, flow_id, FALSE);
/* reinsert at head */
dhd_flow_queue_reinsert(bus->dhd, queue, txp);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* If we are able to requeue back, return success */
return BCME_OK;
}
}
dhd_prot_txdata_write_flush(bus->dhd, flow_id, FALSE);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
}
return ret;
} /* dhd_bus_schedule_queue */
/** Sends an (ethernet) data frame (in 'txp') to the dongle. Callee disposes of txp. */
int BCMFASTPATH
dhd_bus_txdata(struct dhd_bus *bus, void *txp, uint8 ifidx)
{
uint16 flowid;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
unsigned long flags;
int ret = BCME_OK;
void *txp_pend = NULL;
if (!bus->dhd->flowid_allocator) {
DHD_ERROR(("%s: Flow ring not intited yet \n", __FUNCTION__));
goto toss;
}
flowid = DHD_PKT_GET_FLOWID(txp);
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
DHD_TRACE(("%s: pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((flowid >= bus->dhd->num_flow_rings) ||
(!flow_ring_node->active) ||
(flow_ring_node->status == FLOW_RING_STATUS_DELETE_PENDING) ||
(flow_ring_node->status == FLOW_RING_STATUS_STA_FREEING)) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
DHD_INFO(("%s: Dropping pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
ret = BCME_ERROR;
goto toss;
}
queue = &flow_ring_node->queue; /* queue associated with flow ring */
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp)) != BCME_OK) {
txp_pend = txp;
}
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status) {
DHD_INFO(("%s: Enq pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
if (txp_pend) {
txp = txp_pend;
goto toss;
}
return BCME_OK;
}
ret = dhd_bus_schedule_queue(bus, flowid, FALSE); /* from queue to flowring */
/* If we have anything pending, try to push into q */
if (txp_pend) {
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp_pend)) != BCME_OK) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
txp = txp_pend;
goto toss;
}
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
}
return ret;
toss:
DHD_INFO(("%s: Toss %d\n", __FUNCTION__, ret));
PKTCFREE(bus->dhd->osh, txp, TRUE);
return ret;
} /* dhd_bus_txdata */
void
dhd_bus_stop_queue(struct dhd_bus *bus)
{
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON);
bus->bus_flowctrl = TRUE;
}
void
dhd_bus_start_queue(struct dhd_bus *bus)
{
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF);
bus->bus_flowctrl = TRUE;
}
#if defined(DHD_DEBUG)
/* Device console input function */
int dhd_bus_console_in(dhd_pub_t *dhd, uchar *msg, uint msglen)
{
dhd_bus_t *bus = dhd->bus;
uint32 addr, val;
int rv;
/* Address could be zero if CONSOLE := 0 in dongle Makefile */
if (bus->console_addr == 0)
return BCME_UNSUPPORTED;
/* Don't allow input if dongle is in reset */
if (bus->dhd->dongle_reset) {
dhd_os_sdunlock(bus->dhd);
return BCME_NOTREADY;
}
/* Zero cbuf_index */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf_idx);
val = htol32(0);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* Write message into cbuf */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)msg, msglen)) < 0)
goto done;
/* Write length into vcons_in */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, vcons_in);
val = htol32(msglen);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* generate an interrupt to dongle to indicate that it needs to process cons command */
dhdpcie_send_mb_data(bus, H2D_HOST_CONS_INT);
done:
return rv;
} /* dhd_bus_console_in */
#endif /* defined(DHD_DEBUG) */
/**
* Called on frame reception, the frame was received from the dongle on interface 'ifidx' and is
* contained in 'pkt'. Processes rx frame, forwards up the layer to netif.
*/
void BCMFASTPATH
dhd_bus_rx_frame(struct dhd_bus *bus, void* pkt, int ifidx, uint pkt_count)
{
dhd_rx_frame(bus->dhd, ifidx, pkt, pkt_count, 0);
}
/** 'offset' is a backplane address */
void
dhdpcie_bus_wtcm8(dhd_bus_t *bus, ulong offset, uint8 data)
{
*(volatile uint8 *)(bus->tcm + offset) = (uint8)data;
}
uint8
dhdpcie_bus_rtcm8(dhd_bus_t *bus, ulong offset)
{
volatile uint8 data;
data = *(volatile uint8 *)(bus->tcm + offset);
return data;
}
void
dhdpcie_bus_wtcm32(dhd_bus_t *bus, ulong offset, uint32 data)
{
*(volatile uint32 *)(bus->tcm + offset) = (uint32)data;
}
void
dhdpcie_bus_wtcm16(dhd_bus_t *bus, ulong offset, uint16 data)
{
*(volatile uint16 *)(bus->tcm + offset) = (uint16)data;
}
void
dhdpcie_bus_wtcm64(dhd_bus_t *bus, ulong offset, uint64 data)
{
*(volatile uint64 *)(bus->tcm + offset) = (uint64)data;
}
uint16
dhdpcie_bus_rtcm16(dhd_bus_t *bus, ulong offset)
{
volatile uint16 data;
data = *(volatile uint16 *)(bus->tcm + offset);
return data;
}
uint32
dhdpcie_bus_rtcm32(dhd_bus_t *bus, ulong offset)
{
volatile uint32 data;
data = *(volatile uint32 *)(bus->tcm + offset);
return data;
}
uint64
dhdpcie_bus_rtcm64(dhd_bus_t *bus, ulong offset)
{
volatile uint64 data;
data = *(volatile uint64 *)(bus->tcm + offset);
return data;
}
/** A snippet of dongle memory is shared between host and dongle */
void
dhd_bus_cmn_writeshared(dhd_bus_t *bus, void *data, uint32 len, uint8 type, uint16 ringid)
{
uint64 long_data;
ulong tcm_offset;
DHD_INFO(("%s: writing to dongle type %d len %d\n", __FUNCTION__, type, len));
if (bus->is_linkdown) {
DHD_ERROR(("%s: PCIe link was down\n", __FUNCTION__));
return;
}
switch (type) {
case D2H_DMA_SCRATCH_BUF:
{
pciedev_shared_t *sh = (pciedev_shared_t*)bus->shared_addr;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)&(sh->host_dma_scratch_buffer);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
}
case D2H_DMA_SCRATCH_BUF_LEN:
{
pciedev_shared_t *sh = (pciedev_shared_t*)bus->shared_addr;
tcm_offset = (ulong)&(sh->host_dma_scratch_buffer_len);
dhdpcie_bus_wtcm32(bus, tcm_offset, (uint32) HTOL32(*(uint32 *)data));
prhex(__FUNCTION__, data, len);
break;
}
case H2D_DMA_INDX_WR_BUF:
{
pciedev_shared_t *shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, h2d_w_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
}
case H2D_DMA_INDX_RD_BUF:
{
pciedev_shared_t *shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, h2d_r_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
}
case D2H_DMA_INDX_WR_BUF:
{
pciedev_shared_t *shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, d2h_w_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
}
case D2H_DMA_INDX_RD_BUF:
{
pciedev_shared_t *shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, d2h_r_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
}
case RING_ITEM_LEN:
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, len_items);
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_MAX_ITEMS:
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, max_item);
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_BUF_ADDR:
long_data = HTOL64(*(uint64 *)data);
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, base_addr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8 *) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case RING_WR_UPD:
tcm_offset = bus->ring_sh[ringid].ring_state_w;
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_RD_UPD:
tcm_offset = bus->ring_sh[ringid].ring_state_r;
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case D2H_MB_DATA:
dhdpcie_bus_wtcm32(bus, bus->d2h_mb_data_ptr_addr,
(uint32) HTOL32(*(uint32 *)data));
break;
case H2D_MB_DATA:
dhdpcie_bus_wtcm32(bus, bus->h2d_mb_data_ptr_addr,
(uint32) HTOL32(*(uint32 *)data));
break;
default:
break;
}
} /* dhd_bus_cmn_writeshared */
/** A snippet of dongle memory is shared between host and dongle */
void
dhd_bus_cmn_readshared(dhd_bus_t *bus, void* data, uint8 type, uint16 ringid)
{
ulong tcm_offset;
switch (type) {
case RING_WR_UPD:
tcm_offset = bus->ring_sh[ringid].ring_state_w;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus, tcm_offset));
break;
case RING_RD_UPD:
tcm_offset = bus->ring_sh[ringid].ring_state_r;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus, tcm_offset));
break;
case TOTAL_LFRAG_PACKET_CNT:
{
pciedev_shared_t *sh = (pciedev_shared_t*)bus->shared_addr;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus,
(ulong) &sh->total_lfrag_pkt_cnt));
break;
}
case H2D_MB_DATA:
*(uint32*)data = LTOH32(dhdpcie_bus_rtcm32(bus, bus->h2d_mb_data_ptr_addr));
break;
case D2H_MB_DATA:
*(uint32*)data = LTOH32(dhdpcie_bus_rtcm32(bus, bus->d2h_mb_data_ptr_addr));
break;
case MAX_HOST_RXBUFS:
{
pciedev_shared_t *sh = (pciedev_shared_t*)bus->shared_addr;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus,
(ulong) &sh->max_host_rxbufs));
break;
}
default :
break;
}
}
uint32 dhd_bus_get_sharedflags(dhd_bus_t *bus)
{
return ((pciedev_shared_t*)bus->pcie_sh)->flags;
}
void
dhd_bus_clearcounts(dhd_pub_t *dhdp)
{
}
int
dhd_bus_iovar_op(dhd_pub_t *dhdp, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
dhd_bus_t *bus = dhdp->bus;
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
uint32 actionid;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(name);
ASSERT(len >= 0);
/* Get MUST have return space */
ASSERT(set || (arg && len));
/* Set does NOT take qualifiers */
ASSERT(!set || (!params && !plen));
DHD_INFO(("%s: %s %s, len %d plen %d\n", __FUNCTION__,
name, (set ? "set" : "get"), len, plen));
/* Look up var locally; if not found pass to host driver */
if ((vi = bcm_iovar_lookup(dhdpcie_iovars, name)) == NULL) {
goto exit;
}
/* set up 'params' pointer in case this is a set command so that
* the convenience int and bool code can be common to set and get
*/
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
/* all other types are integer sized */
val_size = sizeof(int);
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
bcmerror = dhdpcie_bus_doiovar(bus, vi, actionid, name, params, plen, arg, len, val_size);
exit:
return bcmerror;
} /* dhd_bus_iovar_op */
#ifdef BCM_BUZZZ
#include <bcm_buzzz.h>
int
dhd_buzzz_dump_cntrs(char *p, uint32 *core, uint32 *log,
const int num_counters)
{
int bytes = 0;
uint32 ctr;
uint32 curr[BCM_BUZZZ_COUNTERS_MAX], prev[BCM_BUZZZ_COUNTERS_MAX];
uint32 delta[BCM_BUZZZ_COUNTERS_MAX];
/* Compute elapsed counter values per counter event type */
for (ctr = 0U; ctr < num_counters; ctr++) {
prev[ctr] = core[ctr];
curr[ctr] = *log++;
core[ctr] = curr[ctr]; /* saved for next log */
if (curr[ctr] < prev[ctr])
delta[ctr] = curr[ctr] + (~0U - prev[ctr]);
else
delta[ctr] = (curr[ctr] - prev[ctr]);
bytes += sprintf(p + bytes, "%12u ", delta[ctr]);
}
return bytes;
}
typedef union cm3_cnts { /* export this in bcm_buzzz.h */
uint32 u32;
uint8 u8[4];
struct {
uint8 cpicnt;
uint8 exccnt;
uint8 sleepcnt;
uint8 lsucnt;
};
} cm3_cnts_t;
int
dhd_bcm_buzzz_dump_cntrs6(char *p, uint32 *core, uint32 *log)
{
int bytes = 0;
uint32 cyccnt, instrcnt;
cm3_cnts_t cm3_cnts;
uint8 foldcnt;
{ /* 32bit cyccnt */
uint32 curr, prev, delta;
prev = core[0]; curr = *log++; core[0] = curr;
if (curr < prev)
delta = curr + (~0U - prev);
else
delta = (curr - prev);
bytes += sprintf(p + bytes, "%12u ", delta);
cyccnt = delta;
}
{ /* Extract the 4 cnts: cpi, exc, sleep and lsu */
int i;
uint8 max8 = ~0;
cm3_cnts_t curr, prev, delta;
prev.u32 = core[1]; curr.u32 = * log++; core[1] = curr.u32;
for (i = 0; i < 4; i++) {
if (curr.u8[i] < prev.u8[i])
delta.u8[i] = curr.u8[i] + (max8 - prev.u8[i]);
else
delta.u8[i] = (curr.u8[i] - prev.u8[i]);
bytes += sprintf(p + bytes, "%4u ", delta.u8[i]);
}
cm3_cnts.u32 = delta.u32;
}
{ /* Extract the foldcnt from arg0 */
uint8 curr, prev, delta, max8 = ~0;
bcm_buzzz_arg0_t arg0; arg0.u32 = *log;
prev = core[2]; curr = arg0.klog.cnt; core[2] = curr;
if (curr < prev)
delta = curr + (max8 - prev);
else
delta = (curr - prev);
bytes += sprintf(p + bytes, "%4u ", delta);
foldcnt = delta;
}
instrcnt = cyccnt - (cm3_cnts.u8[0] + cm3_cnts.u8[1] + cm3_cnts.u8[2]
+ cm3_cnts.u8[3]) + foldcnt;
if (instrcnt > 0xFFFFFF00)
bytes += sprintf(p + bytes, "[%10s] ", "~");
else
bytes += sprintf(p + bytes, "[%10u] ", instrcnt);
return bytes;
}
int
dhd_buzzz_dump_log(char *p, uint32 *core, uint32 *log, bcm_buzzz_t *buzzz)
{
int bytes = 0;
bcm_buzzz_arg0_t arg0;
static uint8 * fmt[] = BCM_BUZZZ_FMT_STRINGS;
if (buzzz->counters == 6) {
bytes += dhd_bcm_buzzz_dump_cntrs6(p, core, log);
log += 2; /* 32bit cyccnt + (4 x 8bit) CM3 */
} else {
bytes += dhd_buzzz_dump_cntrs(p, core, log, buzzz->counters);
log += buzzz->counters; /* (N x 32bit) CR4=3, CA7=4 */
}
/* Dump the logged arguments using the registered formats */
arg0.u32 = *log++;
switch (arg0.klog.args) {
case 0:
bytes += sprintf(p + bytes, fmt[arg0.klog.id]);
break;
case 1:
{
uint32 arg1 = *log++;
bytes += sprintf(p + bytes, fmt[arg0.klog.id], arg1);
break;
}
case 2:
{
uint32 arg1, arg2;
arg1 = *log++; arg2 = *log++;
bytes += sprintf(p + bytes, fmt[arg0.klog.id], arg1, arg2);
break;
}
case 3:
{
uint32 arg1, arg2, arg3;
arg1 = *log++; arg2 = *log++; arg3 = *log++;
bytes += sprintf(p + bytes, fmt[arg0.klog.id], arg1, arg2, arg3);
break;
}
case 4:
{
uint32 arg1, arg2, arg3, arg4;
arg1 = *log++; arg2 = *log++;
arg3 = *log++; arg4 = *log++;
bytes += sprintf(p + bytes, fmt[arg0.klog.id], arg1, arg2, arg3, arg4);
break;
}
default:
printf("Maximum one argument supported\n");
break;
}
bytes += sprintf(p + bytes, "\n");
return bytes;
}
void dhd_buzzz_dump(bcm_buzzz_t *buzzz_p, void *buffer_p, char *p)
{
int i;
uint32 total, part1, part2, log_sz, core[BCM_BUZZZ_COUNTERS_MAX];
void * log;
for (i = 0; i < BCM_BUZZZ_COUNTERS_MAX; i++) {
core[i] = 0;
}
log_sz = buzzz_p->log_sz;
part1 = ((uint32)buzzz_p->cur - (uint32)buzzz_p->log) / log_sz;
if (buzzz_p->wrap == TRUE) {
part2 = ((uint32)buzzz_p->end - (uint32)buzzz_p->cur) / log_sz;
total = (buzzz_p->buffer_sz - BCM_BUZZZ_LOGENTRY_MAXSZ) / log_sz;
} else {
part2 = 0U;
total = buzzz_p->count;
}
if (total == 0U) {
printf("bcm_buzzz_dump total<%u> done\n", total);
return;
} else {
printf("bcm_buzzz_dump total<%u> : part2<%u> + part1<%u>\n",
total, part2, part1);
}
if (part2) { /* with wrap */
log = (void*)((size_t)buffer_p + (buzzz_p->cur - buzzz_p->log));
while (part2--) { /* from cur to end : part2 */
p[0] = '\0';
dhd_buzzz_dump_log(p, core, (uint32 *)log, buzzz_p);
printf("%s", p);
log = (void*)((size_t)log + buzzz_p->log_sz);
}
}
log = (void*)buffer_p;
while (part1--) {
p[0] = '\0';
dhd_buzzz_dump_log(p, core, (uint32 *)log, buzzz_p);
printf("%s", p);
log = (void*)((size_t)log + buzzz_p->log_sz);
}
printf("bcm_buzzz_dump done.\n");
}
int dhd_buzzz_dump_dngl(dhd_bus_t *bus)
{
bcm_buzzz_t * buzzz_p = NULL;
void * buffer_p = NULL;
char * page_p = NULL;
pciedev_shared_t *sh;
int ret = 0;
if (bus->dhd->busstate != DHD_BUS_DATA) {
return BCME_UNSUPPORTED;
}
if ((page_p = (char *)MALLOC(bus->dhd->osh, 4096)) == NULL) {
printf("Page memory allocation failure\n");
goto done;
}
if ((buzzz_p = MALLOC(bus->dhd->osh, sizeof(bcm_buzzz_t))) == NULL) {
printf("BCM BUZZZ memory allocation failure\n");
goto done;
}
ret = dhdpcie_readshared(bus);
if (ret < 0) {
DHD_ERROR(("%s :Shared area read failed \n", __FUNCTION__));
goto done;
}
sh = bus->pcie_sh;
DHD_INFO(("%s buzzz:%08x\n", __FUNCTION__, sh->buzzz));
if (sh->buzzz != 0U) { /* Fetch and display dongle BUZZZ Trace */
dhdpcie_bus_membytes(bus, FALSE, (ulong)sh->buzzz,
(uint8 *)buzzz_p, sizeof(bcm_buzzz_t));
printf("BUZZZ[0x%08x]: log<0x%08x> cur<0x%08x> end<0x%08x> "
"count<%u> status<%u> wrap<%u>\n"
"cpu<0x%02X> counters<%u> group<%u> buffer_sz<%u> log_sz<%u>\n",
(int)sh->buzzz,
(int)buzzz_p->log, (int)buzzz_p->cur, (int)buzzz_p->end,
buzzz_p->count, buzzz_p->status, buzzz_p->wrap,
buzzz_p->cpu_idcode, buzzz_p->counters, buzzz_p->group,
buzzz_p->buffer_sz, buzzz_p->log_sz);
if (buzzz_p->count == 0) {
printf("Empty dongle BUZZZ trace\n\n");
goto done;
}
/* Allocate memory for trace buffer and format strings */
buffer_p = MALLOC(bus->dhd->osh, buzzz_p->buffer_sz);
if (buffer_p == NULL) {
printf("Buffer memory allocation failure\n");
goto done;
}
/* Fetch the trace. format strings are exported via bcm_buzzz.h */
dhdpcie_bus_membytes(bus, FALSE, (uint32)buzzz_p->log, /* Trace */
(uint8 *)buffer_p, buzzz_p->buffer_sz);
/* Process and display the trace using formatted output */
{
int ctr;
for (ctr = 0; ctr < buzzz_p->counters; ctr++) {
printf("<Evt[%02X]> ", buzzz_p->eventid[ctr]);
}
printf("<code execution point>\n");
}
dhd_buzzz_dump(buzzz_p, buffer_p, page_p);
printf("----- End of dongle BCM BUZZZ Trace -----\n\n");
MFREE(bus->dhd->osh, buffer_p, buzzz_p->buffer_sz); buffer_p = NULL;
}
done:
if (page_p) MFREE(bus->dhd->osh, page_p, 4096);
if (buzzz_p) MFREE(bus->dhd->osh, buzzz_p, sizeof(bcm_buzzz_t));
if (buffer_p) MFREE(bus->dhd->osh, buffer_p, buzzz_p->buffer_sz);
return BCME_OK;
}
#endif /* BCM_BUZZZ */
#define PCIE_GEN2(sih) ((BUSTYPE((sih)->bustype) == PCI_BUS) && \
((sih)->buscoretype == PCIE2_CORE_ID))
static bool
pcie2_mdiosetblock(dhd_bus_t *bus, uint blk)
{
uint mdiodata, mdioctrl, i = 0;
uint pcie_serdes_spinwait = 200;
mdioctrl = MDIOCTL2_DIVISOR_VAL | (0x1F << MDIOCTL2_REGADDR_SHF);
mdiodata = (blk << MDIODATA2_DEVADDR_SHF) | MDIODATA2_DONE;
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_CONTROL, ~0, mdioctrl);
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_WR_DATA, ~0, mdiodata);
OSL_DELAY(10);
/* retry till the transaction is complete */
while (i < pcie_serdes_spinwait) {
uint mdioctrl_read = si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_WR_DATA,
0, 0);
if (!(mdioctrl_read & MDIODATA2_DONE)) {
break;
}
OSL_DELAY(1000);
i++;
}
if (i >= pcie_serdes_spinwait) {
DHD_ERROR(("pcie_mdiosetblock: timed out\n"));
return FALSE;
}
return TRUE;
}
int
dhd_bus_devreset(dhd_pub_t *dhdp, uint8 flag)
{
dhd_bus_t *bus = dhdp->bus;
int bcmerror = 0;
unsigned long flags;
#ifdef CONFIG_ARCH_MSM
int retry = POWERUP_MAX_RETRY;
#endif /* CONFIG_ARCH_MSM */
if (dhd_download_fw_on_driverload) {
bcmerror = dhd_bus_start(dhdp);
} else {
if (flag == TRUE) { /* Turn off WLAN */
/* Removing Power */
DHD_INFO(("%s: == Power OFF ==\n", __FUNCTION__));
bus->dhd->up = FALSE;
if (bus->dhd->busstate != DHD_BUS_DOWN) {
dhdpcie_advertise_bus_cleanup(bus->dhd);
if (bus->intr) {
dhdpcie_free_irq(bus);
}
#ifdef BCMPCIE_OOB_HOST_WAKE
/* Clean up any pending host wake IRQ */
dhd_bus_oob_intr_set(bus->dhd, FALSE);
dhd_bus_oob_intr_unregister(bus->dhd);
#endif /* BCMPCIE_OOB_HOST_WAKE */
dhd_os_wd_timer(dhdp, 0);
dhd_bus_stop(bus, TRUE);
dhd_prot_reset(dhdp);
dhd_clear(dhdp);
dhd_bus_release_dongle(bus);
dhdpcie_bus_free_resource(bus);
bcmerror = dhdpcie_bus_disable_device(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_disable_device: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#ifdef CONFIG_ARCH_MSM
bcmerror = dhdpcie_bus_clock_stop(bus);
if (bcmerror) {
DHD_ERROR(("%s: host clock stop failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DOWN;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
} else {
if (bus->intr) {
dhdpcie_free_irq(bus);
}
#ifdef BCMPCIE_OOB_HOST_WAKE
/* Clean up any pending host wake IRQ */
dhd_bus_oob_intr_set(bus->dhd, FALSE);
dhd_bus_oob_intr_unregister(bus->dhd);
#endif /* BCMPCIE_OOB_HOST_WAKE */
dhd_prot_reset(dhdp);
dhd_clear(dhdp);
dhd_bus_release_dongle(bus);
dhdpcie_bus_free_resource(bus);
bcmerror = dhdpcie_bus_disable_device(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_disable_device: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#ifdef CONFIG_ARCH_MSM
bcmerror = dhdpcie_bus_clock_stop(bus);
if (bcmerror) {
DHD_ERROR(("%s: host clock stop failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
}
bus->dhd->dongle_reset = TRUE;
DHD_INFO(("%s: WLAN OFF Done\n", __FUNCTION__));
} else { /* Turn on WLAN */
if (bus->dhd->busstate == DHD_BUS_DOWN) {
/* Powering On */
DHD_INFO(("%s: == Power ON ==\n", __FUNCTION__));
#ifdef CONFIG_ARCH_MSM
while (--retry) {
bcmerror = dhdpcie_bus_clock_start(bus);
if (!bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_clock_start OK\n",
__FUNCTION__));
break;
} else {
OSL_SLEEP(10);
}
}
if (bcmerror && !retry) {
DHD_ERROR(("%s: host pcie clock enable failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
bus->is_linkdown = 0;
bus->pci_d3hot_done = 0;
bcmerror = dhdpcie_bus_enable_device(bus);
if (bcmerror) {
DHD_ERROR(("%s: host configuration restore failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bcmerror = dhdpcie_bus_alloc_resource(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_resource_alloc failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bcmerror = dhdpcie_bus_dongle_attach(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_dongle_attach failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bcmerror = dhd_bus_request_irq(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhd_bus_request_irq failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bus->dhd->dongle_reset = FALSE;
bcmerror = dhd_bus_start(dhdp);
if (bcmerror) {
DHD_ERROR(("%s: dhd_bus_start: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bus->dhd->up = TRUE;
DHD_INFO(("%s: WLAN Power On Done\n", __FUNCTION__));
} else {
DHD_ERROR(("%s: what should we do here\n", __FUNCTION__));
goto done;
}
}
}
done:
if (bcmerror) {
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DOWN;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
}
return bcmerror;
}
static int
pcie2_mdioop(dhd_bus_t *bus, uint physmedia, uint regaddr, bool write, uint *val,
bool slave_bypass)
{
uint pcie_serdes_spinwait = 200, i = 0, mdio_ctrl;
uint32 reg32;
pcie2_mdiosetblock(bus, physmedia);
/* enable mdio access to SERDES */
mdio_ctrl = MDIOCTL2_DIVISOR_VAL;
mdio_ctrl |= (regaddr << MDIOCTL2_REGADDR_SHF);
if (slave_bypass)
mdio_ctrl |= MDIOCTL2_SLAVE_BYPASS;
if (!write)
mdio_ctrl |= MDIOCTL2_READ;
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_CONTROL, ~0, mdio_ctrl);
if (write) {
reg32 = PCIE2_MDIO_WR_DATA;
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_WR_DATA, ~0,
*val | MDIODATA2_DONE);
} else
reg32 = PCIE2_MDIO_RD_DATA;
/* retry till the transaction is complete */
while (i < pcie_serdes_spinwait) {
uint done_val = si_corereg(bus->sih, bus->sih->buscoreidx, reg32, 0, 0);
if (!(done_val & MDIODATA2_DONE)) {
if (!write) {
*val = si_corereg(bus->sih, bus->sih->buscoreidx,
PCIE2_MDIO_RD_DATA, 0, 0);
*val = *val & MDIODATA2_MASK;
}
return 0;
}
OSL_DELAY(1000);
i++;
}
return -1;
}
static int
dhdpcie_bus_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid, const char *name,
void *params, int plen, void *arg, int len, int val_size)
{
int bcmerror = 0;
int32 int_val = 0;
int32 int_val2 = 0;
int32 int_val3 = 0;
bool bool_val = 0;
DHD_TRACE(("%s: Enter, action %d name %s params %p plen %d arg %p len %d val_size %d\n",
__FUNCTION__, actionid, name, params, plen, arg, len, val_size));
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, IOV_ISSET(actionid))) != 0)
goto exit;
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
if (plen >= (int)sizeof(int_val) * 2)
bcopy((void*)((uintptr)params + sizeof(int_val)), &int_val2, sizeof(int_val2));
if (plen >= (int)sizeof(int_val) * 3)
bcopy((void*)((uintptr)params + 2 * sizeof(int_val)), &int_val3, sizeof(int_val3));
bool_val = (int_val != 0) ? TRUE : FALSE;
/* Check if dongle is in reset. If so, only allow DEVRESET iovars */
if (bus->dhd->dongle_reset && !(actionid == IOV_SVAL(IOV_DEVRESET) ||
actionid == IOV_GVAL(IOV_DEVRESET))) {
bcmerror = BCME_NOTREADY;
goto exit;
}
switch (actionid) {
case IOV_SVAL(IOV_VARS):
bcmerror = dhdpcie_downloadvars(bus, arg, len);
break;
case IOV_SVAL(IOV_PCIEREG):
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configaddr), ~0,
int_val);
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configdata), ~0,
int_val2);
break;
case IOV_GVAL(IOV_PCIEREG):
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configaddr), ~0,
int_val);
int_val = si_corereg(bus->sih, bus->sih->buscoreidx,
OFFSETOF(sbpcieregs_t, configdata), 0, 0);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_SVAL(IOV_PCIECOREREG):
si_corereg(bus->sih, bus->sih->buscoreidx, int_val, ~0, int_val2);
break;
case IOV_GVAL(IOV_BAR0_SECWIN_REG):
{
sdreg_t sdreg;
uint32 addr, size;
bcopy(params, &sdreg, sizeof(sdreg));
addr = sdreg.offset;
size = sdreg.func;
if (si_backplane_access(bus->sih, addr, size, &int_val, TRUE) != BCME_OK) {
DHD_ERROR(("Invalid size/addr combination \n"));
bcmerror = BCME_ERROR;
break;
}
bcopy(&int_val, arg, sizeof(int32));
break;
}
case IOV_SVAL(IOV_BAR0_SECWIN_REG):
{
sdreg_t sdreg;
uint32 addr, size;
bcopy(params, &sdreg, sizeof(sdreg));
addr = sdreg.offset;
size = sdreg.func;
if (si_backplane_access(bus->sih, addr, size, &sdreg.value, FALSE) != BCME_OK) {
DHD_ERROR(("Invalid size/addr combination \n"));
bcmerror = BCME_ERROR;
}
break;
}
case IOV_GVAL(IOV_SBREG):
{
sdreg_t sdreg;
uint32 addr, size;
bcopy(params, &sdreg, sizeof(sdreg));
addr = sdreg.offset | SI_ENUM_BASE;
size = sdreg.func;
if (si_backplane_access(bus->sih, addr, size, &int_val, TRUE) != BCME_OK) {
DHD_ERROR(("Invalid size/addr combination \n"));
bcmerror = BCME_ERROR;
break;
}
bcopy(&int_val, arg, sizeof(int32));
break;
}
case IOV_SVAL(IOV_SBREG):
{
sdreg_t sdreg;
uint32 addr, size;
bcopy(params, &sdreg, sizeof(sdreg));
addr = sdreg.offset | SI_ENUM_BASE;
size = sdreg.func;
if (si_backplane_access(bus->sih, addr, size, &sdreg.value, FALSE) != BCME_OK) {
DHD_ERROR(("Invalid size/addr combination \n"));
bcmerror = BCME_ERROR;
}
break;
}
case IOV_GVAL(IOV_PCIESERDESREG):
{
uint val;
if (!PCIE_GEN2(bus->sih)) {
DHD_ERROR(("supported only in pcie gen2\n"));
bcmerror = BCME_ERROR;
break;
}
if (!pcie2_mdioop(bus, int_val, int_val2, FALSE, &val, FALSE)) {
bcopy(&val, arg, sizeof(int32));
} else {
DHD_ERROR(("pcie2_mdioop failed.\n"));
bcmerror = BCME_ERROR;
}
break;
}
case IOV_SVAL(IOV_PCIESERDESREG):
if (!PCIE_GEN2(bus->sih)) {
DHD_ERROR(("supported only in pcie gen2\n"));
bcmerror = BCME_ERROR;
break;
}
if (pcie2_mdioop(bus, int_val, int_val2, TRUE, &int_val3, FALSE)) {
DHD_ERROR(("pcie2_mdioop failed.\n"));
bcmerror = BCME_ERROR;
}
break;
case IOV_GVAL(IOV_PCIECOREREG):
int_val = si_corereg(bus->sih, bus->sih->buscoreidx, int_val, 0, 0);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_SVAL(IOV_PCIECFGREG):
OSL_PCI_WRITE_CONFIG(bus->osh, int_val, 4, int_val2);
break;
case IOV_GVAL(IOV_PCIECFGREG):
int_val = OSL_PCI_READ_CONFIG(bus->osh, int_val, 4);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_SVAL(IOV_PCIE_LPBK):
bcmerror = dhdpcie_bus_lpback_req(bus, int_val);
break;
case IOV_SVAL(IOV_PCIE_DMAXFER):
bcmerror = dhdpcie_bus_dmaxfer_req(bus, int_val, int_val2, int_val3);
break;
case IOV_GVAL(IOV_PCIE_SUSPEND):
int_val = (bus->dhd->busstate == DHD_BUS_SUSPEND) ? 1 : 0;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_PCIE_SUSPEND):
dhdpcie_bus_suspend(bus, bool_val);
break;
case IOV_GVAL(IOV_MEMSIZE):
int_val = (int32)bus->ramsize;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_MEMBYTES):
case IOV_GVAL(IOV_MEMBYTES):
{
uint32 address; /* absolute backplane address */
uint size, dsize;
uint8 *data;
bool set = (actionid == IOV_SVAL(IOV_MEMBYTES));
ASSERT(plen >= 2*sizeof(int));
address = (uint32)int_val;
bcopy((char *)params + sizeof(int_val), &int_val, sizeof(int_val));
size = (uint)int_val;
/* Do some validation */
dsize = set ? plen - (2 * sizeof(int)) : len;
if (dsize < size) {
DHD_ERROR(("%s: error on %s membytes, addr 0x%08x size %d dsize %d\n",
__FUNCTION__, (set ? "set" : "get"), address, size, dsize));
bcmerror = BCME_BADARG;
break;
}
DHD_INFO(("%s: Request to %s %d bytes at address 0x%08x\n dsize %d ", __FUNCTION__,
(set ? "write" : "read"), size, address, dsize));
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0) ||
si_setcore(bus->sih, SYSMEM_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (set && address == bus->dongle_ram_base) {
bus->resetinstr = *(((uint32*)params) + 2);
}
} else {
/* If we know about SOCRAM, check for a fit */
if ((bus->orig_ramsize) &&
((address > bus->orig_ramsize) || (address + size > bus->orig_ramsize)))
{
uint8 enable, protect, remap;
si_socdevram(bus->sih, FALSE, &enable, &protect, &remap);
if (!enable || protect) {
DHD_ERROR(("%s: ramsize 0x%08x doesn't have %d bytes at 0x%08x\n",
__FUNCTION__, bus->orig_ramsize, size, address));
DHD_ERROR(("%s: socram enable %d, protect %d\n",
__FUNCTION__, enable, protect));
bcmerror = BCME_BADARG;
break;
}
if (!REMAP_ENAB(bus) && (address >= SOCDEVRAM_ARM_ADDR)) {
uint32 devramsize = si_socdevram_size(bus->sih);
if ((address < SOCDEVRAM_ARM_ADDR) ||
(address + size > (SOCDEVRAM_ARM_ADDR + devramsize))) {
DHD_ERROR(("%s: bad address 0x%08x, size 0x%08x\n",
__FUNCTION__, address, size));
DHD_ERROR(("%s: socram range 0x%08x,size 0x%08x\n",
__FUNCTION__, SOCDEVRAM_ARM_ADDR, devramsize));
bcmerror = BCME_BADARG;
break;
}
/* move it such that address is real now */
address -= SOCDEVRAM_ARM_ADDR;
address += SOCDEVRAM_BP_ADDR;
DHD_INFO(("%s: Request to %s %d bytes @ Mapped address 0x%08x\n",
__FUNCTION__, (set ? "write" : "read"), size, address));
} else if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address) && remap) {
/* Can not access remap region while devram remap bit is set
* ROM content would be returned in this case
*/
DHD_ERROR(("%s: Need to disable remap for address 0x%08x\n",
__FUNCTION__, address));
bcmerror = BCME_ERROR;
break;
}
}
}
/* Generate the actual data pointer */
data = set ? (uint8*)params + 2 * sizeof(int): (uint8*)arg;
/* Call to do the transfer */
bcmerror = dhdpcie_bus_membytes(bus, set, address, data, size);
break;
}
#ifdef BCM_BUZZZ
/* Dump dongle side buzzz trace to console */
case IOV_GVAL(IOV_BUZZZ_DUMP):
bcmerror = dhd_buzzz_dump_dngl(bus);
break;
#endif /* BCM_BUZZZ */
case IOV_SVAL(IOV_SET_DOWNLOAD_STATE):
bcmerror = dhdpcie_bus_download_state(bus, bool_val);
break;
case IOV_GVAL(IOV_RAMSIZE):
int_val = (int32)bus->ramsize;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_RAMSTART):
int_val = (int32)bus->dongle_ram_base;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_CC_NVMSHADOW):
{
struct bcmstrbuf dump_b;
bcm_binit(&dump_b, arg, len);
bcmerror = dhdpcie_cc_nvmshadow(bus, &dump_b);
break;
}
case IOV_GVAL(IOV_SLEEP_ALLOWED):
bool_val = bus->sleep_allowed;
bcopy(&bool_val, arg, val_size);
break;
case IOV_SVAL(IOV_SLEEP_ALLOWED):
bus->sleep_allowed = bool_val;
break;
case IOV_GVAL(IOV_DONGLEISOLATION):
int_val = bus->dhd->dongle_isolation;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DONGLEISOLATION):
bus->dhd->dongle_isolation = bool_val;
break;
case IOV_GVAL(IOV_LTRSLEEPON_UNLOOAD):
int_val = bus->ltrsleep_on_unload;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_LTRSLEEPON_UNLOOAD):
bus->ltrsleep_on_unload = bool_val;
break;
case IOV_GVAL(IOV_DUMP_RINGUPD_BLOCK):
{
struct bcmstrbuf dump_b;
bcm_binit(&dump_b, arg, len);
bcmerror = dhd_prot_ringupd_dump(bus->dhd, &dump_b);
break;
}
case IOV_GVAL(IOV_DMA_RINGINDICES):
{ int h2d_support, d2h_support;
d2h_support = DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support) ? 1 : 0;
h2d_support = DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support) ? 1 : 0;
int_val = d2h_support | (h2d_support << 1);
bcopy(&int_val, arg, sizeof(int_val));
break;
}
case IOV_SVAL(IOV_DMA_RINGINDICES):
/* Can change it only during initialization/FW download */
if (bus->dhd->busstate == DHD_BUS_DOWN) {
if ((int_val > 3) || (int_val < 0)) {
DHD_ERROR(("Bad argument. Possible values: 0, 1, 2 & 3\n"));
bcmerror = BCME_BADARG;
} else {
bus->dhd->dma_d2h_ring_upd_support = (int_val & 1) ? TRUE : FALSE;
bus->dhd->dma_h2d_ring_upd_support = (int_val & 2) ? TRUE : FALSE;
}
} else {
DHD_ERROR(("%s: Can change only when bus down (before FW download)\n",
__FUNCTION__));
bcmerror = BCME_NOTDOWN;
}
break;
case IOV_GVAL(IOV_METADATA_DBG):
int_val = dhd_prot_metadata_dbg_get(bus->dhd);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_METADATA_DBG):
dhd_prot_metadata_dbg_set(bus->dhd, (int_val != 0));
break;
case IOV_GVAL(IOV_RX_METADATALEN):
int_val = dhd_prot_metadatalen_get(bus->dhd, TRUE);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RX_METADATALEN):
if (int_val > 64) {
bcmerror = BCME_BUFTOOLONG;
break;
}
dhd_prot_metadatalen_set(bus->dhd, int_val, TRUE);
break;
case IOV_SVAL(IOV_TXP_THRESHOLD):
dhd_prot_txp_threshold(bus->dhd, TRUE, int_val);
break;
case IOV_GVAL(IOV_TXP_THRESHOLD):
int_val = dhd_prot_txp_threshold(bus->dhd, FALSE, int_val);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DB1_FOR_MB):
if (int_val)
bus->db1_for_mb = TRUE;
else
bus->db1_for_mb = FALSE;
break;
case IOV_GVAL(IOV_DB1_FOR_MB):
if (bus->db1_for_mb)
int_val = 1;
else
int_val = 0;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_TX_METADATALEN):
int_val = dhd_prot_metadatalen_get(bus->dhd, FALSE);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TX_METADATALEN):
if (int_val > 64) {
bcmerror = BCME_BUFTOOLONG;
break;
}
dhd_prot_metadatalen_set(bus->dhd, int_val, FALSE);
break;
case IOV_SVAL(IOV_DEVRESET):
dhd_bus_devreset(bus->dhd, (uint8)bool_val);
break;
case IOV_GVAL(IOV_FLOW_PRIO_MAP):
int_val = bus->dhd->flow_prio_map_type;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_FLOW_PRIO_MAP):
int_val = (int32)dhd_update_flow_prio_map(bus->dhd, (uint8)int_val);
bcopy(&int_val, arg, val_size);
break;
#ifdef DHD_PCIE_RUNTIMEPM
case IOV_GVAL(IOV_IDLETIME):
int_val = bus->idletime;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_IDLETIME):
if (int_val < 0) {
bcmerror = BCME_BADARG;
} else {
bus->idletime = int_val;
}
break;
#endif /* DHD_PCIE_RUNTIMEPM */
case IOV_GVAL(IOV_TXBOUND):
int_val = (int32)dhd_txbound;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TXBOUND):
dhd_txbound = (uint)int_val;
break;
case IOV_GVAL(IOV_RXBOUND):
int_val = (int32)dhd_rxbound;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RXBOUND):
dhd_rxbound = (uint)int_val;
break;
case IOV_SVAL(IOV_HANGREPORT):
bus->dhd->hang_report = bool_val;
DHD_ERROR(("%s: Set hang_report as %d\n",
__FUNCTION__, bus->dhd->hang_report));
break;
case IOV_GVAL(IOV_HANGREPORT):
int_val = (int32)bus->dhd->hang_report;
bcopy(&int_val, arg, val_size);
break;
default:
bcmerror = BCME_UNSUPPORTED;
break;
}
exit:
return bcmerror;
} /* dhdpcie_bus_doiovar */
/** Transfers bytes from host to dongle using pio mode */
static int
dhdpcie_bus_lpback_req(struct dhd_bus *bus, uint32 len)
{
if (bus->dhd == NULL) {
DHD_ERROR(("bus not inited\n"));
return 0;
}
if (bus->dhd->prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return 0;
}
if (bus->dhd->busstate != DHD_BUS_DATA) {
DHD_ERROR(("not in a readystate to LPBK is not inited\n"));
return 0;
}
dhdmsgbuf_lpbk_req(bus->dhd, len);
return 0;
}
int
dhdpcie_bus_suspend(struct dhd_bus *bus, bool state)
{
int timeleft;
unsigned long flags;
int rc = 0;
if (bus->dhd == NULL) {
DHD_ERROR(("bus not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return BCME_ERROR;
}
if (dhd_query_bus_erros(bus->dhd)) {
return BCME_ERROR;
}
DHD_GENERAL_LOCK(bus->dhd, flags);
if (bus->dhd->busstate != DHD_BUS_DATA && bus->dhd->busstate != DHD_BUS_SUSPEND) {
DHD_ERROR(("not in a readystate to LPBK is not inited\n"));
DHD_GENERAL_UNLOCK(bus->dhd, flags);
return BCME_ERROR;
}
DHD_GENERAL_UNLOCK(bus->dhd, flags);
if (bus->dhd->dongle_reset) {
DHD_ERROR(("Dongle is in reset state.\n"));
return -EIO;
}
if (bus->suspended == state) { /* Set to same state */
DHD_ERROR(("Bus is already in SUSPEND state.\n"));
return BCME_OK;
}
if (state) {
int idle_retry = 0;
int active;
if (bus->is_linkdown) {
DHD_ERROR(("%s: PCIe link was down, state=%d\n",
__FUNCTION__, state));
return BCME_ERROR;
}
/* Suspend */
DHD_ERROR(("%s: Entering suspend state\n", __FUNCTION__));
bus->wait_for_d3_ack = 0;
bus->suspended = TRUE;
DHD_GENERAL_LOCK(bus->dhd, flags);
/* stop all interface network queue. */
dhd_bus_stop_queue(bus);
bus->dhd->busstate = DHD_BUS_SUSPEND;
if (bus->dhd->dhd_bus_busy_state & DHD_BUS_BUSY_IN_TX) {
DHD_ERROR(("Tx Request is not ended\n"));
bus->dhd->busstate = DHD_BUS_DATA;
/* resume all interface network queue. */
dhd_bus_start_queue(bus);
DHD_GENERAL_UNLOCK(bus->dhd, flags);
bus->suspended = FALSE;
return -EBUSY;
}
bus->dhd->dhd_bus_busy_state |= DHD_BUS_BUSY_IN_SUSPEND;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
DHD_OS_WAKE_LOCK_WAIVE(bus->dhd);
dhd_os_set_ioctl_resp_timeout(D3_ACK_RESP_TIMEOUT);
dhdpcie_send_mb_data(bus, H2D_HOST_D3_INFORM);
timeleft = dhd_os_d3ack_wait(bus->dhd, &bus->wait_for_d3_ack);
dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT);
DHD_OS_WAKE_LOCK_RESTORE(bus->dhd);
{
uint32 d2h_mb_data = 0;
uint32 zero = 0;
/* If wait_for_d3_ack was not updated because D2H MB was not received */
if (bus->wait_for_d3_ack == 0) {
/* Read the Mb data to see if the Dongle has actually sent D3 ACK */
dhd_bus_cmn_readshared(bus, &d2h_mb_data, D2H_MB_DATA, 0);
if (!D2H_DEV_MB_INVALIDATED(d2h_mb_data) &&
(d2h_mb_data & D2H_DEV_D3_ACK)) {
DHD_ERROR(("*** D3 WAR for missing interrupt ***\r\n"));
/* Clear the MB Data */
dhd_bus_cmn_writeshared(bus, &zero, sizeof(uint32),
D2H_MB_DATA, 0);
/* Consider that D3 ACK is received */
bus->wait_for_d3_ack = 1;
bus->d3_ack_war_cnt++;
} /* d2h_mb_data & D2H_DEV_D3_ACK */
} /* bus->wait_for_d3_ack was 0 */
}
/* To allow threads that got pre-empted to complete.
*/
while ((active = dhd_os_check_wakelock_all(bus->dhd)) &&
(idle_retry < MAX_WKLK_IDLE_CHECK)) {
msleep(1);
idle_retry++;
}
if (bus->wait_for_d3_ack) {
DHD_ERROR(("%s: Got D3 Ack \n", __FUNCTION__));
/* Got D3 Ack. Suspend the bus */
if (active) {
DHD_ERROR(("%s():Suspend failed because of wakelock restoring "
"Dongle to D0\n", __FUNCTION__));
/*
* Dongle still thinks that it has to be in D3 state
* until gets a D0 Inform, but we are backing off from suspend.
* Ensure that Dongle is brought back to D0.
*
* Bringing back Dongle from D3 Ack state to D0 state
* is a 2 step process. Dongle would want to know that D0 Inform
* would be sent as a MB interrupt
* to bring it out of D3 Ack state to D0 state.
* So we have to send both this message.
*/
DHD_OS_WAKE_LOCK_WAIVE(bus->dhd);
dhdpcie_send_mb_data(bus,
(H2D_HOST_D0_INFORM_IN_USE | H2D_HOST_D0_INFORM));
DHD_OS_WAKE_LOCK_RESTORE(bus->dhd);
bus->suspended = FALSE;
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DATA;
/* resume all interface network queue. */
dhd_bus_start_queue(bus);
DHD_GENERAL_UNLOCK(bus->dhd, flags);
rc = BCME_ERROR;
} else {
DHD_OS_WAKE_LOCK_WAIVE(bus->dhd);
dhdpcie_send_mb_data(bus, (H2D_HOST_D0_INFORM_IN_USE));
DHD_OS_WAKE_LOCK_RESTORE(bus->dhd);
dhdpcie_bus_intr_disable(bus);
rc = dhdpcie_pci_suspend_resume(bus, state);
dhd_bus_set_device_wake(bus, FALSE);
}
bus->dhd->d3ackcnt_timeout = 0;
#if defined(BCMPCIE_OOB_HOST_WAKE)
dhdpcie_oob_intr_set(bus, TRUE);
#endif /* BCMPCIE_OOB_HOST_WAKE */
} else if (timeleft == 0) {
bus->dhd->d3ack_timeout_occured = TRUE;
bus->dhd->d3ackcnt_timeout++;
DHD_ERROR(("%s: resumed on timeout for D3 ACK d3_inform_cnt %d \n",
__FUNCTION__, bus->dhd->d3ackcnt_timeout));
dhd_prot_debug_info_print(bus->dhd);
#ifdef DHD_FW_COREDUMP
if (bus->dhd->memdump_enabled) {
/* write core dump to file */
bus->dhd->memdump_type = DUMP_TYPE_D3_ACK_TIMEOUT;
dhdpcie_mem_dump(bus);
}
#endif /* DHD_FW_COREDUMP */
bus->suspended = FALSE;
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DATA;
/* resume all interface network queue. */
dhd_bus_start_queue(bus);
DHD_GENERAL_UNLOCK(bus->dhd, flags);
if (bus->dhd->d3ackcnt_timeout >= MAX_CNTL_D3ACK_TIMEOUT) {
DHD_ERROR(("%s: Event HANG send up "
"due to PCIe linkdown\n", __FUNCTION__));
#ifdef SUPPORT_LINKDOWN_RECOVERY
#ifdef CONFIG_ARCH_MSM
bus->no_cfg_restore = 1;
#endif /* CONFIG_ARCH_MSM */
#endif /* SUPPORT_LINKDOWN_RECOVERY */
dhd_os_check_hang(bus->dhd, 0, -ETIMEDOUT);
}
rc = -ETIMEDOUT;
}
bus->wait_for_d3_ack = 1;
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_SUSPEND;
dhd_os_busbusy_wake(bus->dhd);
DHD_GENERAL_UNLOCK(bus->dhd, flags);
} else {
/* Resume */
#if defined(BCMPCIE_OOB_HOST_WAKE)
DHD_OS_OOB_IRQ_WAKE_UNLOCK(bus->dhd);
#endif /* BCMPCIE_OOB_HOST_WAKE */
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->dhd_bus_busy_state |= DHD_BUS_BUSY_IN_RESUME;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
rc = dhdpcie_pci_suspend_resume(bus, state);
if (bus->dhd->busstate == DHD_BUS_SUSPEND) {
DHD_OS_WAKE_LOCK_WAIVE(bus->dhd);
dhdpcie_send_mb_data(bus, (H2D_HOST_D0_INFORM));
DHD_OS_WAKE_LOCK_RESTORE(bus->dhd);
dhd_bus_set_device_wake(bus, TRUE);
}
bus->suspended = FALSE;
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->busstate = DHD_BUS_DATA;
bus->dhd->dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_RESUME;
#ifdef DHD_PCIE_RUNTIMEPM
if (bus->dhd->dhd_bus_busy_state & DHD_BUS_BUSY_RPM_SUSPEND_DONE) {
bus->bus_wake = 1;
OSL_SMP_WMB();
wake_up_interruptible(&bus->rpm_queue);
}
#endif /* DHD_PCIE_RUNTIMEPM */
/* resume all interface network queue. */
dhd_bus_start_queue(bus);
dhd_os_busbusy_wake(bus->dhd);
DHD_GENERAL_UNLOCK(bus->dhd, flags);
dhdpcie_bus_intr_enable(bus);
}
return rc;
}
/** Transfers bytes from host to dongle and to host again using DMA */
static int
dhdpcie_bus_dmaxfer_req(struct dhd_bus *bus, uint32 len, uint32 srcdelay, uint32 destdelay)
{
if (bus->dhd == NULL) {
DHD_ERROR(("bus not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->busstate != DHD_BUS_DATA) {
DHD_ERROR(("not in a readystate to LPBK is not inited\n"));
return BCME_ERROR;
}
if (len < 5 || len > 4194296) {
DHD_ERROR(("len is too small or too large\n"));
return BCME_ERROR;
}
return dhdmsgbuf_dmaxfer_req(bus->dhd, len, srcdelay, destdelay);
}
static int
dhdpcie_bus_download_state(dhd_bus_t *bus, bool enter)
{
int bcmerror = 0;
uint32 *cr4_regs;
if (!bus->sih) {
DHD_ERROR(("%s: NULL sih!!\n", __FUNCTION__));
return BCME_ERROR;
}
/* To enter download state, disable ARM and reset SOCRAM.
* To exit download state, simply reset ARM (default is RAM boot).
*/
if (enter) {
bus->alp_only = TRUE;
/* some chips (e.g. 43602) have two ARM cores, the CR4 is receives the firmware. */
cr4_regs = si_setcore(bus->sih, ARMCR4_CORE_ID, 0);
if (cr4_regs == NULL && !(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCM3_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCA7_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (si_setcore(bus->sih, ARMCA7_CORE_ID, 0)) {
/* Halt ARM & remove reset */
si_core_reset(bus->sih, SICF_CPUHALT, SICF_CPUHALT);
if (!(si_setcore(bus->sih, SYSMEM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SYSMEM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
si_core_reset(bus->sih, 0, 0);
/* reset last 4 bytes of RAM address. to be used for shared area */
dhdpcie_init_shared_addr(bus);
} else if (cr4_regs == NULL) { /* no CR4 present on chip */
si_core_disable(bus->sih, 0);
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
si_core_reset(bus->sih, 0, 0);
/* Clear the top bit of memory */
if (bus->ramsize) {
uint32 zeros = 0;
if (dhdpcie_bus_membytes(bus, TRUE, bus->ramsize - 4,
(uint8*)&zeros, 4) < 0) {
bcmerror = BCME_ERROR;
goto fail;
}
}
} else {
/* For CR4,
* Halt ARM
* Remove ARM reset
* Read RAM base address [0x18_0000]
* [next] Download firmware
* [done at else] Populate the reset vector
* [done at else] Remove ARM halt
*/
/* Halt ARM & remove reset */
si_core_reset(bus->sih, SICF_CPUHALT, SICF_CPUHALT);
if (BCM43602_CHIP(bus->sih->chip)) {
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKIDX, 5);
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKPDA, 0);
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKIDX, 7);
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKPDA, 0);
}
/* reset last 4 bytes of RAM address. to be used for shared area */
dhdpcie_init_shared_addr(bus);
}
} else {
if (si_setcore(bus->sih, ARMCA7_CORE_ID, 0)) {
/* write vars */
if ((bcmerror = dhdpcie_bus_write_vars(bus))) {
DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__));
goto fail;
}
/* switch back to arm core again */
if (!(si_setcore(bus->sih, ARMCA7_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM CA7 core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
/* write address 0 with reset instruction */
bcmerror = dhdpcie_bus_membytes(bus, TRUE, 0,
(uint8 *)&bus->resetinstr, sizeof(bus->resetinstr));
/* now remove reset and halt and continue to run CA7 */
} else if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (!si_iscoreup(bus->sih)) {
DHD_ERROR(("%s: SOCRAM core is down after reset?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
/* Enable remap before ARM reset but after vars.
* No backplane access in remap mode
*/
if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) &&
!si_setcore(bus->sih, SDIOD_CORE_ID, 0)) {
DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
} else {
if (BCM43602_CHIP(bus->sih->chip)) {
/* Firmware crashes on SOCSRAM access when core is in reset */
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n",
__FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
si_core_reset(bus->sih, 0, 0);
si_setcore(bus->sih, ARMCR4_CORE_ID, 0);
}
/* write vars */
if ((bcmerror = dhdpcie_bus_write_vars(bus))) {
DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__));
goto fail;
}
/* switch back to arm core again */
if (!(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM CR4 core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
/* write address 0 with reset instruction */
bcmerror = dhdpcie_bus_membytes(bus, TRUE, 0,
(uint8 *)&bus->resetinstr, sizeof(bus->resetinstr));
if (bcmerror == BCME_OK) {
uint32 tmp;
bcmerror = dhdpcie_bus_membytes(bus, FALSE, 0,
(uint8 *)&tmp, sizeof(tmp));
if (bcmerror == BCME_OK && tmp != bus->resetinstr) {
DHD_ERROR(("%s: Failed to write 0x%08x to addr 0\n",
__FUNCTION__, bus->resetinstr));
DHD_ERROR(("%s: contents of addr 0 is 0x%08x\n",
__FUNCTION__, tmp));
bcmerror = BCME_ERROR;
goto fail;
}
}
/* now remove reset and halt and continue to run CR4 */
}
si_core_reset(bus->sih, 0, 0);
/* Allow HT Clock now that the ARM is running. */
bus->alp_only = FALSE;
bus->dhd->busstate = DHD_BUS_LOAD;
}
fail:
/* Always return to PCIE core */
si_setcore(bus->sih, PCIE2_CORE_ID, 0);
return bcmerror;
} /* dhdpcie_bus_download_state */
static int
dhdpcie_bus_write_vars(dhd_bus_t *bus)
{
int bcmerror = 0;
uint32 varsize, phys_size;
uint32 varaddr;
uint8 *vbuffer;
uint32 varsizew;
#ifdef DHD_DEBUG
uint8 *nvram_ularray;
#endif /* DHD_DEBUG */
/* Even if there are no vars are to be written, we still need to set the ramsize. */
varsize = bus->varsz ? ROUNDUP(bus->varsz, 4) : 0;
varaddr = (bus->ramsize - 4) - varsize;
varaddr += bus->dongle_ram_base;
if (bus->vars) {
vbuffer = (uint8 *)MALLOC(bus->dhd->osh, varsize);
if (!vbuffer)
return BCME_NOMEM;
bzero(vbuffer, varsize);
bcopy(bus->vars, vbuffer, bus->varsz);
/* Write the vars list */
DHD_INFO_HW4(("%s: tcm: %p varaddr: 0x%x varsize: %d\n",
__FUNCTION__, bus->tcm, varaddr, varsize));
bcmerror = dhdpcie_bus_membytes(bus, TRUE, varaddr, vbuffer, varsize);
/* Implement read back and verify later */
#ifdef DHD_DEBUG
/* Verify NVRAM bytes */
DHD_INFO(("Compare NVRAM dl & ul; varsize=%d\n", varsize));
nvram_ularray = (uint8*)MALLOC(bus->dhd->osh, varsize);
if (!nvram_ularray) {
MFREE(bus->dhd->osh, vbuffer, varsize);
return BCME_NOMEM;
}
/* Upload image to verify downloaded contents. */
memset(nvram_ularray, 0xaa, varsize);
/* Read the vars list to temp buffer for comparison */
bcmerror = dhdpcie_bus_membytes(bus, FALSE, varaddr, nvram_ularray, varsize);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d nvram bytes at 0x%08x\n",
__FUNCTION__, bcmerror, varsize, varaddr));
}
/* Compare the org NVRAM with the one read from RAM */
if (memcmp(vbuffer, nvram_ularray, varsize)) {
DHD_ERROR(("%s: Downloaded NVRAM image is corrupted.\n", __FUNCTION__));
} else
DHD_INFO(("%s: Download, Upload and compare of NVRAM succeeded.\n",
__FUNCTION__));
MFREE(bus->dhd->osh, nvram_ularray, varsize);
#endif /* DHD_DEBUG */
MFREE(bus->dhd->osh, vbuffer, varsize);
}
phys_size = REMAP_ENAB(bus) ? bus->ramsize : bus->orig_ramsize;
phys_size += bus->dongle_ram_base;
/* adjust to the user specified RAM */
DHD_INFO(("Physical memory size: %d, usable memory size: %d\n",
phys_size, bus->ramsize));
DHD_INFO(("Vars are at %d, orig varsize is %d\n",
varaddr, varsize));
varsize = ((phys_size - 4) - varaddr);
/*
* Determine the length token:
* Varsize, converted to words, in lower 16-bits, checksum in upper 16-bits.
*/
if (bcmerror) {
varsizew = 0;
bus->nvram_csm = varsizew;
} else {
varsizew = varsize / 4;
varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF);
bus->nvram_csm = varsizew;
varsizew = htol32(varsizew);
}
DHD_INFO(("New varsize is %d, length token=0x%08x\n", varsize, varsizew));
/* Write the length token to the last word */
DHD_INFO_HW4(("%s: tcm: %p phys_size: 0x%x varsizew: %x\n",
__FUNCTION__, bus->tcm, phys_size, varsizew));
bcmerror = dhdpcie_bus_membytes(bus, TRUE, (phys_size - 4),
(uint8*)&varsizew, 4);
return bcmerror;
} /* dhdpcie_bus_write_vars */
int
dhdpcie_downloadvars(dhd_bus_t *bus, void *arg, int len)
{
int bcmerror = BCME_OK;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Basic sanity checks */
if (bus->dhd->up) {
bcmerror = BCME_NOTDOWN;
goto err;
}
if (!len) {
bcmerror = BCME_BUFTOOSHORT;
goto err;
}
/* Free the old ones and replace with passed variables */
if (bus->vars)
MFREE(bus->dhd->osh, bus->vars, bus->varsz);
bus->vars = MALLOC(bus->dhd->osh, len);
bus->varsz = bus->vars ? len : 0;
if (bus->vars == NULL) {
bcmerror = BCME_NOMEM;
goto err;
}
/* Copy the passed variables, which should include the terminating double-null */
bcopy(arg, bus->vars, bus->varsz);
err:
return bcmerror;
}
#ifndef BCMPCIE_OOB_HOST_WAKE
/* loop through the capability list and see if the pcie capabilty exists */
uint8
dhdpcie_find_pci_capability(osl_t *osh, uint8 req_cap_id)
{
uint8 cap_id;
uint8 cap_ptr = 0;
uint8 byte_val;
/* check for Header type 0 */
byte_val = read_pci_cfg_byte(PCI_CFG_HDR);
if ((byte_val & 0x7f) != PCI_HEADER_NORMAL) {
DHD_ERROR(("%s : PCI config header not normal.\n", __FUNCTION__));
goto end;
}
/* check if the capability pointer field exists */
byte_val = read_pci_cfg_byte(PCI_CFG_STAT);
if (!(byte_val & PCI_CAPPTR_PRESENT)) {
DHD_ERROR(("%s : PCI CAP pointer not present.\n", __FUNCTION__));
goto end;
}
cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR);
/* check if the capability pointer is 0x00 */
if (cap_ptr == 0x00) {
DHD_ERROR(("%s : PCI CAP pointer is 0x00.\n", __FUNCTION__));
goto end;
}
/* loop thr'u the capability list and see if the pcie capabilty exists */
cap_id = read_pci_cfg_byte(cap_ptr);
while (cap_id != req_cap_id) {
cap_ptr = read_pci_cfg_byte((cap_ptr + 1));
if (cap_ptr == 0x00) break;
cap_id = read_pci_cfg_byte(cap_ptr);
}
end:
return cap_ptr;
}
void
dhdpcie_pme_active(osl_t *osh, bool enable)
{
uint8 cap_ptr;
uint32 pme_csr;
cap_ptr = dhdpcie_find_pci_capability(osh, PCI_CAP_POWERMGMTCAP_ID);
if (!cap_ptr) {
DHD_ERROR(("%s : Power Management Capability not present\n", __FUNCTION__));
return;
}
pme_csr = OSL_PCI_READ_CONFIG(osh, cap_ptr + PME_CSR_OFFSET, sizeof(uint32));
DHD_ERROR(("%s : pme_sts_ctrl 0x%x\n", __FUNCTION__, pme_csr));
pme_csr |= PME_CSR_PME_STAT;
if (enable) {
pme_csr |= PME_CSR_PME_EN;
} else {
pme_csr &= ~PME_CSR_PME_EN;
}
OSL_PCI_WRITE_CONFIG(osh, cap_ptr + PME_CSR_OFFSET, sizeof(uint32), pme_csr);
}
bool
dhdpcie_pme_cap(osl_t *osh)
{
uint8 cap_ptr;
uint32 pme_cap;
cap_ptr = dhdpcie_find_pci_capability(osh, PCI_CAP_POWERMGMTCAP_ID);
if (!cap_ptr) {
DHD_ERROR(("%s : Power Management Capability not present\n", __FUNCTION__));
return FALSE;
}
pme_cap = OSL_PCI_READ_CONFIG(osh, cap_ptr, sizeof(uint32));
DHD_ERROR(("%s : pme_cap 0x%x\n", __FUNCTION__, pme_cap));
return ((pme_cap & PME_CAP_PM_STATES) != 0);
}
#endif /* !BCMPCIE_OOB_HOST_WAKE */
void dhd_dump_intr_registers(dhd_pub_t *dhd, struct bcmstrbuf *strbuf)
{
uint32 intstatus = 0;
uint32 intmask = 0;
uint32 mbintstatus = 0;
uint32 d2h_mb_data = 0;
intstatus = si_corereg(dhd->bus->sih, dhd->bus->sih->buscoreidx, PCIMailBoxInt, 0, 0);
intmask = si_corereg(dhd->bus->sih, dhd->bus->sih->buscoreidx, PCIMailBoxMask, 0, 0);
mbintstatus = si_corereg(dhd->bus->sih, dhd->bus->sih->buscoreidx, PCID2H_MailBox, 0, 0);
dhd_bus_cmn_readshared(dhd->bus, &d2h_mb_data, D2H_MB_DATA, 0);
bcm_bprintf(strbuf, "intstatus=0x%x intmask=0x%x mbintstatus=0x%x\n",
intstatus, intmask, mbintstatus);
bcm_bprintf(strbuf, "d2h_mb_data=0x%x def_intmask=0x%x\n",
d2h_mb_data, dhd->bus->def_intmask);
}
/** Add bus dump output to a buffer */
void dhd_bus_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf)
{
uint16 flowid;
int ix = 0;
flow_ring_node_t *flow_ring_node;
flow_info_t *flow_info;
char eabuf[ETHER_ADDR_STR_LEN];
if (dhdp->busstate != DHD_BUS_DATA)
return;
dhd_prot_print_info(dhdp, strbuf);
dhd_dump_intr_registers(dhdp, strbuf);
bcm_bprintf(strbuf, "h2d_mb_data_ptr_addr 0x%x, d2h_mb_data_ptr_addr 0x%x\n",
dhdp->bus->h2d_mb_data_ptr_addr, dhdp->bus->d2h_mb_data_ptr_addr);
bcm_bprintf(strbuf, "dhd cumm_ctr %d\n", DHD_CUMM_CTR_READ(&dhdp->cumm_ctr));
bcm_bprintf(strbuf,
"%s %4s %2s %4s %17s %4s %4s %10s %4s %4s %17s %17s %7s ",
"Num:", "Flow", "If", "Prio", ":Dest_MacAddress:", "Qlen", "CLen",
"Overflows", "RD", "WR", "BASE(VA)", "BASE(PA)", "SIZE");
bcm_bprintf(strbuf, "%5s %6s %5s \n", "Acked", "tossed", "noack");
for (flowid = 0; flowid < dhdp->num_flow_rings; flowid++) {
flow_ring_node = DHD_FLOW_RING(dhdp, flowid);
if (flow_ring_node->active) {
flow_info = &flow_ring_node->flow_info;
bcm_bprintf(strbuf,
"%3d. %4d %2d %4d %17s %4d %4d %10u ", ix++,
flow_ring_node->flowid, flow_info->ifindex, flow_info->tid,
bcm_ether_ntoa((struct ether_addr *)&flow_info->da, eabuf),
DHD_FLOW_QUEUE_LEN(&flow_ring_node->queue),
DHD_CUMM_CTR_READ(DHD_FLOW_QUEUE_CLEN_PTR(&flow_ring_node->queue)),
DHD_FLOW_QUEUE_FAILURES(&flow_ring_node->queue));
dhd_prot_print_flow_ring(dhdp, flow_ring_node->prot_info, strbuf,
"%4d %4d %17p %8x:%8x %7d ");
bcm_bprintf(strbuf,
"%5s %6s %5s\n", "NA", "NA", "NA");
}
}
bcm_bprintf(strbuf, "D3 inform cnt %d\n", dhdp->bus->d3_inform_cnt);
bcm_bprintf(strbuf, "D0 inform cnt %d\n", dhdp->bus->d0_inform_cnt);
bcm_bprintf(strbuf, "D0 inform in use cnt %d\n", dhdp->bus->d0_inform_in_use_cnt);
bcm_bprintf(strbuf, "D3 Ack WAR cnt %d\n", dhdp->bus->d3_ack_war_cnt);
}
/**
* Brings transmit packets on all flow rings closer to the dongle, by moving (a subset) from their
* flow queue to their flow ring.
*/
static void
dhd_update_txflowrings(dhd_pub_t *dhd)
{
unsigned long flags;
dll_t *item, *next;
flow_ring_node_t *flow_ring_node;
struct dhd_bus *bus = dhd->bus;
DHD_FLOWRING_LIST_LOCK(bus->dhd->flowring_list_lock, flags);
for (item = dll_head_p(&bus->const_flowring);
(!dhd_is_device_removed(dhd) && !dll_end(&bus->const_flowring, item));
item = next) {
if (dhd->hang_was_sent) {
break;
}
next = dll_next_p(item);
flow_ring_node = dhd_constlist_to_flowring(item);
/* Ensure that flow_ring_node in the list is Not Null */
ASSERT(flow_ring_node != NULL);
/* Ensure that the flowring node has valid contents */
ASSERT(flow_ring_node->prot_info != NULL);
dhd_prot_update_txflowring(dhd, flow_ring_node->flowid, flow_ring_node->prot_info);
}
DHD_FLOWRING_LIST_UNLOCK(bus->dhd->flowring_list_lock, flags);
}
/** Mailbox ringbell Function */
static void
dhd_bus_gen_devmb_intr(struct dhd_bus *bus)
{
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
DHD_ERROR(("mailbox communication not supported\n"));
return;
}
if (bus->db1_for_mb) {
/* this is a pcie core register, not the config register */
DHD_INFO(("writing a mail box interrupt to the device, through doorbell 1\n"));
si_corereg(bus->sih, bus->sih->buscoreidx, PCIH2D_DB1, ~0, 0x12345678);
} else {
DHD_INFO(("writing a mail box interrupt to the device, through config space\n"));
dhdpcie_bus_cfg_write_dword(bus, PCISBMbx, 4, (1 << 0));
dhdpcie_bus_cfg_write_dword(bus, PCISBMbx, 4, (1 << 0));
}
}
static void
dhd_bus_set_device_wake(struct dhd_bus *bus, bool val)
{
if (bus->device_wake_state != val)
{
DHD_INFO(("Set Device_Wake to %d\n", val));
#ifdef PCIE_OOB
if (bus->oob_enabled)
{
if (val)
{
gpio_port = gpio_port | (1 << DEVICE_WAKE);
gpio_write_port_non_block(gpio_handle_val, gpio_port);
} else {
gpio_port = gpio_port & (0xff ^ (1 << DEVICE_WAKE));
gpio_write_port_non_block(gpio_handle_val, gpio_port);
}
}
#endif /* PCIE_OOB */
bus->device_wake_state = val;
}
}
#ifdef PCIE_OOB
void
dhd_oob_set_bt_reg_on(struct dhd_bus *bus, bool val)
{
DHD_INFO(("Set Device_Wake to %d\n", val));
if (val)
{
gpio_port = gpio_port | (1 << BIT_BT_REG_ON);
gpio_write_port(gpio_handle_val, gpio_port);
} else {
gpio_port = gpio_port & (0xff ^ (1 << BIT_BT_REG_ON));
gpio_write_port(gpio_handle_val, gpio_port);
}
}
int
dhd_oob_get_bt_reg_on(struct dhd_bus *bus)
{
int ret;
uint8 val;
ret = gpio_read_port(gpio_handle_val, &val);
if (ret < 0) {
DHD_ERROR(("gpio_read_port returns %d\n", ret));
return ret;
}
if (val & (1 << BIT_BT_REG_ON))
{
ret = 1;
} else {
ret = 0;
}
return ret;
}
static void
dhd_bus_doorbell_timeout_reset(struct dhd_bus *bus)
{
if (dhd_doorbell_timeout)
dhd_timeout_start(&bus->doorbell_timer,
(dhd_doorbell_timeout * 1000) / dhd_watchdog_ms);
else if (!(bus->dhd->busstate == DHD_BUS_SUSPEND))
dhd_bus_set_device_wake(bus, FALSE);
}
#endif /* PCIE_OOB */
/** mailbox doorbell ring function */
void
dhd_bus_ringbell(struct dhd_bus *bus, uint32 value)
{
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxInt, PCIE_INTB, PCIE_INTB);
} else {
/* this is a pcie core register, not the config regsiter */
DHD_INFO(("writing a door bell to the device\n"));
si_corereg(bus->sih, bus->sih->buscoreidx, PCIH2D_MailBox, ~0, 0x12345678);
}
}
void
dhdpcie_bus_ringbell_fast(struct dhd_bus *bus, uint32 value)
{
#ifdef PCIE_OOB
dhd_bus_set_device_wake(bus, TRUE);
dhd_bus_doorbell_timeout_reset(bus);
#endif
W_REG(bus->pcie_mb_intr_osh, bus->pcie_mb_intr_addr, value);
}
static void
dhd_bus_ringbell_oldpcie(struct dhd_bus *bus, uint32 value)
{
uint32 w;
w = (R_REG(bus->pcie_mb_intr_osh, bus->pcie_mb_intr_addr) & ~PCIE_INTB) | PCIE_INTB;
W_REG(bus->pcie_mb_intr_osh, bus->pcie_mb_intr_addr, w);
}
dhd_mb_ring_t
dhd_bus_get_mbintr_fn(struct dhd_bus *bus)
{
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
bus->pcie_mb_intr_addr = si_corereg_addr(bus->sih, bus->sih->buscoreidx,
PCIMailBoxInt);
if (bus->pcie_mb_intr_addr) {
bus->pcie_mb_intr_osh = si_osh(bus->sih);
return dhd_bus_ringbell_oldpcie;
}
} else {
bus->pcie_mb_intr_addr = si_corereg_addr(bus->sih, bus->sih->buscoreidx,
PCIH2D_MailBox);
if (bus->pcie_mb_intr_addr) {
bus->pcie_mb_intr_osh = si_osh(bus->sih);
return dhdpcie_bus_ringbell_fast;
}
}
return dhd_bus_ringbell;
}
bool BCMFASTPATH
dhd_bus_dpc(struct dhd_bus *bus)
{
bool resched = FALSE; /* Flag indicating resched wanted */
unsigned long flags;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
DHD_GENERAL_LOCK(bus->dhd, flags);
/* Check for only DHD_BUS_DOWN and not for DHD_BUS_DOWN_IN_PROGRESS
* to avoid IOCTL Resumed On timeout when ioctl is waiting for response
* and rmmod is fired in parallel, which will make DHD_BUS_DOWN_IN_PROGRESS
* and if we return from here, then IOCTL response will never be handled
*/
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: Bus down, ret\n", __FUNCTION__));
bus->intstatus = 0;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
return 0;
}
bus->dhd->dhd_bus_busy_state |= DHD_BUS_BUSY_IN_DPC;
DHD_GENERAL_UNLOCK(bus->dhd, flags);
resched = dhdpcie_bus_process_mailbox_intr(bus, bus->intstatus);
if (!resched) {
bus->intstatus = 0;
if (!bus->pci_d3hot_done) {
dhdpcie_bus_intr_enable(bus);
} else {
DHD_ERROR(("%s: dhdpcie_bus_intr_enable skip in pci D3hot state \n",
__FUNCTION__));
}
}
DHD_GENERAL_LOCK(bus->dhd, flags);
bus->dhd->dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_DPC;
dhd_os_busbusy_wake(bus->dhd);
DHD_GENERAL_UNLOCK(bus->dhd, flags);
return resched;
}
static void
dhdpcie_send_mb_data(dhd_bus_t *bus, uint32 h2d_mb_data)
{
uint32 cur_h2d_mb_data = 0;
DHD_INFO_HW4(("%s: H2D_MB_DATA: 0x%08X\n", __FUNCTION__, h2d_mb_data));
if (bus->is_linkdown) {
DHD_ERROR(("%s: PCIe link was down\n", __FUNCTION__));
return;
}
dhd_bus_cmn_readshared(bus, &cur_h2d_mb_data, H2D_MB_DATA, 0);
if (cur_h2d_mb_data != 0) {
uint32 i = 0;
DHD_INFO(("GRRRRRRR: MB transaction is already pending 0x%04x\n", cur_h2d_mb_data));
while ((i++ < 100) && cur_h2d_mb_data) {
OSL_DELAY(10);
dhd_bus_cmn_readshared(bus, &cur_h2d_mb_data, H2D_MB_DATA, 0);
}
if (i >= 100) {
DHD_ERROR(("%s : waited 1ms for the dngl "
"to ack the previous mb transaction\n", __FUNCTION__));
DHD_ERROR(("%s : MB transaction is still pending 0x%04x\n",
__FUNCTION__, cur_h2d_mb_data));
}
}
dhd_bus_cmn_writeshared(bus, &h2d_mb_data, sizeof(uint32), H2D_MB_DATA, 0);
dhd_bus_gen_devmb_intr(bus);
if (h2d_mb_data == H2D_HOST_D3_INFORM) {
DHD_INFO_HW4(("%s: send H2D_HOST_D3_INFORM to dongle\n", __FUNCTION__));
bus->d3_inform_cnt++;
}
if (h2d_mb_data == H2D_HOST_D0_INFORM_IN_USE) {
DHD_INFO_HW4(("%s: send H2D_HOST_D0_INFORM_IN_USE to dongle\n", __FUNCTION__));
bus->d0_inform_in_use_cnt++;
}
if (h2d_mb_data == H2D_HOST_D0_INFORM) {
DHD_INFO_HW4(("%s: send H2D_HOST_D0_INFORM to dongle\n", __FUNCTION__));
bus->d0_inform_cnt++;
}
}
static void
dhdpcie_handle_mb_data(dhd_bus_t *bus)
{
uint32 d2h_mb_data = 0;
uint32 zero = 0;
dhd_bus_cmn_readshared(bus, &d2h_mb_data, D2H_MB_DATA, 0);
if (D2H_DEV_MB_INVALIDATED(d2h_mb_data)) {
DHD_INFO_HW4(("%s: Invalid D2H_MB_DATA: 0x%08x\n",
__FUNCTION__, d2h_mb_data));
return;
}
dhd_bus_cmn_writeshared(bus, &zero, sizeof(uint32), D2H_MB_DATA, 0);
DHD_INFO_HW4(("D2H_MB_DATA: 0x%08x\n", d2h_mb_data));
if (d2h_mb_data & D2H_DEV_FWHALT) {
DHD_ERROR(("FW trap has happened\n"));
dhdpcie_checkdied(bus, NULL, 0);
/* not ready yet dhd_os_ind_firmware_stall(bus->dhd); */
return;
}
if (d2h_mb_data & D2H_DEV_DS_ENTER_REQ) {
/* what should we do */
DHD_INFO(("D2H_MB_DATA: DEEP SLEEP REQ\n"));
dhdpcie_send_mb_data(bus, H2D_HOST_DS_ACK);
DHD_INFO(("D2H_MB_DATA: sent DEEP SLEEP ACK\n"));
}
if (d2h_mb_data & D2H_DEV_DS_EXIT_NOTE) {
/* what should we do */
DHD_INFO(("D2H_MB_DATA: DEEP SLEEP EXIT\n"));
}
if (d2h_mb_data & D2H_DEV_D3_ACK) {
/* what should we do */
DHD_INFO_HW4(("D2H_MB_DATA: D3 ACK\n"));
if (!bus->wait_for_d3_ack) {
bus->wait_for_d3_ack = 1;
dhd_os_d3ack_wake(bus->dhd);
}
}
}
/* Inform Dongle to print HW Registers for Livelock Debug */
void dhdpcie_bus_dongle_print_hwregs(struct dhd_bus *bus)
{
dhdpcie_send_mb_data(bus, H2D_FW_TRAP);
}
static bool
dhdpcie_bus_process_mailbox_intr(dhd_bus_t *bus, uint32 intstatus)
{
bool resched = FALSE;
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
/* Msg stream interrupt */
if (intstatus & I_BIT1) {
resched = dhdpci_bus_read_frames(bus);
} else if (intstatus & I_BIT0) {
/* do nothing for Now */
}
} else {
if (intstatus & (PCIE_MB_TOPCIE_FN0_0 | PCIE_MB_TOPCIE_FN0_1))
dhdpcie_handle_mb_data(bus);
if (bus->dhd->busstate == DHD_BUS_SUSPEND) {
goto exit;
}
if (intstatus & PCIE_MB_D2H_MB_MASK) {
resched = dhdpci_bus_read_frames(bus);
}
}
exit:
return resched;
}
static bool
dhdpci_bus_read_frames(dhd_bus_t *bus)
{
bool more = FALSE;
/* There may be frames in both ctrl buf and data buf; check ctrl buf first */
DHD_PERIM_LOCK_ALL((bus->dhd->fwder_unit % FWDER_MAX_UNIT));
dhd_prot_process_ctrlbuf(bus->dhd);
/* Unlock to give chance for resp to be handled */
DHD_PERIM_UNLOCK_ALL((bus->dhd->fwder_unit % FWDER_MAX_UNIT));
DHD_PERIM_LOCK_ALL((bus->dhd->fwder_unit % FWDER_MAX_UNIT));
/* update the flow ring cpls */
dhd_update_txflowrings(bus->dhd);
/* With heavy TX traffic, we could get a lot of TxStatus
* so add bound
*/
more |= dhd_prot_process_msgbuf_txcpl(bus->dhd, dhd_txbound);
/* With heavy RX traffic, this routine potentially could spend some time
* processing RX frames without RX bound
*/
more |= dhd_prot_process_msgbuf_rxcpl(bus->dhd, dhd_rxbound);
/* don't talk to the dongle if fw is about to be reloaded */
if (bus->dhd->hang_was_sent) {
more = FALSE;
}
DHD_PERIM_UNLOCK_ALL((bus->dhd->fwder_unit % FWDER_MAX_UNIT));
return more;
}
bool
dhdpcie_tcm_valid(dhd_bus_t *bus)
{
uint32 addr = 0;
int rv;
uint32 shaddr = 0;
pciedev_shared_t sh;
shaddr = bus->dongle_ram_base + bus->ramsize - 4;
/* Read last word in memory to determine address of pciedev_shared structure */
addr = LTOH32(dhdpcie_bus_rtcm32(bus, shaddr));
if ((addr == 0) || (addr == bus->nvram_csm) || (addr < bus->dongle_ram_base) ||
(addr > shaddr)) {
DHD_ERROR(("%s: address (0x%08x) of pciedev_shared invalid addr\n",
__FUNCTION__, addr));
return FALSE;
}
/* Read hndrte_shared structure */
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, (uint8 *)&sh,
sizeof(pciedev_shared_t))) < 0) {
DHD_ERROR(("Failed to read PCIe shared struct with %d\n", rv));
return FALSE;
}
/* Compare any field in pciedev_shared_t */
if (sh.console_addr != bus->pcie_sh->console_addr) {
DHD_ERROR(("Contents of pciedev_shared_t structure are not matching.\n"));
return FALSE;
}
return TRUE;
}
static bool
dhdpcie_check_firmware_compatible(uint32 firmware_api_version, uint32 host_api_version)
{
DHD_INFO(("firmware api revision %d, host api revision %d\n",
firmware_api_version, host_api_version));
if (firmware_api_version <= host_api_version)
return TRUE;
if ((firmware_api_version == 6) && (host_api_version == 5))
return TRUE;
if ((firmware_api_version == 5) && (host_api_version == 6))
return TRUE;
return FALSE;
}
static int
dhdpcie_readshared(dhd_bus_t *bus)
{
uint32 addr = 0;
int rv, dma_indx_wr_buf, dma_indx_rd_buf;
uint32 shaddr = 0;
pciedev_shared_t *sh = bus->pcie_sh;
dhd_timeout_t tmo;
shaddr = bus->dongle_ram_base + bus->ramsize - 4;
DHD_INFO_HW4(("%s: ram_base: 0x%x ramsize 0x%x tcm: %p shaddr: 0x%x nvram_csm: 0x%x\n",
__FUNCTION__, bus->dongle_ram_base, bus->ramsize,
bus->tcm, shaddr, bus->nvram_csm));
/* start a timer for 5 seconds */
dhd_timeout_start(&tmo, MAX_READ_TIMEOUT);
while (((addr == 0) || (addr == bus->nvram_csm)) && !dhd_timeout_expired(&tmo)) {
/* Read last word in memory to determine address of pciedev_shared structure */
addr = LTOH32(dhdpcie_bus_rtcm32(bus, shaddr));
}
if ((addr == 0) || (addr == bus->nvram_csm) || (addr < bus->dongle_ram_base) ||
(addr > shaddr)) {
DHD_ERROR(("%s: address (0x%08x) of pciedev_shared invalid\n",
__FUNCTION__, addr));
DHD_ERROR(("Waited %u usec, dongle is not ready\n", tmo.elapsed));
return BCME_ERROR;
} else {
bus->shared_addr = (ulong)addr;
DHD_INFO(("PCIe shared addr (0x%08x) read took %u usec "
"before dongle is ready\n", addr, tmo.elapsed));
}
/* Read hndrte_shared structure */
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, (uint8 *)sh,
sizeof(pciedev_shared_t))) < 0) {
DHD_ERROR(("Failed to read PCIe shared struct with %d\n", rv));
return rv;
}
/* Endianness */
sh->flags = ltoh32(sh->flags);
sh->trap_addr = ltoh32(sh->trap_addr);
sh->assert_exp_addr = ltoh32(sh->assert_exp_addr);
sh->assert_file_addr = ltoh32(sh->assert_file_addr);
sh->assert_line = ltoh32(sh->assert_line);
sh->console_addr = ltoh32(sh->console_addr);
sh->msgtrace_addr = ltoh32(sh->msgtrace_addr);
sh->dma_rxoffset = ltoh32(sh->dma_rxoffset);
sh->rings_info_ptr = ltoh32(sh->rings_info_ptr);
#ifdef DHD_DEBUG
/* load bus console address */
bus->console_addr = sh->console_addr;
#endif
/* Read the dma rx offset */
bus->dma_rxoffset = bus->pcie_sh->dma_rxoffset;
dhd_prot_rx_dataoffset(bus->dhd, bus->dma_rxoffset);
DHD_INFO(("DMA RX offset from shared Area %d\n", bus->dma_rxoffset));
if (!(dhdpcie_check_firmware_compatible(sh->flags & PCIE_SHARED_VERSION_MASK,
PCIE_SHARED_VERSION)))
{
DHD_ERROR(("%s: pcie_shared version %d in dhd "
"is older than pciedev_shared version %d in dongle\n",
__FUNCTION__, PCIE_SHARED_VERSION,
sh->flags & PCIE_SHARED_VERSION_MASK));
return BCME_ERROR;
}
bus->rw_index_sz = (sh->flags & PCIE_SHARED_2BYTE_INDICES) ?
sizeof(uint16) : sizeof(uint32);
DHD_INFO(("%s: Dongle advertizes %d size indices\n",
__FUNCTION__, bus->rw_index_sz));
/* Does the FW support DMA'ing r/w indices */
if (sh->flags & PCIE_SHARED_DMA_INDEX) {
DHD_ERROR(("%s: Host support DMAing indices: H2D:%d - D2H:%d. FW supports it\n",
__FUNCTION__,
(DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support) ? 1 : 0),
(DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support) ? 1 : 0)));
} else if (DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support) ||
DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support)) {
#ifdef BCM_INDX_DMA
DHD_ERROR(("%s: Incompatible FW. FW does not support DMAing indices\n",
__FUNCTION__));
return BCME_ERROR;
#endif
DHD_ERROR(("%s: Host supports DMAing indices but FW does not\n",
__FUNCTION__));
bus->dhd->dma_d2h_ring_upd_support = FALSE;
bus->dhd->dma_h2d_ring_upd_support = FALSE;
}
/* get ring_info, ring_state and mb data ptrs and store the addresses in bus structure */
{
ring_info_t ring_info;
if ((rv = dhdpcie_bus_membytes(bus, FALSE, sh->rings_info_ptr,
(uint8 *)&ring_info, sizeof(ring_info_t))) < 0)
return rv;
bus->h2d_mb_data_ptr_addr = ltoh32(sh->h2d_mb_data_ptr);
bus->d2h_mb_data_ptr_addr = ltoh32(sh->d2h_mb_data_ptr);
bus->max_sub_queues = ltoh16(ring_info.max_sub_queues);
/* If both FW and Host support DMA'ing indices, allocate memory and notify FW
* The max_sub_queues is read from FW initialized ring_info
*/
if (DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support)) {
dma_indx_wr_buf = dhd_prot_dma_indx_init(bus->dhd, bus->rw_index_sz,
H2D_DMA_INDX_WR_BUF, bus->max_sub_queues);
dma_indx_rd_buf = dhd_prot_dma_indx_init(bus->dhd, bus->rw_index_sz,
D2H_DMA_INDX_RD_BUF, BCMPCIE_D2H_COMMON_MSGRINGS);
if ((dma_indx_wr_buf != BCME_OK) || (dma_indx_rd_buf != BCME_OK)) {
DHD_ERROR(("%s: Failed to allocate memory for dma'ing h2d indices"
"Host will use w/r indices in TCM\n",
__FUNCTION__));
bus->dhd->dma_h2d_ring_upd_support = FALSE;
}
}
if (DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support)) {
dma_indx_wr_buf = dhd_prot_dma_indx_init(bus->dhd, bus->rw_index_sz,
D2H_DMA_INDX_WR_BUF, BCMPCIE_D2H_COMMON_MSGRINGS);
dma_indx_rd_buf = dhd_prot_dma_indx_init(bus->dhd, bus->rw_index_sz,
H2D_DMA_INDX_RD_BUF, bus->max_sub_queues);
if ((dma_indx_wr_buf != BCME_OK) || (dma_indx_rd_buf != BCME_OK)) {
DHD_ERROR(("%s: Failed to allocate memory for dma'ing d2h indices"
"Host will use w/r indices in TCM\n",
__FUNCTION__));
bus->dhd->dma_d2h_ring_upd_support = FALSE;
}
}
/* read ringmem and ringstate ptrs from shared area and store in host variables */
dhd_fillup_ring_sharedptr_info(bus, &ring_info);
bcm_print_bytes("ring_info_raw", (uchar *)&ring_info, sizeof(ring_info_t));
DHD_INFO(("ring_info\n"));
DHD_INFO(("%s: max H2D queues %d\n",
__FUNCTION__, ltoh16(ring_info.max_sub_queues)));
DHD_INFO(("mail box address\n"));
DHD_INFO(("%s: h2d_mb_data_ptr_addr 0x%04x\n",
__FUNCTION__, bus->h2d_mb_data_ptr_addr));
DHD_INFO(("%s: d2h_mb_data_ptr_addr 0x%04x\n",
__FUNCTION__, bus->d2h_mb_data_ptr_addr));
}
bus->dhd->d2h_sync_mode = sh->flags & PCIE_SHARED_D2H_SYNC_MODE_MASK;
DHD_INFO(("%s: d2h_sync_mode 0x%08x\n",
__FUNCTION__, bus->dhd->d2h_sync_mode));
return BCME_OK;
} /* dhdpcie_readshared */
/** Read ring mem and ring state ptr info from shared memory area in device memory */
static void
dhd_fillup_ring_sharedptr_info(dhd_bus_t *bus, ring_info_t *ring_info)
{
uint16 i = 0;
uint16 j = 0;
uint32 tcm_memloc;
uint32 d2h_w_idx_ptr, d2h_r_idx_ptr, h2d_w_idx_ptr, h2d_r_idx_ptr;
/* Ring mem ptr info */
/* Alloated in the order
H2D_MSGRING_CONTROL_SUBMIT 0
H2D_MSGRING_RXPOST_SUBMIT 1
D2H_MSGRING_CONTROL_COMPLETE 2
D2H_MSGRING_TX_COMPLETE 3
D2H_MSGRING_RX_COMPLETE 4
*/
{
/* ringmemptr holds start of the mem block address space */
tcm_memloc = ltoh32(ring_info->ringmem_ptr);
/* Find out ringmem ptr for each ring common ring */
for (i = 0; i <= BCMPCIE_COMMON_MSGRING_MAX_ID; i++) {
bus->ring_sh[i].ring_mem_addr = tcm_memloc;
/* Update mem block */
tcm_memloc = tcm_memloc + sizeof(ring_mem_t);
DHD_INFO(("ring id %d ring mem addr 0x%04x \n",
i, bus->ring_sh[i].ring_mem_addr));
}
}
/* Ring state mem ptr info */
{
d2h_w_idx_ptr = ltoh32(ring_info->d2h_w_idx_ptr);
d2h_r_idx_ptr = ltoh32(ring_info->d2h_r_idx_ptr);
h2d_w_idx_ptr = ltoh32(ring_info->h2d_w_idx_ptr);
h2d_r_idx_ptr = ltoh32(ring_info->h2d_r_idx_ptr);
/* Store h2d common ring write/read pointers */
for (i = 0; i < BCMPCIE_H2D_COMMON_MSGRINGS; i++) {
bus->ring_sh[i].ring_state_w = h2d_w_idx_ptr;
bus->ring_sh[i].ring_state_r = h2d_r_idx_ptr;
/* update mem block */
h2d_w_idx_ptr = h2d_w_idx_ptr + bus->rw_index_sz;
h2d_r_idx_ptr = h2d_r_idx_ptr + bus->rw_index_sz;
DHD_INFO(("h2d w/r : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w, bus->ring_sh[i].ring_state_r));
}
/* Store d2h common ring write/read pointers */
for (j = 0; j < BCMPCIE_D2H_COMMON_MSGRINGS; j++, i++) {
bus->ring_sh[i].ring_state_w = d2h_w_idx_ptr;
bus->ring_sh[i].ring_state_r = d2h_r_idx_ptr;
/* update mem block */
d2h_w_idx_ptr = d2h_w_idx_ptr + bus->rw_index_sz;
d2h_r_idx_ptr = d2h_r_idx_ptr + bus->rw_index_sz;
DHD_INFO(("d2h w/r : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w, bus->ring_sh[i].ring_state_r));
}
/* Store txflow ring write/read pointers */
for (j = 0; j < (bus->max_sub_queues - BCMPCIE_H2D_COMMON_MSGRINGS);
i++, j++)
{
bus->ring_sh[i].ring_state_w = h2d_w_idx_ptr;
bus->ring_sh[i].ring_state_r = h2d_r_idx_ptr;
/* update mem block */
h2d_w_idx_ptr = h2d_w_idx_ptr + bus->rw_index_sz;
h2d_r_idx_ptr = h2d_r_idx_ptr + bus->rw_index_sz;
DHD_INFO(("FLOW Rings h2d w/r : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w,
bus->ring_sh[i].ring_state_r));
}
}
} /* dhd_fillup_ring_sharedptr_info */
/**
* Initialize bus module: prepare for communication with the dongle. Called after downloading
* firmware into the dongle.
*/
int dhd_bus_init(dhd_pub_t *dhdp, bool enforce_mutex)
{
dhd_bus_t *bus = dhdp->bus;
int ret = 0;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(bus->dhd);
if (!bus->dhd)
return 0;
/* Make sure we're talking to the core. */
bus->reg = si_setcore(bus->sih, PCIE2_CORE_ID, 0);
ASSERT(bus->reg != NULL);
/* before opening up bus for data transfer, check if shared are is intact */
ret = dhdpcie_readshared(bus);
if (ret < 0) {
DHD_ERROR(("%s :Shared area read failed \n", __FUNCTION__));
return ret;
}
/* Make sure we're talking to the core. */
bus->reg = si_setcore(bus->sih, PCIE2_CORE_ID, 0);
ASSERT(bus->reg != NULL);
/* Set bus state according to enable result */
dhdp->busstate = DHD_BUS_DATA;
if (!dhd_download_fw_on_driverload)
dhd_dpc_enable(bus->dhd);
/* Enable the interrupt after device is up */
dhdpcie_bus_intr_enable(bus);
/* bcmsdh_intr_unmask(bus->sdh); */
#ifdef DHD_PCIE_RUNTIMEPM
bus->idlecount = 0;
bus->idletime = (int32)MAX_IDLE_COUNT;
init_waitqueue_head(&bus->rpm_queue);
mutex_init(&bus->pm_lock);
#endif /* DHD_PCIE_RUNTIMEPM */
bus->d3_ack_war_cnt = 0;
return ret;
}
static void
dhdpcie_init_shared_addr(dhd_bus_t *bus)
{
uint32 addr = 0;
uint32 val = 0;
addr = bus->dongle_ram_base + bus->ramsize - 4;
#ifdef DHD_PCIE_RUNTIMEPM
dhdpcie_runtime_bus_wake(bus->dhd, TRUE, __builtin_return_address(0));
#endif /* DHD_PCIE_RUNTIMEPM */
DHD_INFO_HW4(("%s: tcm: %p, addr: 0x%x val: 0x%x\n", __FUNCTION__, bus->tcm, addr, val));
dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val));
}
bool
dhdpcie_chipmatch(uint16 vendor, uint16 device)
{
if (vendor != PCI_VENDOR_ID_BROADCOM) {
DHD_ERROR(("%s: Unsupported vendor %x device %x\n", __FUNCTION__,
vendor, device));
return (-ENODEV);
}
if ((device == BCM4350_D11AC_ID) || (device == BCM4350_D11AC2G_ID) ||
(device == BCM4350_D11AC5G_ID) || (device == BCM4350_CHIP_ID) ||
(device == BCM43569_CHIP_ID))
return 0;
if ((device == BCM4354_D11AC_ID) || (device == BCM4354_D11AC2G_ID) ||
(device == BCM4354_D11AC5G_ID) || (device == BCM4354_CHIP_ID))
return 0;
if ((device == BCM4356_D11AC_ID) || (device == BCM4356_D11AC2G_ID) ||
(device == BCM4356_D11AC5G_ID) || (device == BCM4356_CHIP_ID))
return 0;
if ((device == BCM4345_D11AC_ID) || (device == BCM4345_D11AC2G_ID) ||
(device == BCM4345_D11AC5G_ID) || BCM4345_CHIP(device))
return 0;
if ((device == BCM4335_D11AC_ID) || (device == BCM4335_D11AC2G_ID) ||
(device == BCM4335_D11AC5G_ID) || (device == BCM4335_CHIP_ID))
return 0;
if ((device == BCM43602_D11AC_ID) || (device == BCM43602_D11AC2G_ID) ||
(device == BCM43602_D11AC5G_ID) || (device == BCM43602_CHIP_ID))
return 0;
if ((device == BCM43569_D11AC_ID) || (device == BCM43569_D11AC2G_ID) ||
(device == BCM43569_D11AC5G_ID) || (device == BCM43569_CHIP_ID))
return 0;
if ((device == BCM4358_D11AC_ID) || (device == BCM4358_D11AC2G_ID) ||
(device == BCM4358_D11AC5G_ID))
return 0;
if ((device == BCM4349_D11AC_ID) || (device == BCM4349_D11AC2G_ID) ||
(device == BCM4349_D11AC5G_ID) || (device == BCM4349_CHIP_ID))
return 0;
if ((device == BCM4355_D11AC_ID) || (device == BCM4355_D11AC2G_ID) ||
(device == BCM4355_D11AC5G_ID) || (device == BCM4355_CHIP_ID))
return 0;
if ((device == BCM4359_D11AC_ID) || (device == BCM4359_D11AC2G_ID) ||
(device == BCM4359_D11AC5G_ID))
return 0;
if ((device == BCM43596_D11AC_ID) || (device == BCM43596_D11AC2G_ID) ||
(device == BCM43596_D11AC5G_ID))
return 0;
if ((device == BCM43597_D11AC_ID) || (device == BCM43597_D11AC2G_ID) ||
(device == BCM43597_D11AC5G_ID))
return 0;
if ((device == BCM4365_D11AC_ID) || (device == BCM4365_D11AC2G_ID) ||
(device == BCM4365_D11AC5G_ID) || (device == BCM4365_CHIP_ID))
return 0;
if ((device == BCM4366_D11AC_ID) || (device == BCM4366_D11AC2G_ID) ||
(device == BCM4366_D11AC5G_ID) || (device == BCM4366_CHIP_ID))
return 0;
DHD_ERROR(("%s: Unsupported vendor %x device %x\n", __FUNCTION__, vendor, device));
return (-ENODEV);
} /* dhdpcie_chipmatch */
/**
* Name: dhdpcie_cc_nvmshadow
*
* Description:
* A shadow of OTP/SPROM exists in ChipCommon Region
* betw. 0x800 and 0xBFF (Backplane Addr. 0x1800_0800 and 0x1800_0BFF).
* Strapping option (SPROM vs. OTP), presence of OTP/SPROM and its size
* can also be read from ChipCommon Registers.
*/
static int
dhdpcie_cc_nvmshadow(dhd_bus_t *bus, struct bcmstrbuf *b)
{
uint16 dump_offset = 0;
uint32 dump_size = 0, otp_size = 0, sprom_size = 0;
/* Table for 65nm OTP Size (in bits) */
int otp_size_65nm[8] = {0, 2048, 4096, 8192, 4096, 6144, 512, 1024};
volatile uint16 *nvm_shadow;
uint cur_coreid;
uint chipc_corerev;
chipcregs_t *chipcregs;
/* Save the current core */
cur_coreid = si_coreid(bus->sih);
/* Switch to ChipC */
chipcregs = (chipcregs_t *)si_setcore(bus->sih, CC_CORE_ID, 0);
ASSERT(chipcregs != NULL);
chipc_corerev = si_corerev(bus->sih);
/* Check ChipcommonCore Rev */
if (chipc_corerev < 44) {
DHD_ERROR(("%s: ChipcommonCore Rev %d < 44\n", __FUNCTION__, chipc_corerev));
return BCME_UNSUPPORTED;
}
/* Check ChipID */
if (((uint16)bus->sih->chip != BCM4350_CHIP_ID) && !BCM4345_CHIP((uint16)bus->sih->chip)) {
DHD_ERROR(("%s: cc_nvmdump cmd. supported for 4350/4345 only\n",
__FUNCTION__));
return BCME_UNSUPPORTED;
}
/* Check if SRC_PRESENT in SpromCtrl(0x190 in ChipCommon Regs) is set */
if (chipcregs->sromcontrol & SRC_PRESENT) {
/* SPROM Size: 1Kbits (0x0), 4Kbits (0x1), 16Kbits(0x2) */
sprom_size = (1 << (2 * ((chipcregs->sromcontrol & SRC_SIZE_MASK)
>> SRC_SIZE_SHIFT))) * 1024;
bcm_bprintf(b, "\nSPROM Present (Size %d bits)\n", sprom_size);
}
if (chipcregs->sromcontrol & SRC_OTPPRESENT) {
bcm_bprintf(b, "\nOTP Present");
if (((chipcregs->otplayout & OTPL_WRAP_TYPE_MASK) >> OTPL_WRAP_TYPE_SHIFT)
== OTPL_WRAP_TYPE_40NM) {
/* 40nm OTP: Size = (OtpSize + 1) * 1024 bits */
otp_size = (((chipcregs->capabilities & CC_CAP_OTPSIZE)
>> CC_CAP_OTPSIZE_SHIFT) + 1) * 1024;
bcm_bprintf(b, "(Size %d bits)\n", otp_size);
} else {
/* This part is untested since newer chips have 40nm OTP */
otp_size = otp_size_65nm[(chipcregs->capabilities & CC_CAP_OTPSIZE)
>> CC_CAP_OTPSIZE_SHIFT];
bcm_bprintf(b, "(Size %d bits)\n", otp_size);
DHD_INFO(("%s: 65nm/130nm OTP Size not tested. \n",
__FUNCTION__));
}
}
if (((chipcregs->sromcontrol & SRC_PRESENT) == 0) &&
((chipcregs->capabilities & CC_CAP_OTPSIZE) == 0)) {
DHD_ERROR(("%s: SPROM and OTP could not be found \n",
__FUNCTION__));
return BCME_NOTFOUND;
}
/* Check the strapping option in SpromCtrl: Set = OTP otherwise SPROM */
if ((chipcregs->sromcontrol & SRC_OTPSEL) &&
(chipcregs->sromcontrol & SRC_OTPPRESENT)) {
bcm_bprintf(b, "OTP Strap selected.\n"
"\nOTP Shadow in ChipCommon:\n");
dump_size = otp_size / 16 ; /* 16bit words */
} else if (((chipcregs->sromcontrol & SRC_OTPSEL) == 0) &&
(chipcregs->sromcontrol & SRC_PRESENT)) {
bcm_bprintf(b, "SPROM Strap selected\n"
"\nSPROM Shadow in ChipCommon:\n");
/* If SPROM > 8K only 8Kbits is mapped to ChipCommon (0x800 - 0xBFF) */
/* dump_size in 16bit words */
dump_size = sprom_size > 8 ? (8 * 1024) / 16 : sprom_size / 16;
} else {
DHD_ERROR(("%s: NVM Shadow does not exist in ChipCommon\n",
__FUNCTION__));
return BCME_NOTFOUND;
}
if (bus->regs == NULL) {
DHD_ERROR(("ChipCommon Regs. not initialized\n"));
return BCME_NOTREADY;
} else {
bcm_bprintf(b, "\n OffSet:");
/* Point to the SPROM/OTP shadow in ChipCommon */
nvm_shadow = chipcregs->sromotp;
/*
* Read 16 bits / iteration.
* dump_size & dump_offset in 16-bit words
*/
while (dump_offset < dump_size) {
if (dump_offset % 2 == 0)
/* Print the offset in the shadow space in Bytes */
bcm_bprintf(b, "\n 0x%04x", dump_offset * 2);
bcm_bprintf(b, "\t0x%04x", *(nvm_shadow + dump_offset));
dump_offset += 0x1;
}
}
/* Switch back to the original core */
si_setcore(bus->sih, cur_coreid, 0);
return BCME_OK;
} /* dhdpcie_cc_nvmshadow */
/**
* Name: dhdpcie_sromotp_customvar
*
* Description:
* read otp/sprom and parse & store customvar.
*
* A shadow of OTP/SPROM exists in ChipCommon Region
* betw. 0x800 and 0xBFF (Backplane Addr. 0x1800_0800 and 0x1800_0BFF).
* Strapping option (SPROM vs. OTP), presence of OTP/SPROM and its size
* can also be read from ChipCommon Registers.
*/
static int
dhdpcie_sromotp_customvar(dhd_bus_t *bus, uint32 *customvar1, uint32 *customvar2)
{
uint16 dump_offset = 0;
uint32 dump_size = 0, otp_size = 0, sprom_size = 0;
/* Table for 65nm OTP Size (in bits) */
int otp_size_65nm[8] = {0, 2048, 4096, 8192, 4096, 6144, 512, 1024};
#ifdef CUSTOMER_HW2
uint32 otp_start_addr;
uint32 otp_end_addr;
uint32 cur_addr;
uint32 byte_enable;
int delay;
#else
volatile uint16 *nvm_shadow;
#endif /* CUSTOMER_HW2 */
uint cur_coreid;
uint chipc_corerev;
chipcregs_t *chipcregs;
uint16 *otp_dump;
uint8 *cis;
uint8 tup, tlen;
int i = 0;
/* Save the current core */
cur_coreid = si_coreid(bus->sih);
/* Switch to ChipC */
chipcregs = (chipcregs_t *)si_setcore(bus->sih, CC_CORE_ID, 0);
ASSERT(chipcregs != NULL);
chipc_corerev = si_corerev(bus->sih);
/* Check ChipcommonCore Rev */
if (chipc_corerev < 44) {
DHD_ERROR(("%s: ChipcommonCore Rev %d < 44\n", __FUNCTION__, chipc_corerev));
return BCME_UNSUPPORTED;
}
/* Check ChipID */
if (((uint16)bus->sih->chip != BCM4350_CHIP_ID) && !BCM4345_CHIP((uint16)bus->sih->chip) &&
((uint16)bus->sih->chip != BCM4355_CHIP_ID) &&
((uint16)bus->sih->chip != BCM4359_CHIP_ID) &&
((uint16)bus->sih->chip != BCM4349_CHIP_ID)) {
DHD_ERROR(("%s: supported for chips"
"4350/4345/4355/4364/4349/4359 only\n", __FUNCTION__));
return BCME_UNSUPPORTED;
}
/* Check if SRC_PRESENT in SpromCtrl(0x190 in ChipCommon Regs) is set */
if (chipcregs->sromcontrol & SRC_PRESENT) {
/* SPROM Size: 1Kbits (0x0), 4Kbits (0x1), 16Kbits(0x2) */
sprom_size = (1 << (2 * ((chipcregs->sromcontrol & SRC_SIZE_MASK)
>> SRC_SIZE_SHIFT))) * 1024;
DHD_TRACE(("\nSPROM Present (Size %d bits)\n", sprom_size));
}
if (chipcregs->sromcontrol & SRC_OTPPRESENT) {
DHD_TRACE(("\nOTP Present"));
if (((chipcregs->otplayout & OTPL_WRAP_TYPE_MASK) >> OTPL_WRAP_TYPE_SHIFT)
== OTPL_WRAP_TYPE_40NM) {
/* 40nm OTP: Size = (OtpSize + 1) * 1024 bits */
/* Chipcommon rev51 is a variation on rev45 and does not support
* the latest OTP configuration.
*/
if (chipc_corerev != 51 && chipc_corerev >= 49) {
otp_size = (((chipcregs->otplayout & OTPL_ROW_SIZE_MASK)
>> OTPL_ROW_SIZE_SHIFT) + 1) * 1024;
DHD_TRACE(("(Size %d bits)\n", otp_size));
} else {
otp_size = (((chipcregs->capabilities & CC_CAP_OTPSIZE)
>> CC_CAP_OTPSIZE_SHIFT) + 1) * 1024;
DHD_TRACE(("(Size %d bits)\n", otp_size));
}
} else {
/* This part is untested since newer chips have 40nm OTP */
/* Chipcommon rev51 is a variation on rev45 and does not support
* the latest OTP configuration.
*/
if (chipc_corerev != 51 && chipc_corerev >= 49) {
otp_size = otp_size_65nm[(chipcregs->otplayout & OTPL_ROW_SIZE_MASK)
>> OTPL_ROW_SIZE_SHIFT];
DHD_TRACE(("(Size %d bits)\n", otp_size));
} else {
otp_size = otp_size_65nm[(chipcregs->capabilities & CC_CAP_OTPSIZE)
>> CC_CAP_OTPSIZE_SHIFT];
DHD_TRACE(("(Size %d bits)\n", otp_size));
DHD_TRACE(("%s: 65nm/130nm OTP Size not tested. \n",
__FUNCTION__));
}
}
}
/* Chipcommon rev51 is a variation on rev45 and does not support
* the latest OTP configuration.
*/
if (chipc_corerev != 51 && chipc_corerev >= 49) {
if (((chipcregs->sromcontrol & SRC_PRESENT) == 0) &&
((chipcregs->otplayout & OTPL_ROW_SIZE_MASK) == 0)) {
DHD_ERROR(("%s: SPROM and OTP could not be found "
"sromcontrol = %x, otplayout = %x \n",
__FUNCTION__, chipcregs->sromcontrol, chipcregs->otplayout));
return BCME_NOTFOUND;
}
} else {
if (((chipcregs->sromcontrol & SRC_PRESENT) == 0) &&
((chipcregs->capabilities & CC_CAP_OTPSIZE) == 0)) {
DHD_ERROR(("%s: SPROM and OTP could not be found "
"sromcontrol = %x, capablities = %x \n",
__FUNCTION__, chipcregs->sromcontrol, chipcregs->capabilities));
return BCME_NOTFOUND;
}
}
/* Check the strapping option in SpromCtrl: Set = OTP otherwise SPROM */
if ((!(chipcregs->sromcontrol & SRC_PRESENT) || (chipcregs->sromcontrol & SRC_OTPSEL)) &&
(chipcregs->sromcontrol & SRC_OTPPRESENT)) {
DHD_TRACE(("OTP Strap selected.\n"
"\nOTP Shadow in ChipCommon:\n"));
dump_size = otp_size / 16 ; /* 16bit words */
} else if (((chipcregs->sromcontrol & SRC_OTPSEL) == 0) &&
(chipcregs->sromcontrol & SRC_PRESENT)) {
DHD_TRACE(("SPROM Strap selected\n"
"\nSPROM Shadow in ChipCommon:\n"));
/* If SPROM > 8K only 8Kbits is mapped to ChipCommon (0x800 - 0xBFF) */
/* dump_size in 16bit words */
dump_size = sprom_size > 8 ? (8 * 1024) / 16 : sprom_size / 16;
} else {
DHD_ERROR(("%s: NVM Shadow does not exist in ChipCommon\n",
__FUNCTION__));
return BCME_NOTFOUND;
}
if (bus->regs == NULL) {
DHD_ERROR(("ChipCommon Regs. not initialized\n"));
return BCME_NOTREADY;
}
#ifdef CUSTOMER_HW2
/* Use CC backplane interconnect registers to read OTP region */
otp_start_addr = si_corebase(bus->sih, GCI_CORE_ID);
if (!otp_start_addr) {
DHD_ERROR(("%s: Failed to find gci core base addr\n",
__FUNCTION__));
return BCME_NOTFOUND;
}
otp_dump = kzalloc(dump_size*2, GFP_KERNEL);
if (otp_dump == NULL) {
DHD_ERROR(("%s: Insufficient system memory of size %d\n",
__FUNCTION__, dump_size));
return BCME_NOMEM;
}
/* Read 16 bits / iteration.
* dump_size is in 16-bit words
*/
otp_end_addr = otp_start_addr + (dump_size * 2);
cur_addr = otp_start_addr;
/* ByteEnables(3:0) bits represent backplane address and data
* locations to read/write in 4-byte width.
*/
byte_enable = 0x03;
while (cur_addr < otp_end_addr) {
W_REG(bus->osh, &chipcregs->bp_addrlow, cur_addr);
W_REG(bus->osh, &chipcregs->bp_addrhigh, 0x0);
/* 0x0200 will set StartBusy bit to start indirect backplane access */
W_REG(bus->osh, &chipcregs->bp_indaccess, 0x0200 | byte_enable);
for (delay = 0; delay < STARTBUSY_BIT_POLL_MAX_TIME; delay++) {
/* Hardware clears StartBusy bit on transfer completion */
if (R_REG(bus->osh, &chipcregs->bp_indaccess) == byte_enable)
break;
OSL_DELAY(100);
}
if (delay == STARTBUSY_BIT_POLL_MAX_TIME) {
DHD_ERROR(("%s: Read from 0x%x didn't complete\n", __FUNCTION__, cur_addr));
if (otp_dump) {
kfree(otp_dump);
otp_dump = NULL;
}
return BCME_ERROR;
}
if (byte_enable == 0x03) {
*(otp_dump + dump_offset) = R_REG(bus->osh, &chipcregs->bp_data) & 0xFFFF;
byte_enable = 0x0c;
} else {
*(otp_dump + dump_offset) =
(R_REG(bus->osh, &chipcregs->bp_data) >> 16) & 0xFFFF;
byte_enable = 0x03;
}
cur_addr += 2;
dump_offset += 1;
}
#else /* CUSTOMER_HW2 */
/* Chipcommon rev51 is a variation on rev45 and does not support
* the latest OTP configuration.
*/
if (chipc_corerev != 51 && chipc_corerev >= 49) {
/* Chip common can read only 8kbits,
* for ccrev >= 49 otp size is around 12 kbits so use GCI core
*/
nvm_shadow = (volatile uint16 *)si_setcore(bus->sih, GCI_CORE_ID, 0);
} else {
/* Point to the SPROM/OTP shadow in ChipCommon */
nvm_shadow = chipcregs->sromotp;
}
if (nvm_shadow == NULL) {
DHD_ERROR(("%s: NVM Shadow is not intialized\n", __FUNCTION__));
return BCME_NOTFOUND;
}
otp_dump = kzalloc(dump_size*2, GFP_KERNEL);
if (otp_dump == NULL) {
DHD_ERROR(("%s: Insufficient system memory of size %d\n",
__FUNCTION__, dump_size));
return BCME_NOMEM;
}
/*
* Read 16 bits / iteration.
* dump_size & dump_offset in 16-bit words
*/
while (dump_offset < dump_size) {
*(otp_dump + dump_offset) = *(nvm_shadow + dump_offset);
dump_offset += 0x1;
}
#endif /* CUSTOMER_HW2 */
/* Read from cis tuple start address */
cis = (uint8 *)otp_dump + CISTPL_OFFSET;
/* parse value of customvar2 tuple */
do {
tup = cis[i++];
if (tup == CISTPL_NULL || tup == CISTPL_END)
tlen = 0;
else
tlen = cis[i++];
if ((i + tlen) >= dump_size*2)
break;
switch (tup) {
case CISTPL_BRCM_HNBU:
switch (cis[i]) {
case HNBU_CUSTOM1:
*customvar1 = ((cis[i + 4] << 24) +
(cis[i + 3] << 16) + (cis[i + 2] << 8) +
cis[i + 1]);
DHD_ERROR(("%s : customvar1 [%x]\n",
__FUNCTION__, *customvar1));
break;
case HNBU_CUSTOM2:
*customvar2 = ((cis[i + 4] << 24) +
(cis[i + 3] << 16) + (cis[i + 2] << 8) +
cis[i + 1]);
DHD_ERROR(("%s : customvar2 [%x]\n",
__FUNCTION__, *customvar2));
break;
default:
break;
}
break;
default:
break;
}
i += tlen;
} while (tup != 0xff);
if (otp_dump) {
kfree(otp_dump);
otp_dump = NULL;
}
/* Switch back to the original core */
si_setcore(bus->sih, cur_coreid, 0);
return BCME_OK;
} /* dhdpcie_sromotp_customvar */
/** Flow rings are dynamically created and destroyed */
void dhd_bus_clean_flow_ring(dhd_bus_t *bus, void *node)
{
void *pkt;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node = (flow_ring_node_t *)node;
unsigned long flags;
queue = &flow_ring_node->queue;
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* clean up BUS level info */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
/* Flush all pending packets in the queue, if any */
while ((pkt = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTFREE(bus->dhd->osh, pkt, TRUE);
}
ASSERT(DHD_FLOW_QUEUE_EMPTY(queue));
flow_ring_node->status = FLOW_RING_STATUS_CLOSED;
flow_ring_node->active = FALSE;
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
DHD_FLOWRING_LIST_LOCK(bus->dhd->flowring_list_lock, flags);
dll_delete(&flow_ring_node->list);
DHD_FLOWRING_LIST_UNLOCK(bus->dhd->flowring_list_lock, flags);
/* Release the flowring object back into the pool */
dhd_prot_flowrings_pool_release(bus->dhd,
flow_ring_node->flowid, flow_ring_node->prot_info);
/* Free the flowid back to the flowid allocator */
dhd_flowid_free(bus->dhd, flow_ring_node->flow_info.ifindex,
flow_ring_node->flowid);
}
/**
* Allocate a Flow ring buffer,
* Init Ring buffer, send Msg to device about flow ring creation
*/
int
dhd_bus_flow_ring_create_request(dhd_bus_t *bus, void *arg)
{
flow_ring_node_t *flow_ring_node = (flow_ring_node_t *)arg;
DHD_INFO(("%s :Flow create\n", __FUNCTION__));
/* Send Msg to device about flow ring creation */
if (dhd_prot_flow_ring_create(bus->dhd, flow_ring_node) != BCME_OK)
return BCME_NOMEM;
return BCME_OK;
}
/** Handle response from dongle on a 'flow ring create' request */
void
dhd_bus_flow_ring_create_response(dhd_bus_t *bus, uint16 flowid, int32 status)
{
flow_ring_node_t *flow_ring_node;
unsigned long flags;
DHD_INFO(("%s :Flow Response %d \n", __FUNCTION__, flowid));
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
ASSERT(flow_ring_node->flowid == flowid);
if (status != BCME_OK) {
DHD_ERROR(("%s Flow create Response failure error status = %d \n",
__FUNCTION__, status));
/* Call Flow clean up */
dhd_bus_clean_flow_ring(bus, flow_ring_node);
return;
}
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
flow_ring_node->status = FLOW_RING_STATUS_OPEN;
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* Now add the Flow ring node into the active list
* Note that this code to add the newly created node to the active
* list was living in dhd_flowid_lookup. But note that after
* adding the node to the active list the contents of node is being
* filled in dhd_prot_flow_ring_create.
* If there is a D2H interrupt after the node gets added to the
* active list and before the node gets populated with values
* from the Bottom half dhd_update_txflowrings would be called.
* which will then try to walk through the active flow ring list,
* pickup the nodes and operate on them. Now note that since
* the function dhd_prot_flow_ring_create is not finished yet
* the contents of flow_ring_node can still be NULL leading to
* crashes. Hence the flow_ring_node should be added to the
* active list only after its truely created, which is after
* receiving the create response message from the Host.
*/
DHD_FLOWRING_LIST_LOCK(bus->dhd->flowring_list_lock, flags);
dll_prepend(&bus->const_flowring, &flow_ring_node->list);
DHD_FLOWRING_LIST_UNLOCK(bus->dhd->flowring_list_lock, flags);
dhd_bus_schedule_queue(bus, flowid, FALSE); /* from queue to flowring */
return;
}
int
dhd_bus_flow_ring_delete_request(dhd_bus_t *bus, void *arg)
{
void * pkt;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
unsigned long flags;
DHD_INFO(("%s :Flow Delete\n", __FUNCTION__));
flow_ring_node = (flow_ring_node_t *)arg;
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status == FLOW_RING_STATUS_DELETE_PENDING) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
DHD_ERROR(("%s :Delete Pending Flow %d\n",
__FUNCTION__, flow_ring_node->flowid));
return BCME_ERROR;
}
flow_ring_node->status = FLOW_RING_STATUS_DELETE_PENDING;
queue = &flow_ring_node->queue; /* queue associated with flow ring */
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* Flush all pending packets in the queue, if any */
while ((pkt = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTFREE(bus->dhd->osh, pkt, TRUE);
}
ASSERT(DHD_FLOW_QUEUE_EMPTY(queue));
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* Send Msg to device about flow ring deletion */
dhd_prot_flow_ring_delete(bus->dhd, flow_ring_node);
return BCME_OK;
}
void
dhd_bus_flow_ring_delete_response(dhd_bus_t *bus, uint16 flowid, uint32 status)
{
flow_ring_node_t *flow_ring_node;
DHD_INFO(("%s :Flow Delete Response %d \n", __FUNCTION__, flowid));
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
ASSERT(flow_ring_node->flowid == flowid);
if (status != BCME_OK) {
DHD_ERROR(("%s Flow Delete Response failure error status = %d \n",
__FUNCTION__, status));
return;
}
/* Call Flow clean up */
dhd_bus_clean_flow_ring(bus, flow_ring_node);
return;
}
/** This function is not called. Obsolete ? */
int dhd_bus_flow_ring_flush_request(dhd_bus_t *bus, void *arg)
{
void *pkt;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
unsigned long flags;
DHD_INFO(("%s :Flow Delete\n", __FUNCTION__));
flow_ring_node = (flow_ring_node_t *)arg;
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* Flush all pending packets in the queue, if any */
while ((pkt = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTFREE(bus->dhd->osh, pkt, TRUE);
}
ASSERT(DHD_FLOW_QUEUE_EMPTY(queue));
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* Send Msg to device about flow ring flush */
dhd_prot_flow_ring_flush(bus->dhd, flow_ring_node);
flow_ring_node->status = FLOW_RING_STATUS_FLUSH_PENDING;
return BCME_OK;
}
void
dhd_bus_flow_ring_flush_response(dhd_bus_t *bus, uint16 flowid, uint32 status)
{
flow_ring_node_t *flow_ring_node;
if (status != BCME_OK) {
DHD_ERROR(("%s Flow flush Response failure error status = %d \n",
__FUNCTION__, status));
return;
}
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
ASSERT(flow_ring_node->flowid == flowid);
flow_ring_node->status = FLOW_RING_STATUS_OPEN;
return;
}
uint32
dhd_bus_max_h2d_queues(struct dhd_bus *bus)
{
return bus->max_sub_queues;
}
/* To be symmetric with SDIO */
void
dhd_bus_pktq_flush(dhd_pub_t *dhdp)
{
return;
}
void
dhd_bus_set_linkdown(dhd_pub_t *dhdp, bool val)
{
dhdp->bus->is_linkdown = val;
}
int
dhdpcie_bus_clock_start(struct dhd_bus *bus)
{
return dhdpcie_start_host_pcieclock(bus);
}
int
dhdpcie_bus_clock_stop(struct dhd_bus *bus)
{
return dhdpcie_stop_host_pcieclock(bus);
}
int
dhdpcie_bus_disable_device(struct dhd_bus *bus)
{
return dhdpcie_disable_device(bus);
}
int
dhdpcie_bus_enable_device(struct dhd_bus *bus)
{
return dhdpcie_enable_device(bus);
}
int
dhdpcie_bus_alloc_resource(struct dhd_bus *bus)
{
return dhdpcie_alloc_resource(bus);
}
void
dhdpcie_bus_free_resource(struct dhd_bus *bus)
{
dhdpcie_free_resource(bus);
}
int
dhd_bus_request_irq(struct dhd_bus *bus)
{
return dhdpcie_bus_request_irq(bus);
}
bool
dhdpcie_bus_dongle_attach(struct dhd_bus *bus)
{
return dhdpcie_dongle_attach(bus);
}
int
dhd_bus_release_dongle(struct dhd_bus *bus)
{
bool dongle_isolation;
osl_t *osh;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
osh = bus->osh;
ASSERT(osh);
if (bus->dhd) {
dongle_isolation = bus->dhd->dongle_isolation;
dhdpcie_bus_release_dongle(bus, osh, dongle_isolation, TRUE);
}
}
return 0;
}
#ifdef BCMPCIE_OOB_HOST_WAKE
int
dhd_bus_oob_intr_register(dhd_pub_t *dhdp)
{
return dhdpcie_oob_intr_register(dhdp->bus);
}
void
dhd_bus_oob_intr_unregister(dhd_pub_t *dhdp)
{
dhdpcie_oob_intr_unregister(dhdp->bus);
}
void
dhd_bus_oob_intr_set(dhd_pub_t *dhdp, bool enable)
{
dhdpcie_oob_intr_set(dhdp->bus, enable);
}
#endif /* BCMPCIE_OOB_HOST_WAKE */