307 lines
8.1 KiB
C
307 lines
8.1 KiB
C
|
/*
|
||
|
* Copyright (C) 2014-2015 Broadcom Corporation
|
||
|
* Copyright 2014 Linaro Limited
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License as
|
||
|
* published by the Free Software Foundation version 2.
|
||
|
*
|
||
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
||
|
* kind, whether express or implied; without even the implied warranty
|
||
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/jiffies.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/smp.h>
|
||
|
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/smp.h>
|
||
|
#include <asm/smp_plat.h>
|
||
|
#include <asm/smp_scu.h>
|
||
|
|
||
|
/* Size of mapped Cortex A9 SCU address space */
|
||
|
#define CORTEX_A9_SCU_SIZE 0x58
|
||
|
|
||
|
#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
|
||
|
#define BOOT_ADDR_CPUID_MASK 0x3
|
||
|
|
||
|
/* Name of device node property defining secondary boot register location */
|
||
|
#define OF_SECONDARY_BOOT "secondary-boot-reg"
|
||
|
#define MPIDR_CPUID_BITMASK 0x3
|
||
|
|
||
|
/*
|
||
|
* Enable the Cortex A9 Snoop Control Unit
|
||
|
*
|
||
|
* By the time this is called we already know there are multiple
|
||
|
* cores present. We assume we're running on a Cortex A9 processor,
|
||
|
* so any trouble getting the base address register or getting the
|
||
|
* SCU base is a problem.
|
||
|
*
|
||
|
* Return 0 if successful or an error code otherwise.
|
||
|
*/
|
||
|
static int __init scu_a9_enable(void)
|
||
|
{
|
||
|
unsigned long config_base;
|
||
|
void __iomem *scu_base;
|
||
|
|
||
|
if (!scu_a9_has_base()) {
|
||
|
pr_err("no configuration base address register!\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
/* Config base address register value is zero for uniprocessor */
|
||
|
config_base = scu_a9_get_base();
|
||
|
if (!config_base) {
|
||
|
pr_err("hardware reports only one core\n");
|
||
|
return -ENOENT;
|
||
|
}
|
||
|
|
||
|
scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
|
||
|
if (!scu_base) {
|
||
|
pr_err("failed to remap config base (%lu/%u) for SCU\n",
|
||
|
config_base, CORTEX_A9_SCU_SIZE);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
scu_enable(scu_base);
|
||
|
|
||
|
iounmap(scu_base); /* That's the last we'll need of this */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u32 secondary_boot_addr_for(unsigned int cpu)
|
||
|
{
|
||
|
u32 secondary_boot_addr = 0;
|
||
|
struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
|
||
|
|
||
|
if (!cpu_node) {
|
||
|
pr_err("Failed to find device tree node for CPU%u\n", cpu);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (of_property_read_u32(cpu_node,
|
||
|
OF_SECONDARY_BOOT,
|
||
|
&secondary_boot_addr))
|
||
|
pr_err("required secondary boot register not specified for CPU%u\n",
|
||
|
cpu);
|
||
|
|
||
|
of_node_put(cpu_node);
|
||
|
|
||
|
return secondary_boot_addr;
|
||
|
}
|
||
|
|
||
|
static int nsp_write_lut(unsigned int cpu)
|
||
|
{
|
||
|
void __iomem *sku_rom_lut;
|
||
|
phys_addr_t secondary_startup_phy;
|
||
|
const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
|
||
|
|
||
|
if (!secondary_boot_addr)
|
||
|
return -EINVAL;
|
||
|
|
||
|
sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
|
||
|
sizeof(phys_addr_t));
|
||
|
if (!sku_rom_lut) {
|
||
|
pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
secondary_startup_phy = virt_to_phys(secondary_startup);
|
||
|
BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
|
||
|
|
||
|
writel_relaxed(secondary_startup_phy, sku_rom_lut);
|
||
|
|
||
|
/* Ensure the write is visible to the secondary core */
|
||
|
smp_wmb();
|
||
|
|
||
|
iounmap(sku_rom_lut);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
|
||
|
{
|
||
|
const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
|
||
|
|
||
|
/* Enable the SCU on Cortex A9 based SoCs */
|
||
|
if (scu_a9_enable()) {
|
||
|
/* Update the CPU present map to reflect uniprocessor mode */
|
||
|
pr_warn("failed to enable A9 SCU - disabling SMP\n");
|
||
|
init_cpu_present(&only_cpu_0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The ROM code has the secondary cores looping, waiting for an event.
|
||
|
* When an event occurs each core examines the bottom two bits of the
|
||
|
* secondary boot register. When a core finds those bits contain its
|
||
|
* own core id, it performs initialization, including computing its boot
|
||
|
* address by clearing the boot register value's bottom two bits. The
|
||
|
* core signals that it is beginning its execution by writing its boot
|
||
|
* address back to the secondary boot register, and finally jumps to
|
||
|
* that address.
|
||
|
*
|
||
|
* So to start a core executing we need to:
|
||
|
* - Encode the (hardware) CPU id with the bottom bits of the secondary
|
||
|
* start address.
|
||
|
* - Write that value into the secondary boot register.
|
||
|
* - Generate an event to wake up the secondary CPU(s).
|
||
|
* - Wait for the secondary boot register to be re-written, which
|
||
|
* indicates the secondary core has started.
|
||
|
*/
|
||
|
static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
||
|
{
|
||
|
void __iomem *boot_reg;
|
||
|
phys_addr_t boot_func;
|
||
|
u64 start_clock;
|
||
|
u32 cpu_id;
|
||
|
u32 boot_val;
|
||
|
bool timeout = false;
|
||
|
const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
|
||
|
|
||
|
cpu_id = cpu_logical_map(cpu);
|
||
|
if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
|
||
|
pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (!secondary_boot_addr)
|
||
|
return -EINVAL;
|
||
|
|
||
|
boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
|
||
|
sizeof(phys_addr_t));
|
||
|
if (!boot_reg) {
|
||
|
pr_err("unable to map boot register for cpu %u\n", cpu_id);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Secondary cores will start in secondary_startup(),
|
||
|
* defined in "arch/arm/kernel/head.S"
|
||
|
*/
|
||
|
boot_func = virt_to_phys(secondary_startup);
|
||
|
BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
|
||
|
BUG_ON(boot_func > (phys_addr_t)U32_MAX);
|
||
|
|
||
|
/* The core to start is encoded in the low bits */
|
||
|
boot_val = (u32)boot_func | cpu_id;
|
||
|
writel_relaxed(boot_val, boot_reg);
|
||
|
|
||
|
sev();
|
||
|
|
||
|
/* The low bits will be cleared once the core has started */
|
||
|
start_clock = local_clock();
|
||
|
while (!timeout && readl_relaxed(boot_reg) == boot_val)
|
||
|
timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
|
||
|
|
||
|
iounmap(boot_reg);
|
||
|
|
||
|
if (!timeout)
|
||
|
return 0;
|
||
|
|
||
|
pr_err("timeout waiting for cpu %u to start\n", cpu_id);
|
||
|
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
/* Cluster Dormant Control command to bring CPU into a running state */
|
||
|
#define CDC_CMD 6
|
||
|
#define CDC_CMD_OFFSET 0
|
||
|
#define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
|
||
|
|
||
|
/*
|
||
|
* BCM23550 has a Cluster Dormant Control block that keeps the core in
|
||
|
* idle state. A command needs to be sent to the block to bring the CPU
|
||
|
* into running state.
|
||
|
*/
|
||
|
static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
||
|
{
|
||
|
void __iomem *cdc_base;
|
||
|
struct device_node *dn;
|
||
|
char *name;
|
||
|
int ret;
|
||
|
|
||
|
/* Make sure a CDC node exists before booting the
|
||
|
* secondary core.
|
||
|
*/
|
||
|
name = "brcm,bcm23550-cdc";
|
||
|
dn = of_find_compatible_node(NULL, NULL, name);
|
||
|
if (!dn) {
|
||
|
pr_err("unable to find cdc node\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
cdc_base = of_iomap(dn, 0);
|
||
|
of_node_put(dn);
|
||
|
|
||
|
if (!cdc_base) {
|
||
|
pr_err("unable to remap cdc base register\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* Boot the secondary core */
|
||
|
ret = kona_boot_secondary(cpu, idle);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
/* Bring this CPU to RUN state so that nIRQ nFIQ
|
||
|
* signals are unblocked.
|
||
|
*/
|
||
|
writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
|
||
|
|
||
|
out:
|
||
|
iounmap(cdc_base);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* After wake up, secondary core branches to the startup
|
||
|
* address programmed at SKU ROM LUT location.
|
||
|
*/
|
||
|
ret = nsp_write_lut(cpu);
|
||
|
if (ret) {
|
||
|
pr_err("unable to write startup addr to SKU ROM LUT\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Send a CPU wakeup interrupt to the secondary core */
|
||
|
arch_send_wakeup_ipi_mask(cpumask_of(cpu));
|
||
|
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct smp_operations kona_smp_ops __initconst = {
|
||
|
.smp_prepare_cpus = bcm_smp_prepare_cpus,
|
||
|
.smp_boot_secondary = kona_boot_secondary,
|
||
|
};
|
||
|
CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
|
||
|
&kona_smp_ops);
|
||
|
|
||
|
static const struct smp_operations bcm23550_smp_ops __initconst = {
|
||
|
.smp_boot_secondary = bcm23550_boot_secondary,
|
||
|
};
|
||
|
CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
|
||
|
&bcm23550_smp_ops);
|
||
|
|
||
|
static const struct smp_operations nsp_smp_ops __initconst = {
|
||
|
.smp_prepare_cpus = bcm_smp_prepare_cpus,
|
||
|
.smp_boot_secondary = nsp_boot_secondary,
|
||
|
};
|
||
|
CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
|