488 lines
13 KiB
C
488 lines
13 KiB
C
|
/*
|
||
|
* Copyright (C) 2015 - ARM Ltd
|
||
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <linux/arm-smccc.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/jump_label.h>
|
||
|
#include <uapi/linux/psci.h>
|
||
|
|
||
|
#include <kvm/arm_psci.h>
|
||
|
|
||
|
#include <asm/kvm_asm.h>
|
||
|
#include <asm/kvm_emulate.h>
|
||
|
#include <asm/kvm_hyp.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
|
||
|
extern struct exception_table_entry __start___kvm_ex_table;
|
||
|
extern struct exception_table_entry __stop___kvm_ex_table;
|
||
|
|
||
|
static bool __hyp_text __fpsimd_enabled_nvhe(void)
|
||
|
{
|
||
|
return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
|
||
|
}
|
||
|
|
||
|
static bool __hyp_text __fpsimd_enabled_vhe(void)
|
||
|
{
|
||
|
return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
|
||
|
}
|
||
|
|
||
|
static hyp_alternate_select(__fpsimd_is_enabled,
|
||
|
__fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
|
||
|
ARM64_HAS_VIRT_HOST_EXTN);
|
||
|
|
||
|
bool __hyp_text __fpsimd_enabled(void)
|
||
|
{
|
||
|
return __fpsimd_is_enabled()();
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __activate_traps_vhe(void)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
val = read_sysreg(cpacr_el1);
|
||
|
val |= CPACR_EL1_TTA;
|
||
|
val &= ~CPACR_EL1_FPEN;
|
||
|
write_sysreg(val, cpacr_el1);
|
||
|
|
||
|
write_sysreg(kvm_get_hyp_vector(), vbar_el1);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __activate_traps_nvhe(void)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
val = CPTR_EL2_DEFAULT;
|
||
|
val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
|
||
|
write_sysreg(val, cptr_el2);
|
||
|
}
|
||
|
|
||
|
static hyp_alternate_select(__activate_traps_arch,
|
||
|
__activate_traps_nvhe, __activate_traps_vhe,
|
||
|
ARM64_HAS_VIRT_HOST_EXTN);
|
||
|
|
||
|
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
/*
|
||
|
* We are about to set CPTR_EL2.TFP to trap all floating point
|
||
|
* register accesses to EL2, however, the ARM ARM clearly states that
|
||
|
* traps are only taken to EL2 if the operation would not otherwise
|
||
|
* trap to EL1. Therefore, always make sure that for 32-bit guests,
|
||
|
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
|
||
|
*/
|
||
|
val = vcpu->arch.hcr_el2;
|
||
|
if (!(val & HCR_RW)) {
|
||
|
write_sysreg(1 << 30, fpexc32_el2);
|
||
|
isb();
|
||
|
}
|
||
|
write_sysreg(val, hcr_el2);
|
||
|
/* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
|
||
|
write_sysreg(1 << 15, hstr_el2);
|
||
|
/*
|
||
|
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
|
||
|
* PMSELR_EL0 to make sure it never contains the cycle
|
||
|
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
|
||
|
* EL1 instead of being trapped to EL2.
|
||
|
*/
|
||
|
write_sysreg(0, pmselr_el0);
|
||
|
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
|
||
|
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
|
||
|
__activate_traps_arch()();
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __deactivate_traps_vhe(void)
|
||
|
{
|
||
|
extern char vectors[]; /* kernel exception vectors */
|
||
|
|
||
|
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
|
||
|
write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
|
||
|
write_sysreg(vectors, vbar_el1);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __deactivate_traps_nvhe(void)
|
||
|
{
|
||
|
write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
|
||
|
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
|
||
|
}
|
||
|
|
||
|
static hyp_alternate_select(__deactivate_traps_arch,
|
||
|
__deactivate_traps_nvhe, __deactivate_traps_vhe,
|
||
|
ARM64_HAS_VIRT_HOST_EXTN);
|
||
|
|
||
|
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
/*
|
||
|
* If we pended a virtual abort, preserve it until it gets
|
||
|
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
|
||
|
* the crucial bit is "On taking a vSError interrupt,
|
||
|
* HCR_EL2.VSE is cleared to 0."
|
||
|
*/
|
||
|
if (vcpu->arch.hcr_el2 & HCR_VSE)
|
||
|
vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
|
||
|
|
||
|
__deactivate_traps_arch()();
|
||
|
write_sysreg(0, hstr_el2);
|
||
|
write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2);
|
||
|
write_sysreg(0, pmuserenr_el0);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm *kvm = kern_hyp_va(vcpu->kvm);
|
||
|
write_sysreg(kvm->arch.vttbr, vttbr_el2);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
write_sysreg(0, vttbr_el2);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
|
||
|
__vgic_v3_save_state(vcpu);
|
||
|
else
|
||
|
__vgic_v2_save_state(vcpu);
|
||
|
|
||
|
write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
val = read_sysreg(hcr_el2);
|
||
|
val |= HCR_INT_OVERRIDE;
|
||
|
val |= vcpu->arch.irq_lines;
|
||
|
write_sysreg(val, hcr_el2);
|
||
|
|
||
|
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
|
||
|
__vgic_v3_restore_state(vcpu);
|
||
|
else
|
||
|
__vgic_v2_restore_state(vcpu);
|
||
|
}
|
||
|
|
||
|
static bool __hyp_text __true_value(void)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool __hyp_text __false_value(void)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static hyp_alternate_select(__check_arm_834220,
|
||
|
__false_value, __true_value,
|
||
|
ARM64_WORKAROUND_834220);
|
||
|
|
||
|
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
|
||
|
{
|
||
|
u64 par, tmp;
|
||
|
|
||
|
/*
|
||
|
* Resolve the IPA the hard way using the guest VA.
|
||
|
*
|
||
|
* Stage-1 translation already validated the memory access
|
||
|
* rights. As such, we can use the EL1 translation regime, and
|
||
|
* don't have to distinguish between EL0 and EL1 access.
|
||
|
*
|
||
|
* We do need to save/restore PAR_EL1 though, as we haven't
|
||
|
* saved the guest context yet, and we may return early...
|
||
|
*/
|
||
|
par = read_sysreg(par_el1);
|
||
|
if (!__kvm_at("s1e1r", far))
|
||
|
tmp = read_sysreg(par_el1);
|
||
|
else
|
||
|
tmp = 1; /* back to the guest */
|
||
|
write_sysreg(par, par_el1);
|
||
|
|
||
|
if (unlikely(tmp & 1))
|
||
|
return false; /* Translation failed, back to guest */
|
||
|
|
||
|
/* Convert PAR to HPFAR format */
|
||
|
*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
u64 esr = read_sysreg_el2(esr);
|
||
|
u8 ec = ESR_ELx_EC(esr);
|
||
|
u64 hpfar, far;
|
||
|
|
||
|
vcpu->arch.fault.esr_el2 = esr;
|
||
|
|
||
|
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
|
||
|
return true;
|
||
|
|
||
|
far = read_sysreg_el2(far);
|
||
|
|
||
|
/*
|
||
|
* The HPFAR can be invalid if the stage 2 fault did not
|
||
|
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
|
||
|
* bit is clear) and one of the two following cases are true:
|
||
|
* 1. The fault was due to a permission fault
|
||
|
* 2. The processor carries errata 834220
|
||
|
*
|
||
|
* Therefore, for all non S1PTW faults where we either have a
|
||
|
* permission fault or the errata workaround is enabled, we
|
||
|
* resolve the IPA using the AT instruction.
|
||
|
*/
|
||
|
if (!(esr & ESR_ELx_S1PTW) &&
|
||
|
(__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
|
||
|
if (!__translate_far_to_hpfar(far, &hpfar))
|
||
|
return false;
|
||
|
} else {
|
||
|
hpfar = read_sysreg(hpfar_el2);
|
||
|
}
|
||
|
|
||
|
vcpu->arch.fault.far_el2 = far;
|
||
|
vcpu->arch.fault.hpfar_el2 = hpfar;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
*vcpu_pc(vcpu) = read_sysreg_el2(elr);
|
||
|
|
||
|
if (vcpu_mode_is_32bit(vcpu)) {
|
||
|
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
|
||
|
kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
|
||
|
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
|
||
|
} else {
|
||
|
*vcpu_pc(vcpu) += 4;
|
||
|
}
|
||
|
|
||
|
write_sysreg_el2(*vcpu_pc(vcpu), elr);
|
||
|
}
|
||
|
|
||
|
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (!cpus_have_cap(ARM64_SSBD))
|
||
|
return false;
|
||
|
|
||
|
return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
#ifdef CONFIG_ARM64_SSBD
|
||
|
/*
|
||
|
* The host runs with the workaround always present. If the
|
||
|
* guest wants it disabled, so be it...
|
||
|
*/
|
||
|
if (__needs_ssbd_off(vcpu) &&
|
||
|
__hyp_this_cpu_read(arm64_ssbd_callback_required))
|
||
|
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
#ifdef CONFIG_ARM64_SSBD
|
||
|
/*
|
||
|
* If the guest has disabled the workaround, bring it back on.
|
||
|
*/
|
||
|
if (__needs_ssbd_off(vcpu) &&
|
||
|
__hyp_this_cpu_read(arm64_ssbd_callback_required))
|
||
|
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_cpu_context *host_ctxt;
|
||
|
struct kvm_cpu_context *guest_ctxt;
|
||
|
bool fp_enabled;
|
||
|
u64 exit_code;
|
||
|
|
||
|
vcpu = kern_hyp_va(vcpu);
|
||
|
|
||
|
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
|
||
|
host_ctxt->__hyp_running_vcpu = vcpu;
|
||
|
guest_ctxt = &vcpu->arch.ctxt;
|
||
|
|
||
|
__sysreg_save_host_state(host_ctxt);
|
||
|
__debug_cond_save_host_state(vcpu);
|
||
|
|
||
|
__activate_traps(vcpu);
|
||
|
__activate_vm(vcpu);
|
||
|
|
||
|
__vgic_restore_state(vcpu);
|
||
|
__timer_restore_state(vcpu);
|
||
|
|
||
|
/*
|
||
|
* We must restore the 32-bit state before the sysregs, thanks
|
||
|
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
|
||
|
*/
|
||
|
__sysreg32_restore_state(vcpu);
|
||
|
__sysreg_restore_guest_state(guest_ctxt);
|
||
|
__debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
|
||
|
|
||
|
__set_guest_arch_workaround_state(vcpu);
|
||
|
|
||
|
/* Jump in the fire! */
|
||
|
again:
|
||
|
exit_code = __guest_enter(vcpu, host_ctxt);
|
||
|
/* And we're baaack! */
|
||
|
|
||
|
/*
|
||
|
* We're using the raw exception code in order to only process
|
||
|
* the trap if no SError is pending. We will come back to the
|
||
|
* same PC once the SError has been injected, and replay the
|
||
|
* trapping instruction.
|
||
|
*/
|
||
|
if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
|
||
|
goto again;
|
||
|
|
||
|
if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
|
||
|
exit_code == ARM_EXCEPTION_TRAP) {
|
||
|
bool valid;
|
||
|
|
||
|
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
|
||
|
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
|
||
|
kvm_vcpu_dabt_isvalid(vcpu) &&
|
||
|
!kvm_vcpu_dabt_isextabt(vcpu) &&
|
||
|
!kvm_vcpu_dabt_iss1tw(vcpu);
|
||
|
|
||
|
if (valid) {
|
||
|
int ret = __vgic_v2_perform_cpuif_access(vcpu);
|
||
|
|
||
|
if (ret == 1) {
|
||
|
__skip_instr(vcpu);
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
if (ret == -1) {
|
||
|
/* Promote an illegal access to an SError */
|
||
|
__skip_instr(vcpu);
|
||
|
exit_code = ARM_EXCEPTION_EL1_SERROR;
|
||
|
}
|
||
|
|
||
|
/* 0 falls through to be handler out of EL2 */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__set_host_arch_workaround_state(vcpu);
|
||
|
|
||
|
fp_enabled = __fpsimd_enabled();
|
||
|
|
||
|
__sysreg_save_guest_state(guest_ctxt);
|
||
|
__sysreg32_save_state(vcpu);
|
||
|
__timer_save_state(vcpu);
|
||
|
__vgic_save_state(vcpu);
|
||
|
|
||
|
__deactivate_traps(vcpu);
|
||
|
__deactivate_vm(vcpu);
|
||
|
|
||
|
__sysreg_restore_host_state(host_ctxt);
|
||
|
|
||
|
if (fp_enabled) {
|
||
|
__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
|
||
|
__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
|
||
|
}
|
||
|
|
||
|
__debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
|
||
|
__debug_cond_restore_host_state(vcpu);
|
||
|
|
||
|
return exit_code;
|
||
|
}
|
||
|
|
||
|
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
|
||
|
|
||
|
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
|
||
|
struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
unsigned long str_va;
|
||
|
|
||
|
/*
|
||
|
* Force the panic string to be loaded from the literal pool,
|
||
|
* making sure it is a kernel address and not a PC-relative
|
||
|
* reference.
|
||
|
*/
|
||
|
asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
|
||
|
|
||
|
__hyp_do_panic(str_va,
|
||
|
spsr, elr,
|
||
|
read_sysreg(esr_el2), read_sysreg_el2(far),
|
||
|
read_sysreg(hpfar_el2), par, vcpu);
|
||
|
}
|
||
|
|
||
|
static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
|
||
|
struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
panic(__hyp_panic_string,
|
||
|
spsr, elr,
|
||
|
read_sysreg_el2(esr), read_sysreg_el2(far),
|
||
|
read_sysreg(hpfar_el2), par, vcpu);
|
||
|
}
|
||
|
|
||
|
static hyp_alternate_select(__hyp_call_panic,
|
||
|
__hyp_call_panic_nvhe, __hyp_call_panic_vhe,
|
||
|
ARM64_HAS_VIRT_HOST_EXTN);
|
||
|
|
||
|
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = NULL;
|
||
|
|
||
|
u64 spsr = read_sysreg_el2(spsr);
|
||
|
u64 elr = read_sysreg_el2(elr);
|
||
|
u64 par = read_sysreg(par_el1);
|
||
|
|
||
|
if (read_sysreg(vttbr_el2)) {
|
||
|
vcpu = host_ctxt->__hyp_running_vcpu;
|
||
|
__timer_save_state(vcpu);
|
||
|
__deactivate_traps(vcpu);
|
||
|
__deactivate_vm(vcpu);
|
||
|
__sysreg_restore_host_state(host_ctxt);
|
||
|
}
|
||
|
|
||
|
/* Call panic for real */
|
||
|
__hyp_call_panic()(spsr, elr, par, vcpu);
|
||
|
|
||
|
unreachable();
|
||
|
}
|
||
|
|
||
|
asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
|
||
|
{
|
||
|
unsigned long addr, fixup;
|
||
|
struct kvm_cpu_context *host_ctxt;
|
||
|
struct exception_table_entry *entry, *end;
|
||
|
unsigned long elr_el2 = read_sysreg(elr_el2);
|
||
|
|
||
|
entry = hyp_symbol_addr(__start___kvm_ex_table);
|
||
|
end = hyp_symbol_addr(__stop___kvm_ex_table);
|
||
|
host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
|
||
|
|
||
|
while (entry < end) {
|
||
|
addr = (unsigned long)&entry->insn + entry->insn;
|
||
|
fixup = (unsigned long)&entry->fixup + entry->fixup;
|
||
|
|
||
|
if (addr != elr_el2) {
|
||
|
entry++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
write_sysreg(fixup, elr_el2);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
hyp_panic(host_ctxt);
|
||
|
}
|