1303 lines
33 KiB
C
1303 lines
33 KiB
C
|
/*
|
||
|
* Based on arch/arm/mm/mmu.c
|
||
|
*
|
||
|
* Copyright (C) 1995-2005 Russell King
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <linux/cache.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/libfdt.h>
|
||
|
#include <linux/memremap.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/nodemask.h>
|
||
|
#include <linux/memblock.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/stop_machine.h>
|
||
|
#include <linux/cma.h>
|
||
|
#include <linux/mm.h>
|
||
|
|
||
|
#include <asm/barrier.h>
|
||
|
#include <asm/cputype.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
#include <asm/kasan.h>
|
||
|
#include <asm/kernel-pgtable.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/setup.h>
|
||
|
#include <asm/sizes.h>
|
||
|
#include <asm/tlb.h>
|
||
|
#include <asm/memblock.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
|
||
|
u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
|
||
|
|
||
|
u64 kimage_voffset __ro_after_init;
|
||
|
EXPORT_SYMBOL(kimage_voffset);
|
||
|
|
||
|
/*
|
||
|
* Empty_zero_page is a special page that is used for zero-initialized data
|
||
|
* and COW.
|
||
|
*/
|
||
|
unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
|
||
|
EXPORT_SYMBOL(empty_zero_page);
|
||
|
|
||
|
static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
|
||
|
static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
|
||
|
static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
|
||
|
|
||
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
||
|
unsigned long size, pgprot_t vma_prot)
|
||
|
{
|
||
|
if (!pfn_valid(pfn))
|
||
|
return pgprot_noncached(vma_prot);
|
||
|
else if (file->f_flags & O_SYNC)
|
||
|
return pgprot_writecombine(vma_prot);
|
||
|
return vma_prot;
|
||
|
}
|
||
|
EXPORT_SYMBOL(phys_mem_access_prot);
|
||
|
|
||
|
static phys_addr_t __init early_pgtable_alloc(void)
|
||
|
{
|
||
|
phys_addr_t phys;
|
||
|
void *ptr;
|
||
|
|
||
|
phys = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
|
||
|
|
||
|
/*
|
||
|
* The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
|
||
|
* slot will be free, so we can (ab)use the FIX_PTE slot to initialise
|
||
|
* any level of table.
|
||
|
*/
|
||
|
ptr = pte_set_fixmap(phys);
|
||
|
|
||
|
memset(ptr, 0, PAGE_SIZE);
|
||
|
|
||
|
/*
|
||
|
* Implicit barriers also ensure the zeroed page is visible to the page
|
||
|
* table walker
|
||
|
*/
|
||
|
pte_clear_fixmap();
|
||
|
|
||
|
return phys;
|
||
|
}
|
||
|
|
||
|
static void split_pmd(pmd_t *pmd, pte_t *pte)
|
||
|
{
|
||
|
unsigned long pfn = pmd_pfn(*pmd);
|
||
|
int i = 0;
|
||
|
|
||
|
do {
|
||
|
/*
|
||
|
* Need to have the least restrictive permissions available
|
||
|
* permissions will be fixed up later
|
||
|
*/
|
||
|
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
|
||
|
pfn++;
|
||
|
} while (pte++, i++, i < PTRS_PER_PTE);
|
||
|
}
|
||
|
|
||
|
static void alloc_init_pte(pmd_t *pmd, unsigned long addr,
|
||
|
unsigned long end, unsigned long pfn,
|
||
|
pgprot_t prot,
|
||
|
phys_addr_t (*pgtable_alloc)(void))
|
||
|
{
|
||
|
pte_t *pte;
|
||
|
|
||
|
if (pmd_none(*pmd) || pmd_sect(*pmd)) {
|
||
|
phys_addr_t pte_phys;
|
||
|
BUG_ON(!pgtable_alloc);
|
||
|
pte_phys = pgtable_alloc();
|
||
|
pte = pte_set_fixmap(pte_phys);
|
||
|
if (pmd_sect(*pmd)) {
|
||
|
split_pmd(pmd, pte);
|
||
|
}
|
||
|
__pmd_populate(pmd, pte_phys, PMD_TYPE_TABLE);
|
||
|
flush_tlb_all();
|
||
|
pte_clear_fixmap();
|
||
|
}
|
||
|
BUG_ON(pmd_bad(*pmd));
|
||
|
|
||
|
pte = pte_set_fixmap_offset(pmd, addr);
|
||
|
do {
|
||
|
set_pte(pte, pfn_pte(pfn, prot));
|
||
|
pfn++;
|
||
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||
|
|
||
|
pte_clear_fixmap();
|
||
|
}
|
||
|
|
||
|
static void split_pud(pud_t *old_pud, pmd_t *pmd)
|
||
|
{
|
||
|
unsigned long addr = pud_pfn(*old_pud) << PAGE_SHIFT;
|
||
|
pgprot_t prot = __pgprot(pud_val(*old_pud) ^ addr);
|
||
|
int i = 0;
|
||
|
|
||
|
do {
|
||
|
set_pmd(pmd, __pmd(addr | pgprot_val(prot)));
|
||
|
addr += PMD_SIZE;
|
||
|
} while (pmd++, i++, i < PTRS_PER_PMD);
|
||
|
}
|
||
|
|
||
|
static void alloc_init_pmd(pud_t *pud, unsigned long addr, unsigned long end,
|
||
|
phys_addr_t phys, pgprot_t prot,
|
||
|
phys_addr_t (*pgtable_alloc)(void),
|
||
|
bool allow_block_mappings)
|
||
|
{
|
||
|
pmd_t *pmd;
|
||
|
unsigned long next;
|
||
|
|
||
|
/*
|
||
|
* Check for initial section mappings in the pgd/pud and remove them.
|
||
|
*/
|
||
|
if (pud_none(*pud) || pud_sect(*pud)) {
|
||
|
phys_addr_t pmd_phys;
|
||
|
BUG_ON(!pgtable_alloc);
|
||
|
pmd_phys = pgtable_alloc();
|
||
|
pmd = pmd_set_fixmap(pmd_phys);
|
||
|
if (pud_sect(*pud)) {
|
||
|
/*
|
||
|
* need to have the 1G of mappings continue to be
|
||
|
* present
|
||
|
*/
|
||
|
split_pud(pud, pmd);
|
||
|
}
|
||
|
__pud_populate(pud, pmd_phys, PUD_TYPE_TABLE);
|
||
|
flush_tlb_all();
|
||
|
pmd_clear_fixmap();
|
||
|
}
|
||
|
BUG_ON(pud_bad(*pud));
|
||
|
|
||
|
pmd = pmd_set_fixmap_offset(pud, addr);
|
||
|
do {
|
||
|
next = pmd_addr_end(addr, end);
|
||
|
/* try section mapping first */
|
||
|
if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
|
||
|
allow_block_mappings) {
|
||
|
pmd_t old_pmd =*pmd;
|
||
|
pmd_set_huge(pmd, phys, prot);
|
||
|
/*
|
||
|
* Check for previous table entries created during
|
||
|
* boot (__create_page_tables) and flush them.
|
||
|
*/
|
||
|
if (!pmd_none(old_pmd)) {
|
||
|
flush_tlb_all();
|
||
|
if (pmd_table(old_pmd)) {
|
||
|
phys_addr_t table = pmd_page_paddr(old_pmd);
|
||
|
if (!WARN_ON_ONCE(slab_is_available()))
|
||
|
memblock_free(table, PAGE_SIZE);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),
|
||
|
prot, pgtable_alloc);
|
||
|
}
|
||
|
phys += next - addr;
|
||
|
} while (pmd++, addr = next, addr != end);
|
||
|
|
||
|
pmd_clear_fixmap();
|
||
|
}
|
||
|
|
||
|
static inline bool use_1G_block(unsigned long addr, unsigned long next,
|
||
|
unsigned long phys)
|
||
|
{
|
||
|
if (PAGE_SHIFT != 12)
|
||
|
return false;
|
||
|
|
||
|
if (((addr | next | phys) & ~PUD_MASK) != 0)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
|
||
|
phys_addr_t phys, pgprot_t prot,
|
||
|
phys_addr_t (*pgtable_alloc)(void),
|
||
|
bool allow_block_mappings)
|
||
|
{
|
||
|
pud_t *pud;
|
||
|
unsigned long next;
|
||
|
|
||
|
if (pgd_none(*pgd)) {
|
||
|
phys_addr_t pud_phys;
|
||
|
BUG_ON(!pgtable_alloc);
|
||
|
pud_phys = pgtable_alloc();
|
||
|
__pgd_populate(pgd, pud_phys, PUD_TYPE_TABLE);
|
||
|
}
|
||
|
BUG_ON(pgd_bad(*pgd));
|
||
|
|
||
|
pud = pud_set_fixmap_offset(pgd, addr);
|
||
|
do {
|
||
|
next = pud_addr_end(addr, end);
|
||
|
|
||
|
/*
|
||
|
* For 4K granule only, attempt to put down a 1GB block
|
||
|
*/
|
||
|
if (use_1G_block(addr, next, phys) && allow_block_mappings) {
|
||
|
pud_t old_pud = *pud;
|
||
|
pud_set_huge(pud, phys, prot);
|
||
|
|
||
|
/*
|
||
|
* If we have an old value for a pud, it will
|
||
|
* be pointing to a pmd table that we no longer
|
||
|
* need (from swapper_pg_dir).
|
||
|
*
|
||
|
* Look up the old pmd table and free it.
|
||
|
*/
|
||
|
if (!pud_none(old_pud)) {
|
||
|
flush_tlb_all();
|
||
|
if (pud_table(old_pud)) {
|
||
|
phys_addr_t table = pud_page_paddr(old_pud);
|
||
|
if (!WARN_ON_ONCE(slab_is_available()))
|
||
|
memblock_free(table, PAGE_SIZE);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
alloc_init_pmd(pud, addr, next, phys, prot,
|
||
|
pgtable_alloc, allow_block_mappings);
|
||
|
}
|
||
|
phys += next - addr;
|
||
|
} while (pud++, addr = next, addr != end);
|
||
|
|
||
|
pud_clear_fixmap();
|
||
|
}
|
||
|
|
||
|
static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
|
||
|
unsigned long virt, phys_addr_t size,
|
||
|
pgprot_t prot,
|
||
|
phys_addr_t (*pgtable_alloc)(void),
|
||
|
bool allow_block_mappings)
|
||
|
{
|
||
|
unsigned long addr, length, end, next;
|
||
|
pgd_t *pgd = pgd_offset_raw(pgdir, virt);
|
||
|
|
||
|
/*
|
||
|
* If the virtual and physical address don't have the same offset
|
||
|
* within a page, we cannot map the region as the caller expects.
|
||
|
*/
|
||
|
if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
|
||
|
return;
|
||
|
|
||
|
phys &= PAGE_MASK;
|
||
|
addr = virt & PAGE_MASK;
|
||
|
length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
|
||
|
|
||
|
end = addr + length;
|
||
|
do {
|
||
|
next = pgd_addr_end(addr, end);
|
||
|
alloc_init_pud(pgd, addr, next, phys, prot, pgtable_alloc,
|
||
|
allow_block_mappings);
|
||
|
phys += next - addr;
|
||
|
} while (pgd++, addr = next, addr != end);
|
||
|
}
|
||
|
|
||
|
static phys_addr_t pgd_pgtable_alloc(void)
|
||
|
{
|
||
|
void *ptr = (void *)__get_free_page(PGALLOC_GFP);
|
||
|
if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
|
||
|
BUG();
|
||
|
|
||
|
/* Ensure the zeroed page is visible to the page table walker */
|
||
|
dsb(ishst);
|
||
|
return __pa(ptr);
|
||
|
}
|
||
|
|
||
|
static phys_addr_t __init early_pgd_pgtable_alloc(void)
|
||
|
{
|
||
|
phys_addr_t phys;
|
||
|
void *ptr;
|
||
|
|
||
|
phys = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
|
||
|
BUG_ON(!phys);
|
||
|
ptr = __va(phys);
|
||
|
memset(ptr, 0, PAGE_SIZE);
|
||
|
/* Ensure the zeroed page is visible to the page table walker */
|
||
|
dsb(ishst);
|
||
|
return phys;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function can only be used to modify existing table entries,
|
||
|
* without allocating new levels of table. Note that this permits the
|
||
|
* creation of new section or page entries.
|
||
|
*/
|
||
|
void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
|
||
|
phys_addr_t size, pgprot_t prot)
|
||
|
{
|
||
|
if (virt < VMALLOC_START) {
|
||
|
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
|
||
|
&phys, virt);
|
||
|
return;
|
||
|
}
|
||
|
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, early_pgd_pgtable_alloc, true);
|
||
|
}
|
||
|
|
||
|
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
|
||
|
unsigned long virt, phys_addr_t size,
|
||
|
pgprot_t prot, bool allow_block_mappings)
|
||
|
{
|
||
|
BUG_ON(mm == &init_mm);
|
||
|
|
||
|
__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
|
||
|
pgd_pgtable_alloc, allow_block_mappings);
|
||
|
}
|
||
|
|
||
|
static void create_mapping_late(phys_addr_t phys, unsigned long virt,
|
||
|
phys_addr_t size, pgprot_t prot)
|
||
|
{
|
||
|
if (virt < VMALLOC_START) {
|
||
|
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
|
||
|
&phys, virt);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot,
|
||
|
NULL, !debug_pagealloc_enabled());
|
||
|
}
|
||
|
|
||
|
static void __init __map_memblock(pgd_t *pgd, phys_addr_t start, phys_addr_t end)
|
||
|
{
|
||
|
unsigned long kernel_start = __pa_symbol(_text);
|
||
|
unsigned long kernel_end = __pa_symbol(__init_begin);
|
||
|
|
||
|
/*
|
||
|
* Take care not to create a writable alias for the
|
||
|
* read-only text and rodata sections of the kernel image.
|
||
|
*/
|
||
|
|
||
|
/* No overlap with the kernel text/rodata */
|
||
|
if (end < kernel_start || start >= kernel_end) {
|
||
|
__create_pgd_mapping(pgd, start, __phys_to_virt(start),
|
||
|
end - start, PAGE_KERNEL,
|
||
|
early_pgtable_alloc,
|
||
|
!debug_pagealloc_enabled());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This block overlaps the kernel text/rodata mappings.
|
||
|
* Map the portion(s) which don't overlap.
|
||
|
*/
|
||
|
if (start < kernel_start)
|
||
|
__create_pgd_mapping(pgd, start,
|
||
|
__phys_to_virt(start),
|
||
|
kernel_start - start, PAGE_KERNEL,
|
||
|
early_pgtable_alloc,
|
||
|
!debug_pagealloc_enabled());
|
||
|
if (kernel_end < end)
|
||
|
__create_pgd_mapping(pgd, kernel_end,
|
||
|
__phys_to_virt(kernel_end),
|
||
|
end - kernel_end, PAGE_KERNEL,
|
||
|
early_pgtable_alloc,
|
||
|
!debug_pagealloc_enabled());
|
||
|
|
||
|
/*
|
||
|
* Map the linear alias of the [_text, __init_begin) interval as
|
||
|
* read-only/non-executable. This makes the contents of the
|
||
|
* region accessible to subsystems such as hibernate, but
|
||
|
* protects it from inadvertent modification or execution.
|
||
|
*/
|
||
|
__create_pgd_mapping(pgd, kernel_start, __phys_to_virt(kernel_start),
|
||
|
kernel_end - kernel_start, PAGE_KERNEL_RO,
|
||
|
early_pgtable_alloc, !debug_pagealloc_enabled());
|
||
|
}
|
||
|
|
||
|
static void __init map_mem(pgd_t *pgd)
|
||
|
{
|
||
|
struct memblock_region *reg;
|
||
|
|
||
|
/* map all the memory banks */
|
||
|
for_each_memblock(memory, reg) {
|
||
|
phys_addr_t start = reg->base;
|
||
|
phys_addr_t end = start + reg->size;
|
||
|
|
||
|
if (start >= end)
|
||
|
break;
|
||
|
if (memblock_is_nomap(reg))
|
||
|
continue;
|
||
|
|
||
|
__map_memblock(pgd, start, end);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mark_rodata_ro(void)
|
||
|
{
|
||
|
unsigned long section_size;
|
||
|
|
||
|
section_size = (unsigned long)_etext - (unsigned long)_text;
|
||
|
create_mapping_late(__pa_symbol(_text), (unsigned long)_text,
|
||
|
section_size, PAGE_KERNEL_ROX);
|
||
|
/*
|
||
|
* mark .rodata as read only. Use __init_begin rather than __end_rodata
|
||
|
* to cover NOTES and EXCEPTION_TABLE.
|
||
|
*/
|
||
|
section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
|
||
|
create_mapping_late(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
|
||
|
section_size, PAGE_KERNEL_RO);
|
||
|
}
|
||
|
|
||
|
static void __init map_kernel_segment(pgd_t *pgd, void *va_start, void *va_end,
|
||
|
pgprot_t prot, struct vm_struct *vma)
|
||
|
{
|
||
|
phys_addr_t pa_start = __pa_symbol(va_start);
|
||
|
unsigned long size = va_end - va_start;
|
||
|
|
||
|
BUG_ON(!PAGE_ALIGNED(pa_start));
|
||
|
BUG_ON(!PAGE_ALIGNED(size));
|
||
|
|
||
|
__create_pgd_mapping(pgd, pa_start, (unsigned long)va_start, size, prot,
|
||
|
early_pgtable_alloc, !debug_pagealloc_enabled());
|
||
|
|
||
|
vma->addr = va_start;
|
||
|
vma->phys_addr = pa_start;
|
||
|
vma->size = size;
|
||
|
vma->flags = VM_MAP;
|
||
|
vma->caller = __builtin_return_address(0);
|
||
|
|
||
|
vm_area_add_early(vma);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
|
||
|
static int __init map_entry_trampoline(void)
|
||
|
{
|
||
|
extern char __entry_tramp_text_start[];
|
||
|
|
||
|
pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
|
||
|
phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
|
||
|
|
||
|
/* The trampoline is always mapped and can therefore be global */
|
||
|
pgprot_val(prot) &= ~PTE_NG;
|
||
|
|
||
|
/* Map only the text into the trampoline page table */
|
||
|
memset(tramp_pg_dir, 0, PGD_SIZE);
|
||
|
__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
|
||
|
prot, pgd_pgtable_alloc, 0);
|
||
|
|
||
|
/* Map both the text and data into the kernel page table */
|
||
|
__set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
|
||
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
||
|
extern char __entry_tramp_data_start[];
|
||
|
|
||
|
__set_fixmap(FIX_ENTRY_TRAMP_DATA,
|
||
|
__pa_symbol(__entry_tramp_data_start),
|
||
|
PAGE_KERNEL_RO);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
core_initcall(map_entry_trampoline);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Create fine-grained mappings for the kernel.
|
||
|
*/
|
||
|
static void __init map_kernel(pgd_t *pgd)
|
||
|
{
|
||
|
static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_init, vmlinux_data;
|
||
|
|
||
|
map_kernel_segment(pgd, _text, _etext, PAGE_KERNEL_EXEC, &vmlinux_text);
|
||
|
map_kernel_segment(pgd, __start_rodata, __init_begin, PAGE_KERNEL, &vmlinux_rodata);
|
||
|
map_kernel_segment(pgd, __init_begin, __init_end, PAGE_KERNEL_EXEC,
|
||
|
&vmlinux_init);
|
||
|
map_kernel_segment(pgd, _data, _end, PAGE_KERNEL, &vmlinux_data);
|
||
|
|
||
|
if (!pgd_val(*pgd_offset_raw(pgd, FIXADDR_START))) {
|
||
|
/*
|
||
|
* The fixmap falls in a separate pgd to the kernel, and doesn't
|
||
|
* live in the carveout for the swapper_pg_dir. We can simply
|
||
|
* re-use the existing dir for the fixmap.
|
||
|
*/
|
||
|
set_pgd(pgd_offset_raw(pgd, FIXADDR_START),
|
||
|
*pgd_offset_k(FIXADDR_START));
|
||
|
} else if (CONFIG_PGTABLE_LEVELS > 3) {
|
||
|
/*
|
||
|
* The fixmap shares its top level pgd entry with the kernel
|
||
|
* mapping. This can really only occur when we are running
|
||
|
* with 16k/4 levels, so we can simply reuse the pud level
|
||
|
* entry instead.
|
||
|
*/
|
||
|
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
|
||
|
set_pud(pud_set_fixmap_offset(pgd, FIXADDR_START),
|
||
|
__pud(__pa_symbol(bm_pmd) | PUD_TYPE_TABLE));
|
||
|
pud_clear_fixmap();
|
||
|
} else {
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
kasan_copy_shadow(pgd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* paging_init() sets up the page tables, initialises the zone memory
|
||
|
* maps and sets up the zero page.
|
||
|
*/
|
||
|
void __init dma_contiguous_remap(void);
|
||
|
|
||
|
void __init paging_init(void)
|
||
|
{
|
||
|
phys_addr_t pgd_phys = early_pgtable_alloc();
|
||
|
pgd_t *pgd = pgd_set_fixmap(pgd_phys);
|
||
|
|
||
|
map_kernel(pgd);
|
||
|
map_mem(pgd);
|
||
|
|
||
|
/*
|
||
|
* We want to reuse the original swapper_pg_dir so we don't have to
|
||
|
* communicate the new address to non-coherent secondaries in
|
||
|
* secondary_entry, and so cpu_switch_mm can generate the address with
|
||
|
* adrp+add rather than a load from some global variable.
|
||
|
*
|
||
|
* To do this we need to go via a temporary pgd.
|
||
|
*/
|
||
|
cpu_replace_ttbr1(__va(pgd_phys));
|
||
|
memcpy(swapper_pg_dir, pgd, PGD_SIZE);
|
||
|
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
|
||
|
|
||
|
pgd_clear_fixmap();
|
||
|
memblock_free(pgd_phys, PAGE_SIZE);
|
||
|
|
||
|
/*
|
||
|
* We only reuse the PGD from the swapper_pg_dir, not the pud + pmd
|
||
|
* allocated with it.
|
||
|
*/
|
||
|
memblock_free(__pa_symbol(swapper_pg_dir) + PAGE_SIZE,
|
||
|
SWAPPER_DIR_SIZE - PAGE_SIZE);
|
||
|
dma_contiguous_remap();
|
||
|
local_flush_tlb_all();
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
||
|
|
||
|
/*
|
||
|
* hotplug_paging() is used by memory hotplug to build new page tables
|
||
|
* for hot added memory.
|
||
|
*/
|
||
|
void hotplug_paging(phys_addr_t start, phys_addr_t size)
|
||
|
{
|
||
|
|
||
|
struct page *pg;
|
||
|
phys_addr_t pgd_phys = pgd_pgtable_alloc();
|
||
|
pgd_t *pgd = pgd_set_fixmap(pgd_phys);
|
||
|
|
||
|
memcpy(pgd, swapper_pg_dir, PAGE_SIZE);
|
||
|
|
||
|
__create_pgd_mapping(pgd, start, __phys_to_virt(start), size,
|
||
|
PAGE_KERNEL, pgd_pgtable_alloc, false);
|
||
|
|
||
|
cpu_replace_ttbr1(__va(pgd_phys));
|
||
|
memcpy(swapper_pg_dir, pgd, PAGE_SIZE);
|
||
|
cpu_replace_ttbr1(swapper_pg_dir);
|
||
|
|
||
|
pgd_clear_fixmap();
|
||
|
|
||
|
pg = phys_to_page(pgd_phys);
|
||
|
pgtable_page_dtor(pg);
|
||
|
__free_pages(pg, 0);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
||
|
#define PAGE_INUSE 0xFD
|
||
|
|
||
|
static void free_pagetable(struct page *page, int order, bool direct)
|
||
|
{
|
||
|
unsigned long magic;
|
||
|
unsigned int nr_pages = 1 << order;
|
||
|
struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
|
||
|
|
||
|
if (altmap) {
|
||
|
vmem_altmap_free(altmap, nr_pages);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* bootmem page has reserved flag */
|
||
|
if (PageReserved(page)) {
|
||
|
__ClearPageReserved(page);
|
||
|
|
||
|
magic = (unsigned long)page->lru.next;
|
||
|
if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
|
||
|
while (nr_pages--)
|
||
|
put_page_bootmem(page++);
|
||
|
} else {
|
||
|
while (nr_pages--)
|
||
|
free_reserved_page(page++);
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* Only direct pagetable allocation (those allocated via
|
||
|
* hotplug) call the pgtable_page_ctor; vmemmap pgtable
|
||
|
* allocations don't.
|
||
|
*/
|
||
|
if (direct)
|
||
|
pgtable_page_dtor(page);
|
||
|
|
||
|
free_pages((unsigned long)page_address(page), order);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void free_pte_table(pmd_t *pmd, bool direct)
|
||
|
{
|
||
|
pte_t *pte_start, *pte;
|
||
|
struct page *page;
|
||
|
int i;
|
||
|
|
||
|
pte_start = (pte_t *) pmd_page_vaddr(*pmd);
|
||
|
/* Check if there is no valid entry in the PMD */
|
||
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
||
|
pte = pte_start + i;
|
||
|
if (!pte_none(*pte))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
page = pmd_page(*pmd);
|
||
|
|
||
|
free_pagetable(page, 0, direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only taken in _pte_aloc_kernel
|
||
|
* in mm/memory.c and nowhere else (for arm64). Not sure if
|
||
|
* the function above can be called concurrently. In doubt,
|
||
|
* I am living it here for now, but it probably can be removed
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pmd_clear(pmd);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
}
|
||
|
|
||
|
static void free_pmd_table(pud_t *pud, bool direct)
|
||
|
{
|
||
|
pmd_t *pmd_start, *pmd;
|
||
|
struct page *page;
|
||
|
int i;
|
||
|
|
||
|
pmd_start = (pmd_t *) pud_page_vaddr(*pud);
|
||
|
/* Check if there is no valid entry in the PMD */
|
||
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
||
|
pmd = pmd_start + i;
|
||
|
if (!pmd_none(*pmd))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
page = pud_page(*pud);
|
||
|
|
||
|
free_pagetable(page, 0, direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only taken in _pte_aloc_kernel
|
||
|
* in mm/memory.c and nowhere else (for arm64). Not sure if
|
||
|
* the function above can be called concurrently. In doubt,
|
||
|
* I am living it here for now, but it probably can be removed
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pud_clear(pud);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When the PUD is folded on the PGD (three levels of paging),
|
||
|
* there's no need to free PUDs
|
||
|
*/
|
||
|
#if CONFIG_PGTABLE_LEVELS > 3
|
||
|
static void free_pud_table(pgd_t *pgd, bool direct)
|
||
|
{
|
||
|
pud_t *pud_start, *pud;
|
||
|
struct page *page;
|
||
|
int i;
|
||
|
|
||
|
pud_start = (pud_t *) pgd_page_vaddr(*pgd);
|
||
|
/* Check if there is no valid entry in the PUD */
|
||
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
||
|
pud = pud_start + i;
|
||
|
if (!pud_none(*pud))
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
page = pgd_page(*pgd);
|
||
|
|
||
|
free_pagetable(page, 0, direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pgd_clear(pgd);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void remove_pte_table(pte_t *pte, unsigned long addr,
|
||
|
unsigned long end, bool direct)
|
||
|
{
|
||
|
unsigned long next;
|
||
|
void *page_addr;
|
||
|
|
||
|
for (; addr < end; addr = next, pte++) {
|
||
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
||
|
if (next > end)
|
||
|
next = end;
|
||
|
|
||
|
if (!pte_present(*pte))
|
||
|
continue;
|
||
|
|
||
|
if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
|
||
|
/*
|
||
|
* Do not free direct mapping pages since they were
|
||
|
* freed when offlining, or simplely not in use.
|
||
|
*/
|
||
|
if (!direct)
|
||
|
free_pagetable(pte_page(*pte), 0, direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pte_clear(&init_mm, addr, pte);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
} else {
|
||
|
/*
|
||
|
* If we are here, we are freeing vmemmap pages since
|
||
|
* direct mapped memory ranges to be freed are aligned.
|
||
|
*
|
||
|
* If we are not removing the whole page, it means
|
||
|
* other page structs in this page are being used and
|
||
|
* we canot remove them. So fill the unused page_structs
|
||
|
* with 0xFD, and remove the page when it is wholly
|
||
|
* filled with 0xFD.
|
||
|
*/
|
||
|
memset((void *)addr, PAGE_INUSE, next - addr);
|
||
|
|
||
|
page_addr = page_address(pte_page(*pte));
|
||
|
if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
|
||
|
free_pagetable(pte_page(*pte), 0, direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pte_clear(&init_mm, addr, pte);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// I am adding this flush here in simmetry to the x86 code.
|
||
|
// Why do I need to call it here and not in remove_p[mu]d
|
||
|
flush_tlb_all();
|
||
|
}
|
||
|
|
||
|
static void remove_pmd_table(pmd_t *pmd, unsigned long addr,
|
||
|
unsigned long end, bool direct)
|
||
|
{
|
||
|
unsigned long next;
|
||
|
void *page_addr;
|
||
|
pte_t *pte;
|
||
|
|
||
|
for (; addr < end; addr = next, pmd++) {
|
||
|
next = pmd_addr_end(addr, end);
|
||
|
|
||
|
if (!pmd_present(*pmd))
|
||
|
continue;
|
||
|
|
||
|
// check if we are using 2MB section mappings
|
||
|
if (pmd_sect(*pmd)) {
|
||
|
if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
|
||
|
if (!direct) {
|
||
|
free_pagetable(pmd_page(*pmd),
|
||
|
get_order(PMD_SIZE), direct);
|
||
|
}
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pmd_clear(pmd);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
} else {
|
||
|
/* If here, we are freeing vmemmap pages. */
|
||
|
memset((void *)addr, PAGE_INUSE, next - addr);
|
||
|
|
||
|
page_addr = page_address(pmd_page(*pmd));
|
||
|
if (!memchr_inv(page_addr, PAGE_INUSE,
|
||
|
PMD_SIZE)) {
|
||
|
free_pagetable(pmd_page(*pmd),
|
||
|
get_order(PMD_SIZE), direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pmd_clear(pmd);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
BUG_ON(!pmd_table(*pmd));
|
||
|
|
||
|
pte = pte_offset_map(pmd, addr);
|
||
|
remove_pte_table(pte, addr, next, direct);
|
||
|
free_pte_table(pmd, direct);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void remove_pud_table(pud_t *pud, unsigned long addr,
|
||
|
unsigned long end, bool direct)
|
||
|
{
|
||
|
unsigned long next;
|
||
|
pmd_t *pmd;
|
||
|
void *page_addr;
|
||
|
|
||
|
for (; addr < end; addr = next, pud++) {
|
||
|
next = pud_addr_end(addr, end);
|
||
|
if (!pud_present(*pud))
|
||
|
continue;
|
||
|
/*
|
||
|
* If we are using 4K granules, check if we are using
|
||
|
* 1GB section mapping.
|
||
|
*/
|
||
|
if (pud_sect(*pud)) {
|
||
|
if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
|
||
|
if (!direct) {
|
||
|
free_pagetable(pud_page(*pud),
|
||
|
get_order(PUD_SIZE), direct);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pud_clear(pud);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
} else {
|
||
|
/* If here, we are freeing vmemmap pages. */
|
||
|
memset((void *)addr, PAGE_INUSE, next - addr);
|
||
|
|
||
|
page_addr = page_address(pud_page(*pud));
|
||
|
if (!memchr_inv(page_addr, PAGE_INUSE,
|
||
|
PUD_SIZE)) {
|
||
|
|
||
|
free_pagetable(pud_page(*pud),
|
||
|
get_order(PUD_SIZE), direct);
|
||
|
|
||
|
/*
|
||
|
* This spin lock could be only
|
||
|
* taken in _pte_aloc_kernel in
|
||
|
* mm/memory.c and nowhere else
|
||
|
* (for arm64). Not sure if the
|
||
|
* function above can be called
|
||
|
* concurrently. In doubt,
|
||
|
* I am living it here for now,
|
||
|
* but it probably can be removed.
|
||
|
*/
|
||
|
spin_lock(&init_mm.page_table_lock);
|
||
|
pud_clear(pud);
|
||
|
spin_unlock(&init_mm.page_table_lock);
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
BUG_ON(!pud_table(*pud));
|
||
|
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
remove_pmd_table(pmd, addr, next, direct);
|
||
|
free_pmd_table(pud, direct);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void remove_pagetable(unsigned long start, unsigned long end, bool direct)
|
||
|
{
|
||
|
unsigned long next;
|
||
|
unsigned long addr;
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
|
||
|
for (addr = start; addr < end; addr = next) {
|
||
|
next = pgd_addr_end(addr, end);
|
||
|
|
||
|
pgd = pgd_offset_k(addr);
|
||
|
if (pgd_none(*pgd))
|
||
|
continue;
|
||
|
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
remove_pud_table(pud, addr, next, direct);
|
||
|
/*
|
||
|
* When the PUD is folded on the PGD (three levels of paging),
|
||
|
* I did already clear the PMD page in free_pmd_table,
|
||
|
* and reset the corresponding PGD==PUD entry.
|
||
|
*/
|
||
|
#if CONFIG_PGTABLE_LEVELS > 3
|
||
|
free_pud_table(pgd, direct);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
flush_tlb_all();
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
||
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
||
|
|
||
|
/*
|
||
|
* Check whether a kernel address is valid (derived from arch/x86/).
|
||
|
*/
|
||
|
int kern_addr_valid(unsigned long addr)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
pte_t *pte;
|
||
|
|
||
|
if ((((long)addr) >> VA_BITS) != -1UL)
|
||
|
return 0;
|
||
|
|
||
|
pgd = pgd_offset_k(addr);
|
||
|
if (pgd_none(*pgd))
|
||
|
return 0;
|
||
|
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
if (pud_none(*pud))
|
||
|
return 0;
|
||
|
|
||
|
if (pud_sect(*pud))
|
||
|
return pfn_valid(pud_pfn(*pud));
|
||
|
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
if (pmd_none(*pmd))
|
||
|
return 0;
|
||
|
|
||
|
if (pmd_sect(*pmd))
|
||
|
return pfn_valid(pmd_pfn(*pmd));
|
||
|
|
||
|
pte = pte_offset_kernel(pmd, addr);
|
||
|
if (pte_none(*pte))
|
||
|
return 0;
|
||
|
|
||
|
return pfn_valid(pte_pfn(*pte));
|
||
|
}
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
#if !ARM64_SWAPPER_USES_SECTION_MAPS
|
||
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
|
||
|
{
|
||
|
return vmemmap_populate_basepages(start, end, node);
|
||
|
}
|
||
|
#else /* !ARM64_SWAPPER_USES_SECTION_MAPS */
|
||
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
|
||
|
{
|
||
|
unsigned long addr = start;
|
||
|
unsigned long next;
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
|
||
|
do {
|
||
|
next = pmd_addr_end(addr, end);
|
||
|
|
||
|
pgd = vmemmap_pgd_populate(addr, node);
|
||
|
if (!pgd)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
pud = vmemmap_pud_populate(pgd, addr, node);
|
||
|
if (!pud)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
if (pmd_none(*pmd)) {
|
||
|
void *p = NULL;
|
||
|
|
||
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
|
||
|
if (!p)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
set_pmd(pmd, __pmd(__pa(p) | PROT_SECT_NORMAL));
|
||
|
} else
|
||
|
vmemmap_verify((pte_t *)pmd, node, addr, next);
|
||
|
} while (addr = next, addr != end);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_ARM64_64K_PAGES */
|
||
|
void vmemmap_free(unsigned long start, unsigned long end)
|
||
|
{
|
||
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
||
|
remove_pagetable(start, end, false);
|
||
|
#endif
|
||
|
}
|
||
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
||
|
|
||
|
static inline pud_t * fixmap_pud(unsigned long addr)
|
||
|
{
|
||
|
pgd_t *pgd = pgd_offset_k(addr);
|
||
|
|
||
|
BUG_ON(pgd_none(*pgd) || pgd_bad(*pgd));
|
||
|
|
||
|
return pud_offset_kimg(pgd, addr);
|
||
|
}
|
||
|
|
||
|
static inline pmd_t * fixmap_pmd(unsigned long addr)
|
||
|
{
|
||
|
pud_t *pud = fixmap_pud(addr);
|
||
|
|
||
|
BUG_ON(pud_none(*pud) || pud_bad(*pud));
|
||
|
|
||
|
return pmd_offset_kimg(pud, addr);
|
||
|
}
|
||
|
|
||
|
static inline pte_t * fixmap_pte(unsigned long addr)
|
||
|
{
|
||
|
return &bm_pte[pte_index(addr)];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The p*d_populate functions call virt_to_phys implicitly so they can't be used
|
||
|
* directly on kernel symbols (bm_p*d). This function is called too early to use
|
||
|
* lm_alias so __p*d_populate functions must be used to populate with the
|
||
|
* physical address from __pa_symbol.
|
||
|
*/
|
||
|
void __init early_fixmap_init(void)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
unsigned long addr = FIXADDR_START;
|
||
|
|
||
|
pgd = pgd_offset_k(addr);
|
||
|
if (CONFIG_PGTABLE_LEVELS > 3 &&
|
||
|
!(pgd_none(*pgd) || pgd_page_paddr(*pgd) == __pa_symbol(bm_pud))) {
|
||
|
/*
|
||
|
* We only end up here if the kernel mapping and the fixmap
|
||
|
* share the top level pgd entry, which should only happen on
|
||
|
* 16k/4 levels configurations.
|
||
|
*/
|
||
|
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
|
||
|
pud = pud_offset_kimg(pgd, addr);
|
||
|
} else {
|
||
|
if (pgd_none(*pgd))
|
||
|
__pgd_populate(pgd, __pa_symbol(bm_pud), PUD_TYPE_TABLE);
|
||
|
pud = fixmap_pud(addr);
|
||
|
}
|
||
|
if (pud_none(*pud))
|
||
|
__pud_populate(pud, __pa_symbol(bm_pmd), PMD_TYPE_TABLE);
|
||
|
pmd = fixmap_pmd(addr);
|
||
|
__pmd_populate(pmd, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
|
||
|
|
||
|
/*
|
||
|
* The boot-ioremap range spans multiple pmds, for which
|
||
|
* we are not prepared:
|
||
|
*/
|
||
|
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
|
||
|
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
|
||
|
|
||
|
if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
|
||
|
|| pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
|
||
|
WARN_ON(1);
|
||
|
pr_warn("pmd %p != %p, %p\n",
|
||
|
pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
|
||
|
fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
|
||
|
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
||
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
||
|
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
||
|
fix_to_virt(FIX_BTMAP_END));
|
||
|
|
||
|
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
||
|
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __set_fixmap(enum fixed_addresses idx,
|
||
|
phys_addr_t phys, pgprot_t flags)
|
||
|
{
|
||
|
unsigned long addr = __fix_to_virt(idx);
|
||
|
pte_t *pte;
|
||
|
|
||
|
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
|
||
|
|
||
|
pte = fixmap_pte(addr);
|
||
|
|
||
|
if (pgprot_val(flags)) {
|
||
|
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
|
||
|
} else {
|
||
|
pte_clear(&init_mm, addr, pte);
|
||
|
flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
|
||
|
{
|
||
|
const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
|
||
|
int offset;
|
||
|
void *dt_virt;
|
||
|
|
||
|
/*
|
||
|
* Check whether the physical FDT address is set and meets the minimum
|
||
|
* alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
|
||
|
* at least 8 bytes so that we can always access the magic and size
|
||
|
* fields of the FDT header after mapping the first chunk, double check
|
||
|
* here if that is indeed the case.
|
||
|
*/
|
||
|
BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
|
||
|
if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* Make sure that the FDT region can be mapped without the need to
|
||
|
* allocate additional translation table pages, so that it is safe
|
||
|
* to call create_mapping_noalloc() this early.
|
||
|
*
|
||
|
* On 64k pages, the FDT will be mapped using PTEs, so we need to
|
||
|
* be in the same PMD as the rest of the fixmap.
|
||
|
* On 4k pages, we'll use section mappings for the FDT so we only
|
||
|
* have to be in the same PUD.
|
||
|
*/
|
||
|
BUILD_BUG_ON(dt_virt_base % SZ_2M);
|
||
|
|
||
|
BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
|
||
|
__fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
|
||
|
|
||
|
offset = dt_phys % SWAPPER_BLOCK_SIZE;
|
||
|
dt_virt = (void *)dt_virt_base + offset;
|
||
|
|
||
|
/* map the first chunk so we can read the size from the header */
|
||
|
create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
|
||
|
dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
|
||
|
|
||
|
if (fdt_magic(dt_virt) != FDT_MAGIC)
|
||
|
return NULL;
|
||
|
|
||
|
*size = fdt_totalsize(dt_virt);
|
||
|
if (*size > MAX_FDT_SIZE)
|
||
|
return NULL;
|
||
|
|
||
|
if (offset + *size > SWAPPER_BLOCK_SIZE)
|
||
|
create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
|
||
|
round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
|
||
|
|
||
|
return dt_virt;
|
||
|
}
|
||
|
|
||
|
void *__init fixmap_remap_fdt(phys_addr_t dt_phys)
|
||
|
{
|
||
|
void *dt_virt;
|
||
|
int size;
|
||
|
|
||
|
dt_virt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
|
||
|
if (!dt_virt)
|
||
|
return NULL;
|
||
|
|
||
|
memblock_reserve(dt_phys, size);
|
||
|
return dt_virt;
|
||
|
}
|
||
|
|
||
|
int __init arch_ioremap_pud_supported(void)
|
||
|
{
|
||
|
/*
|
||
|
* Only 4k granule supports level 1 block mappings.
|
||
|
* SW table walks can't handle removal of intermediate entries.
|
||
|
*/
|
||
|
return IS_ENABLED(CONFIG_ARM64_4K_PAGES) &&
|
||
|
!IS_ENABLED(CONFIG_ARM64_PTDUMP_DEBUGFS);
|
||
|
}
|
||
|
|
||
|
int __init arch_ioremap_pmd_supported(void)
|
||
|
{
|
||
|
/* See arch_ioremap_pud_supported() */
|
||
|
return !IS_ENABLED(CONFIG_ARM64_PTDUMP_DEBUGFS);
|
||
|
}
|
||
|
|
||
|
int pud_set_huge(pud_t *pud, phys_addr_t phys, pgprot_t prot)
|
||
|
{
|
||
|
BUG_ON(phys & ~PUD_MASK);
|
||
|
set_pud(pud, __pud(phys | PUD_TYPE_SECT | pgprot_val(mk_sect_prot(prot))));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int pmd_set_huge(pmd_t *pmd, phys_addr_t phys, pgprot_t prot)
|
||
|
{
|
||
|
BUG_ON(phys & ~PMD_MASK);
|
||
|
set_pmd(pmd, __pmd(phys | PMD_TYPE_SECT | pgprot_val(mk_sect_prot(prot))));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int pud_clear_huge(pud_t *pud)
|
||
|
{
|
||
|
if (!pud_sect(*pud))
|
||
|
return 0;
|
||
|
pud_clear(pud);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int pmd_clear_huge(pmd_t *pmd)
|
||
|
{
|
||
|
if (!pmd_sect(*pmd))
|
||
|
return 0;
|
||
|
pmd_clear(pmd);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
|
||
|
{
|
||
|
return pud_none(*pud);
|
||
|
}
|
||
|
|
||
|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
|
||
|
{
|
||
|
return pmd_none(*pmd);
|
||
|
}
|