tegrakernel/kernel/kernel-4.9/arch/ia64/sn/pci/tioce_provider.c

1063 lines
29 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2003-2006 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/addrs.h>
#include <asm/sn/io.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/tioce_provider.h>
/*
* 1/26/2006
*
* WAR for SGI PV 944642. For revA TIOCE, need to use the following recipe
* (taken from the above PV) before and after accessing tioce internal MMR's
* to avoid tioce lockups.
*
* The recipe as taken from the PV:
*
* if(mmr address < 0x45000) {
* if(mmr address == 0 or 0x80)
* mmr wrt or read address 0xc0
* else if(mmr address == 0x148 or 0x200)
* mmr wrt or read address 0x28
* else
* mmr wrt or read address 0x158
*
* do desired mmr access (rd or wrt)
*
* if(mmr address == 0x100)
* mmr wrt or read address 0x38
* mmr wrt or read address 0xb050
* } else
* do desired mmr access
*
* According to hw, we can use reads instead of writes to the above address
*
* Note this WAR can only to be used for accessing internal MMR's in the
* TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff. This includes the
* "Local CE Registers and Memories" and "PCI Compatible Config Space" address
* spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
*
* All registers defined in struct tioce will meet that criteria.
*/
static void inline
tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
{
u64 mmr_base;
u64 mmr_offset;
if (kern->ce_common->ce_rev != TIOCE_REV_A)
return;
mmr_base = kern->ce_common->ce_pcibus.bs_base;
mmr_offset = (unsigned long)mmr_addr - mmr_base;
if (mmr_offset < 0x45000) {
u64 mmr_war_offset;
if (mmr_offset == 0 || mmr_offset == 0x80)
mmr_war_offset = 0xc0;
else if (mmr_offset == 0x148 || mmr_offset == 0x200)
mmr_war_offset = 0x28;
else
mmr_war_offset = 0x158;
readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
}
}
static void inline
tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
{
u64 mmr_base;
u64 mmr_offset;
if (kern->ce_common->ce_rev != TIOCE_REV_A)
return;
mmr_base = kern->ce_common->ce_pcibus.bs_base;
mmr_offset = (unsigned long)mmr_addr - mmr_base;
if (mmr_offset < 0x45000) {
if (mmr_offset == 0x100)
readq_relaxed((void __iomem *)(mmr_base + 0x38));
readq_relaxed((void __iomem *)(mmr_base + 0xb050));
}
}
/* load mmr contents into a variable */
#define tioce_mmr_load(kern, mmrp, varp) do {\
tioce_mmr_war_pre(kern, mmrp); \
*(varp) = readq_relaxed(mmrp); \
tioce_mmr_war_post(kern, mmrp); \
} while (0)
/* store variable contents into mmr */
#define tioce_mmr_store(kern, mmrp, varp) do {\
tioce_mmr_war_pre(kern, mmrp); \
writeq(*varp, mmrp); \
tioce_mmr_war_post(kern, mmrp); \
} while (0)
/* store immediate value into mmr */
#define tioce_mmr_storei(kern, mmrp, val) do {\
tioce_mmr_war_pre(kern, mmrp); \
writeq(val, mmrp); \
tioce_mmr_war_post(kern, mmrp); \
} while (0)
/* set bits (immediate value) into mmr */
#define tioce_mmr_seti(kern, mmrp, bits) do {\
u64 tmp; \
tioce_mmr_load(kern, mmrp, &tmp); \
tmp |= (bits); \
tioce_mmr_store(kern, mmrp, &tmp); \
} while (0)
/* clear bits (immediate value) into mmr */
#define tioce_mmr_clri(kern, mmrp, bits) do { \
u64 tmp; \
tioce_mmr_load(kern, mmrp, &tmp); \
tmp &= ~(bits); \
tioce_mmr_store(kern, mmrp, &tmp); \
} while (0)
/**
* Bus address ranges for the 5 flavors of TIOCE DMA
*/
#define TIOCE_D64_MIN 0x8000000000000000UL
#define TIOCE_D64_MAX 0xffffffffffffffffUL
#define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
#define TIOCE_D32_MIN 0x0000000080000000UL
#define TIOCE_D32_MAX 0x00000000ffffffffUL
#define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
#define TIOCE_M32_MIN 0x0000000000000000UL
#define TIOCE_M32_MAX 0x000000007fffffffUL
#define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
#define TIOCE_M40_MIN 0x0000004000000000UL
#define TIOCE_M40_MAX 0x0000007fffffffffUL
#define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
#define TIOCE_M40S_MIN 0x0000008000000000UL
#define TIOCE_M40S_MAX 0x000000ffffffffffUL
#define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
/*
* ATE manipulation macros.
*/
#define ATE_PAGESHIFT(ps) (__ffs(ps))
#define ATE_PAGEMASK(ps) ((ps)-1)
#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
#define ATE_NPAGES(start, len, pagesize) \
(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
#define ATE_VALID(ate) ((ate) & (1UL << 63))
#define ATE_MAKE(addr, ps, msi) \
(((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
/*
* Flavors of ate-based mapping supported by tioce_alloc_map()
*/
#define TIOCE_ATE_M32 1
#define TIOCE_ATE_M40 2
#define TIOCE_ATE_M40S 3
#define KB(x) ((u64)(x) << 10)
#define MB(x) ((u64)(x) << 20)
#define GB(x) ((u64)(x) << 30)
/**
* tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
* @ct_addr: system coretalk address
*
* Map @ct_addr into 64-bit CE bus space. No device context is necessary
* and no CE mapping are consumed.
*
* Bits 53:0 come from the coretalk address. The remaining bits are set as
* follows:
*
* 63 - must be 1 to indicate d64 mode to CE hardware
* 62 - barrier bit ... controlled with tioce_dma_barrier()
* 61 - msi bit ... specified through dma_flags
* 60:54 - reserved, MBZ
*/
static u64
tioce_dma_d64(unsigned long ct_addr, int dma_flags)
{
u64 bus_addr;
bus_addr = ct_addr | (1UL << 63);
if (dma_flags & SN_DMA_MSI)
bus_addr |= (1UL << 61);
return bus_addr;
}
/**
* pcidev_to_tioce - return misc ce related pointers given a pci_dev
* @pci_dev: pci device context
* @base: ptr to store struct tioce_mmr * for the CE holding this device
* @kernel: ptr to store struct tioce_kernel * for the CE holding this device
* @port: ptr to store the CE port number that this device is on
*
* Return pointers to various CE-related structures for the CE upstream of
* @pci_dev.
*/
static inline void
pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
struct tioce_kernel **kernel, int *port)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce_kernel *ce_kernel;
pcidev_info = SN_PCIDEV_INFO(pdev);
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
if (base)
*base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
if (kernel)
*kernel = ce_kernel;
/*
* we use port as a zero-based value internally, even though the
* documentation is 1-based.
*/
if (port)
*port =
(pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
}
/**
* tioce_alloc_map - Given a coretalk address, map it to pcie bus address
* space using one of the various ATE-based address modes.
* @ce_kern: tioce context
* @type: map mode to use
* @port: 0-based port that the requesting device is downstream of
* @ct_addr: the coretalk address to map
* @len: number of bytes to map
*
* Given the addressing type, set up various parameters that define the
* ATE pool to use. Search for a contiguous block of entries to cover the
* length, and if enough resources exist, fill in the ATEs and construct a
* tioce_dmamap struct to track the mapping.
*/
static u64
tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
u64 ct_addr, int len, int dma_flags)
{
int i;
int j;
int first;
int last;
int entries;
int nates;
u64 pagesize;
int msi_capable, msi_wanted;
u64 *ate_shadow;
u64 __iomem *ate_reg;
u64 addr;
struct tioce __iomem *ce_mmr;
u64 bus_base;
struct tioce_dmamap *map;
ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
switch (type) {
case TIOCE_ATE_M32:
/*
* The first 64 entries of the ate3240 pool are dedicated to
* super-page (TIOCE_ATE_M40S) mode.
*/
first = 64;
entries = TIOCE_NUM_M3240_ATES - 64;
ate_shadow = ce_kern->ce_ate3240_shadow;
ate_reg = ce_mmr->ce_ure_ate3240;
pagesize = ce_kern->ce_ate3240_pagesize;
bus_base = TIOCE_M32_MIN;
msi_capable = 1;
break;
case TIOCE_ATE_M40:
first = 0;
entries = TIOCE_NUM_M40_ATES;
ate_shadow = ce_kern->ce_ate40_shadow;
ate_reg = ce_mmr->ce_ure_ate40;
pagesize = MB(64);
bus_base = TIOCE_M40_MIN;
msi_capable = 0;
break;
case TIOCE_ATE_M40S:
/*
* ate3240 entries 0-31 are dedicated to port1 super-page
* mappings. ate3240 entries 32-63 are dedicated to port2.
*/
first = port * 32;
entries = 32;
ate_shadow = ce_kern->ce_ate3240_shadow;
ate_reg = ce_mmr->ce_ure_ate3240;
pagesize = GB(16);
bus_base = TIOCE_M40S_MIN;
msi_capable = 0;
break;
default:
return 0;
}
msi_wanted = dma_flags & SN_DMA_MSI;
if (msi_wanted && !msi_capable)
return 0;
nates = ATE_NPAGES(ct_addr, len, pagesize);
if (nates > entries)
return 0;
last = first + entries - nates;
for (i = first; i <= last; i++) {
if (ATE_VALID(ate_shadow[i]))
continue;
for (j = i; j < i + nates; j++)
if (ATE_VALID(ate_shadow[j]))
break;
if (j >= i + nates)
break;
}
if (i > last)
return 0;
map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
if (!map)
return 0;
addr = ct_addr;
for (j = 0; j < nates; j++) {
u64 ate;
ate = ATE_MAKE(addr, pagesize, msi_wanted);
ate_shadow[i + j] = ate;
tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
addr += pagesize;
}
map->refcnt = 1;
map->nbytes = nates * pagesize;
map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
map->pci_start = bus_base + (i * pagesize);
map->ate_hw = &ate_reg[i];
map->ate_shadow = &ate_shadow[i];
map->ate_count = nates;
list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
return (map->pci_start + (ct_addr - map->ct_start));
}
/**
* tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
* @pdev: linux pci_dev representing the function
* @paddr: system physical address
*
* Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
*/
static u64
tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
{
int dma_ok;
int port;
struct tioce __iomem *ce_mmr;
struct tioce_kernel *ce_kern;
u64 ct_upper;
u64 ct_lower;
dma_addr_t bus_addr;
if (dma_flags & SN_DMA_MSI)
return 0;
ct_upper = ct_addr & ~0x3fffffffUL;
ct_lower = ct_addr & 0x3fffffffUL;
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
u64 tmp;
ce_kern->ce_port[port].dirmap_shadow = ct_upper;
tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
ct_upper);
tmp = ce_mmr->ce_ure_dir_map[port];
dma_ok = 1;
} else
dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
if (dma_ok) {
ce_kern->ce_port[port].dirmap_refcnt++;
bus_addr = TIOCE_D32_MIN + ct_lower;
} else
bus_addr = 0;
return bus_addr;
}
/**
* tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
* the barrier bit.
* @bus_addr: bus address to swizzle
*
* Given a TIOCE bus address, set the appropriate bit to indicate barrier
* attributes.
*/
static u64
tioce_dma_barrier(u64 bus_addr, int on)
{
u64 barrier_bit;
/* barrier not supported in M40/M40S mode */
if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
return bus_addr;
if (TIOCE_D64_ADDR(bus_addr))
barrier_bit = (1UL << 62);
else /* must be m32 or d32 */
barrier_bit = (1UL << 30);
return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
}
/**
* tioce_dma_unmap - release CE mapping resources
* @pdev: linux pci_dev representing the function
* @bus_addr: bus address returned by an earlier tioce_dma_map
* @dir: mapping direction (unused)
*
* Locate mapping resources associated with @bus_addr and release them.
* For mappings created using the direct modes there are no resources
* to release.
*/
void
tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
{
int i;
int port;
struct tioce_kernel *ce_kern;
struct tioce __iomem *ce_mmr;
unsigned long flags;
bus_addr = tioce_dma_barrier(bus_addr, 0);
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
/* nothing to do for D64 */
if (TIOCE_D64_ADDR(bus_addr))
return;
spin_lock_irqsave(&ce_kern->ce_lock, flags);
if (TIOCE_D32_ADDR(bus_addr)) {
if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
ce_kern->ce_port[port].dirmap_shadow = 0;
tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
0);
}
} else {
struct tioce_dmamap *map;
list_for_each_entry(map, &ce_kern->ce_dmamap_list,
ce_dmamap_list) {
u64 last;
last = map->pci_start + map->nbytes - 1;
if (bus_addr >= map->pci_start && bus_addr <= last)
break;
}
if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
printk(KERN_WARNING
"%s: %s - no map found for bus_addr 0x%llx\n",
__func__, pci_name(pdev), bus_addr);
} else if (--map->refcnt == 0) {
for (i = 0; i < map->ate_count; i++) {
map->ate_shadow[i] = 0;
tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
}
list_del(&map->ce_dmamap_list);
kfree(map);
}
}
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
}
/**
* tioce_do_dma_map - map pages for PCI DMA
* @pdev: linux pci_dev representing the function
* @paddr: host physical address to map
* @byte_count: bytes to map
*
* This is the main wrapper for mapping host physical pages to CE PCI space.
* The mapping mode used is based on the device's dma_mask.
*/
static u64
tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
int barrier, int dma_flags)
{
unsigned long flags;
u64 ct_addr;
u64 mapaddr = 0;
struct tioce_kernel *ce_kern;
struct tioce_dmamap *map;
int port;
u64 dma_mask;
dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
/* cards must be able to address at least 31 bits */
if (dma_mask < 0x7fffffffUL)
return 0;
if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
ct_addr = PHYS_TO_TIODMA(paddr);
else
ct_addr = paddr;
/*
* If the device can generate 64 bit addresses, create a D64 map.
*/
if (dma_mask == ~0UL) {
mapaddr = tioce_dma_d64(ct_addr, dma_flags);
if (mapaddr)
goto dma_map_done;
}
pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
spin_lock_irqsave(&ce_kern->ce_lock, flags);
/*
* D64 didn't work ... See if we have an existing map that covers
* this address range. Must account for devices dma_mask here since
* an existing map might have been done in a mode using more pci
* address bits than this device can support.
*/
list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
u64 last;
last = map->ct_start + map->nbytes - 1;
if (ct_addr >= map->ct_start &&
ct_addr + byte_count - 1 <= last &&
map->pci_start <= dma_mask) {
map->refcnt++;
mapaddr = map->pci_start + (ct_addr - map->ct_start);
break;
}
}
/*
* If we don't have a map yet, and the card can generate 40
* bit addresses, try the M40/M40S modes. Note these modes do not
* support a barrier bit, so if we need a consistent map these
* won't work.
*/
if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
/*
* We have two options for 40-bit mappings: 16GB "super" ATEs
* and 64MB "regular" ATEs. We'll try both if needed for a
* given mapping but which one we try first depends on the
* size. For requests >64MB, prefer to use a super page with
* regular as the fallback. Otherwise, try in the reverse order.
*/
if (byte_count > MB(64)) {
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
port, ct_addr, byte_count,
dma_flags);
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
ct_addr, byte_count,
dma_flags);
} else {
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
ct_addr, byte_count,
dma_flags);
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
port, ct_addr, byte_count,
dma_flags);
}
}
/*
* 32-bit direct is the next mode to try
*/
if (!mapaddr && dma_mask >= 0xffffffffUL)
mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
/*
* Last resort, try 32-bit ATE-based map.
*/
if (!mapaddr)
mapaddr =
tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
byte_count, dma_flags);
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
dma_map_done:
if (mapaddr && barrier)
mapaddr = tioce_dma_barrier(mapaddr, 1);
return mapaddr;
}
/**
* tioce_dma - standard pci dma map interface
* @pdev: pci device requesting the map
* @paddr: system physical address to map into pci space
* @byte_count: # bytes to map
*
* Simply call tioce_do_dma_map() to create a map with the barrier bit clear
* in the address.
*/
static u64
tioce_dma(struct pci_dev *pdev, unsigned long paddr, size_t byte_count, int dma_flags)
{
return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
}
/**
* tioce_dma_consistent - consistent pci dma map interface
* @pdev: pci device requesting the map
* @paddr: system physical address to map into pci space
* @byte_count: # bytes to map
*
* Simply call tioce_do_dma_map() to create a map with the barrier bit set
* in the address.
*/
static u64
tioce_dma_consistent(struct pci_dev *pdev, unsigned long paddr, size_t byte_count, int dma_flags)
{
return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
}
/**
* tioce_error_intr_handler - SGI TIO CE error interrupt handler
* @irq: unused
* @arg: pointer to tioce_common struct for the given CE
*
* Handle a CE error interrupt. Simply a wrapper around a SAL call which
* defers processing to the SGI prom.
*/
static irqreturn_t
tioce_error_intr_handler(int irq, void *arg)
{
struct tioce_common *soft = arg;
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
soft->ce_pcibus.bs_persist_segment,
soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
if (ret_stuff.v0)
panic("tioce_error_intr_handler: Fatal TIOCE error");
return IRQ_HANDLED;
}
/**
* tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
* @tioce_kernel: TIOCE context to reserve ATEs for
* @base: starting bus address to reserve
* @limit: last bus address to reserve
*
* If base/limit falls within the range of bus space mapped through the
* M32 space, reserve the resources corresponding to the range.
*/
static void
tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
{
int ate_index, last_ate, ps;
struct tioce __iomem *ce_mmr;
ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
ps = ce_kern->ce_ate3240_pagesize;
ate_index = ATE_PAGE(base, ps);
last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
if (ate_index < 64)
ate_index = 64;
if (last_ate >= TIOCE_NUM_M3240_ATES)
last_ate = TIOCE_NUM_M3240_ATES - 1;
while (ate_index <= last_ate) {
u64 ate;
ate = ATE_MAKE(0xdeadbeef, ps, 0);
ce_kern->ce_ate3240_shadow[ate_index] = ate;
tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
ate);
ate_index++;
}
}
/**
* tioce_kern_init - init kernel structures related to a given TIOCE
* @tioce_common: ptr to a cached tioce_common struct that originated in prom
*/
static struct tioce_kernel *
tioce_kern_init(struct tioce_common *tioce_common)
{
int i;
int ps;
int dev;
u32 tmp;
unsigned int seg, bus;
struct tioce __iomem *tioce_mmr;
struct tioce_kernel *tioce_kern;
tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
if (!tioce_kern) {
return NULL;
}
tioce_kern->ce_common = tioce_common;
spin_lock_init(&tioce_kern->ce_lock);
INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
tioce_common->ce_kernel_private = (u64) tioce_kern;
/*
* Determine the secondary bus number of the port2 logical PPB.
* This is used to decide whether a given pci device resides on
* port1 or port2. Note: We don't have enough plumbing set up
* here to use pci_read_config_xxx() so use raw_pci_read().
*/
seg = tioce_common->ce_pcibus.bs_persist_segment;
bus = tioce_common->ce_pcibus.bs_persist_busnum;
raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
tioce_kern->ce_port1_secondary = (u8) tmp;
/*
* Set PMU pagesize to the largest size available, and zero out
* the ATEs.
*/
tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
CE_URE_PAGESIZE_MASK);
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
CE_URE_256K_PAGESIZE);
ps = tioce_kern->ce_ate3240_pagesize = KB(256);
for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
tioce_kern->ce_ate40_shadow[i] = 0;
tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
}
for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
tioce_kern->ce_ate3240_shadow[i] = 0;
tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
}
/*
* Reserve ATEs corresponding to reserved address ranges. These
* include:
*
* Memory space covered by each PPB mem base/limit register
* Memory space covered by each PPB prefetch base/limit register
*
* These bus ranges are for pio (downstream) traffic only, and so
* cannot be used for DMA.
*/
for (dev = 1; dev <= 2; dev++) {
u64 base, limit;
/* mem base/limit */
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
PCI_MEMORY_BASE, 2, &tmp);
base = (u64)tmp << 16;
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
PCI_MEMORY_LIMIT, 2, &tmp);
limit = (u64)tmp << 16;
limit |= 0xfffffUL;
if (base < limit)
tioce_reserve_m32(tioce_kern, base, limit);
/*
* prefetch mem base/limit. The tioce ppb's have 64-bit
* decoders, so read the upper portions w/o checking the
* attributes.
*/
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
PCI_PREF_MEMORY_BASE, 2, &tmp);
base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
PCI_PREF_BASE_UPPER32, 4, &tmp);
base |= (u64)tmp << 32;
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
PCI_PREF_MEMORY_LIMIT, 2, &tmp);
limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
limit |= 0xfffffUL;
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
PCI_PREF_LIMIT_UPPER32, 4, &tmp);
limit |= (u64)tmp << 32;
if ((base < limit) && TIOCE_M32_ADDR(base))
tioce_reserve_m32(tioce_kern, base, limit);
}
return tioce_kern;
}
/**
* tioce_force_interrupt - implement altix force_interrupt() backend for CE
* @sn_irq_info: sn asic irq that we need an interrupt generated for
*
* Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
* force a secondary interrupt to be generated. This is to work around an
* asic issue where there is a small window of opportunity for a legacy device
* interrupt to be lost.
*/
static void
tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce_kernel *ce_kern;
struct tioce __iomem *ce_mmr;
u64 force_int_val;
if (!sn_irq_info->irq_bridge)
return;
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
/*
* TIOCE Rev A workaround (PV 945826), force an interrupt by writing
* the TIO_INTx register directly (1/26/2006)
*/
if (ce_common->ce_rev == TIOCE_REV_A) {
u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
u64 status;
tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
if (status & int_bit_mask) {
u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
u64 ctalk = sn_irq_info->irq_xtalkaddr;
u64 nasid, offset;
nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
offset = (ctalk & CTALK_NODE_OFFSET);
HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
}
return;
}
/*
* irq_int_bit is originally set up by prom, and holds the interrupt
* bit shift (not mask) as defined by the bit definitions in the
* ce_adm_int mmr. These shifts are not the same for the
* ce_adm_force_int register, so do an explicit mapping here to make
* things clearer.
*/
switch (sn_irq_info->irq_int_bit) {
case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
break;
case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
break;
case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
break;
default:
return;
}
tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
}
/**
* tioce_target_interrupt - implement set_irq_affinity for tioce resident
* functions. Note: only applies to line interrupts, not MSI's.
*
* @sn_irq_info: SN IRQ context
*
* Given an sn_irq_info, set the associated CE device's interrupt destination
* register. Since the interrupt destination registers are on a per-ce-slot
* basis, this will retarget line interrupts for all functions downstream of
* the slot.
*/
static void
tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct tioce_common *ce_common;
struct tioce_kernel *ce_kern;
struct tioce __iomem *ce_mmr;
int bit;
u64 vector;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
bit = sn_irq_info->irq_int_bit;
tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
vector |= sn_irq_info->irq_xtalkaddr;
tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
tioce_force_interrupt(sn_irq_info);
}
/**
* tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
* @prom_bussoft: Common prom/kernel struct representing the bus
*
* Replicates the tioce_common pointed to by @prom_bussoft in kernel
* space. Allocates and initializes a kernel-only area for a given CE,
* and sets up an irq for handling CE error interrupts.
*
* On successful setup, returns the kernel version of tioce_common back to
* the caller.
*/
static void *
tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
{
struct tioce_common *tioce_common;
struct tioce_kernel *tioce_kern;
struct tioce __iomem *tioce_mmr;
/*
* Allocate kernel bus soft and copy from prom.
*/
tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
if (!tioce_common)
return NULL;
memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
tioce_common->ce_pcibus.bs_base = (unsigned long)
ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
sizeof(struct tioce_common));
tioce_kern = tioce_kern_init(tioce_common);
if (tioce_kern == NULL) {
kfree(tioce_common);
return NULL;
}
/*
* Clear out any transient errors before registering the error
* interrupt handler.
*/
tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
~0ULL);
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
if (request_irq(SGI_PCIASIC_ERROR,
tioce_error_intr_handler,
IRQF_SHARED, "TIOCE error", (void *)tioce_common))
printk(KERN_WARNING
"%s: Unable to get irq %d. "
"Error interrupts won't be routed for "
"TIOCE bus %04x:%02x\n",
__func__, SGI_PCIASIC_ERROR,
tioce_common->ce_pcibus.bs_persist_segment,
tioce_common->ce_pcibus.bs_persist_busnum);
irq_set_handler(SGI_PCIASIC_ERROR, handle_level_irq);
sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
return tioce_common;
}
static struct sn_pcibus_provider tioce_pci_interfaces = {
.dma_map = tioce_dma,
.dma_map_consistent = tioce_dma_consistent,
.dma_unmap = tioce_dma_unmap,
.bus_fixup = tioce_bus_fixup,
.force_interrupt = tioce_force_interrupt,
.target_interrupt = tioce_target_interrupt
};
/**
* tioce_init_provider - init SN PCI provider ops for TIO CE
*/
int
tioce_init_provider(void)
{
sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
return 0;
}