621 lines
16 KiB
C
621 lines
16 KiB
C
|
/*
|
||
|
* Copyright (c) 1995
|
||
|
* Ted Lemon (hereinafter referred to as the author)
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. The name of the author may not be used to endorse or promote products
|
||
|
* derived from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/* elf2ecoff.c
|
||
|
|
||
|
This program converts an elf executable to an ECOFF executable.
|
||
|
No symbol table is retained. This is useful primarily in building
|
||
|
net-bootable kernels for machines (e.g., DECstation and Alpha) which
|
||
|
only support the ECOFF object file format. */
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <errno.h>
|
||
|
#include <sys/types.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <unistd.h>
|
||
|
#include <elf.h>
|
||
|
#include <limits.h>
|
||
|
#include <netinet/in.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#include "ecoff.h"
|
||
|
|
||
|
/*
|
||
|
* Some extra ELF definitions
|
||
|
*/
|
||
|
#define PT_MIPS_REGINFO 0x70000000 /* Register usage information */
|
||
|
#define PT_MIPS_ABIFLAGS 0x70000003 /* Records ABI related flags */
|
||
|
|
||
|
/* -------------------------------------------------------------------- */
|
||
|
|
||
|
struct sect {
|
||
|
unsigned long vaddr;
|
||
|
unsigned long len;
|
||
|
};
|
||
|
|
||
|
int *symTypeTable;
|
||
|
int must_convert_endian;
|
||
|
int format_bigendian;
|
||
|
|
||
|
static void copy(int out, int in, off_t offset, off_t size)
|
||
|
{
|
||
|
char ibuf[4096];
|
||
|
int remaining, cur, count;
|
||
|
|
||
|
/* Go to the start of the ELF symbol table... */
|
||
|
if (lseek(in, offset, SEEK_SET) < 0) {
|
||
|
perror("copy: lseek");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
remaining = size;
|
||
|
while (remaining) {
|
||
|
cur = remaining;
|
||
|
if (cur > sizeof ibuf)
|
||
|
cur = sizeof ibuf;
|
||
|
remaining -= cur;
|
||
|
if ((count = read(in, ibuf, cur)) != cur) {
|
||
|
fprintf(stderr, "copy: read: %s\n",
|
||
|
count ? strerror(errno) :
|
||
|
"premature end of file");
|
||
|
exit(1);
|
||
|
}
|
||
|
if ((count = write(out, ibuf, cur)) != cur) {
|
||
|
perror("copy: write");
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Combine two segments, which must be contiguous. If pad is true, it's
|
||
|
* okay for there to be padding between.
|
||
|
*/
|
||
|
static void combine(struct sect *base, struct sect *new, int pad)
|
||
|
{
|
||
|
if (!base->len)
|
||
|
*base = *new;
|
||
|
else if (new->len) {
|
||
|
if (base->vaddr + base->len != new->vaddr) {
|
||
|
if (pad)
|
||
|
base->len = new->vaddr - base->vaddr;
|
||
|
else {
|
||
|
fprintf(stderr,
|
||
|
"Non-contiguous data can't be converted.\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
base->len += new->len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int phcmp(const void *v1, const void *v2)
|
||
|
{
|
||
|
const Elf32_Phdr *h1 = v1;
|
||
|
const Elf32_Phdr *h2 = v2;
|
||
|
|
||
|
if (h1->p_vaddr > h2->p_vaddr)
|
||
|
return 1;
|
||
|
else if (h1->p_vaddr < h2->p_vaddr)
|
||
|
return -1;
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static char *saveRead(int file, off_t offset, off_t len, char *name)
|
||
|
{
|
||
|
char *tmp;
|
||
|
int count;
|
||
|
off_t off;
|
||
|
if ((off = lseek(file, offset, SEEK_SET)) < 0) {
|
||
|
fprintf(stderr, "%s: fseek: %s\n", name, strerror(errno));
|
||
|
exit(1);
|
||
|
}
|
||
|
if (!(tmp = (char *) malloc(len))) {
|
||
|
fprintf(stderr, "%s: Can't allocate %ld bytes.\n", name,
|
||
|
len);
|
||
|
exit(1);
|
||
|
}
|
||
|
count = read(file, tmp, len);
|
||
|
if (count != len) {
|
||
|
fprintf(stderr, "%s: read: %s.\n",
|
||
|
name,
|
||
|
count ? strerror(errno) : "End of file reached");
|
||
|
exit(1);
|
||
|
}
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
#define swab16(x) \
|
||
|
((unsigned short)( \
|
||
|
(((unsigned short)(x) & (unsigned short)0x00ffU) << 8) | \
|
||
|
(((unsigned short)(x) & (unsigned short)0xff00U) >> 8) ))
|
||
|
|
||
|
#define swab32(x) \
|
||
|
((unsigned int)( \
|
||
|
(((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
|
||
|
(((unsigned int)(x) & (unsigned int)0x0000ff00UL) << 8) | \
|
||
|
(((unsigned int)(x) & (unsigned int)0x00ff0000UL) >> 8) | \
|
||
|
(((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
|
||
|
|
||
|
static void convert_elf_hdr(Elf32_Ehdr * e)
|
||
|
{
|
||
|
e->e_type = swab16(e->e_type);
|
||
|
e->e_machine = swab16(e->e_machine);
|
||
|
e->e_version = swab32(e->e_version);
|
||
|
e->e_entry = swab32(e->e_entry);
|
||
|
e->e_phoff = swab32(e->e_phoff);
|
||
|
e->e_shoff = swab32(e->e_shoff);
|
||
|
e->e_flags = swab32(e->e_flags);
|
||
|
e->e_ehsize = swab16(e->e_ehsize);
|
||
|
e->e_phentsize = swab16(e->e_phentsize);
|
||
|
e->e_phnum = swab16(e->e_phnum);
|
||
|
e->e_shentsize = swab16(e->e_shentsize);
|
||
|
e->e_shnum = swab16(e->e_shnum);
|
||
|
e->e_shstrndx = swab16(e->e_shstrndx);
|
||
|
}
|
||
|
|
||
|
static void convert_elf_phdrs(Elf32_Phdr * p, int num)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < num; i++, p++) {
|
||
|
p->p_type = swab32(p->p_type);
|
||
|
p->p_offset = swab32(p->p_offset);
|
||
|
p->p_vaddr = swab32(p->p_vaddr);
|
||
|
p->p_paddr = swab32(p->p_paddr);
|
||
|
p->p_filesz = swab32(p->p_filesz);
|
||
|
p->p_memsz = swab32(p->p_memsz);
|
||
|
p->p_flags = swab32(p->p_flags);
|
||
|
p->p_align = swab32(p->p_align);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
static void convert_elf_shdrs(Elf32_Shdr * s, int num)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < num; i++, s++) {
|
||
|
s->sh_name = swab32(s->sh_name);
|
||
|
s->sh_type = swab32(s->sh_type);
|
||
|
s->sh_flags = swab32(s->sh_flags);
|
||
|
s->sh_addr = swab32(s->sh_addr);
|
||
|
s->sh_offset = swab32(s->sh_offset);
|
||
|
s->sh_size = swab32(s->sh_size);
|
||
|
s->sh_link = swab32(s->sh_link);
|
||
|
s->sh_info = swab32(s->sh_info);
|
||
|
s->sh_addralign = swab32(s->sh_addralign);
|
||
|
s->sh_entsize = swab32(s->sh_entsize);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void convert_ecoff_filehdr(struct filehdr *f)
|
||
|
{
|
||
|
f->f_magic = swab16(f->f_magic);
|
||
|
f->f_nscns = swab16(f->f_nscns);
|
||
|
f->f_timdat = swab32(f->f_timdat);
|
||
|
f->f_symptr = swab32(f->f_symptr);
|
||
|
f->f_nsyms = swab32(f->f_nsyms);
|
||
|
f->f_opthdr = swab16(f->f_opthdr);
|
||
|
f->f_flags = swab16(f->f_flags);
|
||
|
}
|
||
|
|
||
|
static void convert_ecoff_aouthdr(struct aouthdr *a)
|
||
|
{
|
||
|
a->magic = swab16(a->magic);
|
||
|
a->vstamp = swab16(a->vstamp);
|
||
|
a->tsize = swab32(a->tsize);
|
||
|
a->dsize = swab32(a->dsize);
|
||
|
a->bsize = swab32(a->bsize);
|
||
|
a->entry = swab32(a->entry);
|
||
|
a->text_start = swab32(a->text_start);
|
||
|
a->data_start = swab32(a->data_start);
|
||
|
a->bss_start = swab32(a->bss_start);
|
||
|
a->gprmask = swab32(a->gprmask);
|
||
|
a->cprmask[0] = swab32(a->cprmask[0]);
|
||
|
a->cprmask[1] = swab32(a->cprmask[1]);
|
||
|
a->cprmask[2] = swab32(a->cprmask[2]);
|
||
|
a->cprmask[3] = swab32(a->cprmask[3]);
|
||
|
a->gp_value = swab32(a->gp_value);
|
||
|
}
|
||
|
|
||
|
static void convert_ecoff_esecs(struct scnhdr *s, int num)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < num; i++, s++) {
|
||
|
s->s_paddr = swab32(s->s_paddr);
|
||
|
s->s_vaddr = swab32(s->s_vaddr);
|
||
|
s->s_size = swab32(s->s_size);
|
||
|
s->s_scnptr = swab32(s->s_scnptr);
|
||
|
s->s_relptr = swab32(s->s_relptr);
|
||
|
s->s_lnnoptr = swab32(s->s_lnnoptr);
|
||
|
s->s_nreloc = swab16(s->s_nreloc);
|
||
|
s->s_nlnno = swab16(s->s_nlnno);
|
||
|
s->s_flags = swab32(s->s_flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
Elf32_Ehdr ex;
|
||
|
Elf32_Phdr *ph;
|
||
|
Elf32_Shdr *sh;
|
||
|
int i, pad;
|
||
|
struct sect text, data, bss;
|
||
|
struct filehdr efh;
|
||
|
struct aouthdr eah;
|
||
|
struct scnhdr esecs[6];
|
||
|
int infile, outfile;
|
||
|
unsigned long cur_vma = ULONG_MAX;
|
||
|
int addflag = 0;
|
||
|
int nosecs;
|
||
|
|
||
|
text.len = data.len = bss.len = 0;
|
||
|
text.vaddr = data.vaddr = bss.vaddr = 0;
|
||
|
|
||
|
/* Check args... */
|
||
|
if (argc < 3 || argc > 4) {
|
||
|
usage:
|
||
|
fprintf(stderr,
|
||
|
"usage: elf2ecoff <elf executable> <ecoff executable> [-a]\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
if (argc == 4) {
|
||
|
if (strcmp(argv[3], "-a"))
|
||
|
goto usage;
|
||
|
addflag = 1;
|
||
|
}
|
||
|
|
||
|
/* Try the input file... */
|
||
|
if ((infile = open(argv[1], O_RDONLY)) < 0) {
|
||
|
fprintf(stderr, "Can't open %s for read: %s\n",
|
||
|
argv[1], strerror(errno));
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
/* Read the header, which is at the beginning of the file... */
|
||
|
i = read(infile, &ex, sizeof ex);
|
||
|
if (i != sizeof ex) {
|
||
|
fprintf(stderr, "ex: %s: %s.\n",
|
||
|
argv[1],
|
||
|
i ? strerror(errno) : "End of file reached");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
if (ex.e_ident[EI_DATA] == ELFDATA2MSB)
|
||
|
format_bigendian = 1;
|
||
|
|
||
|
if (ntohs(0xaa55) == 0xaa55) {
|
||
|
if (!format_bigendian)
|
||
|
must_convert_endian = 1;
|
||
|
} else {
|
||
|
if (format_bigendian)
|
||
|
must_convert_endian = 1;
|
||
|
}
|
||
|
if (must_convert_endian)
|
||
|
convert_elf_hdr(&ex);
|
||
|
|
||
|
/* Read the program headers... */
|
||
|
ph = (Elf32_Phdr *) saveRead(infile, ex.e_phoff,
|
||
|
ex.e_phnum * sizeof(Elf32_Phdr),
|
||
|
"ph");
|
||
|
if (must_convert_endian)
|
||
|
convert_elf_phdrs(ph, ex.e_phnum);
|
||
|
/* Read the section headers... */
|
||
|
sh = (Elf32_Shdr *) saveRead(infile, ex.e_shoff,
|
||
|
ex.e_shnum * sizeof(Elf32_Shdr),
|
||
|
"sh");
|
||
|
if (must_convert_endian)
|
||
|
convert_elf_shdrs(sh, ex.e_shnum);
|
||
|
|
||
|
/* Figure out if we can cram the program header into an ECOFF
|
||
|
header... Basically, we can't handle anything but loadable
|
||
|
segments, but we can ignore some kinds of segments. We can't
|
||
|
handle holes in the address space. Segments may be out of order,
|
||
|
so we sort them first. */
|
||
|
|
||
|
qsort(ph, ex.e_phnum, sizeof(Elf32_Phdr), phcmp);
|
||
|
|
||
|
for (i = 0; i < ex.e_phnum; i++) {
|
||
|
/* Section types we can ignore... */
|
||
|
switch (ph[i].p_type) {
|
||
|
case PT_NULL:
|
||
|
case PT_NOTE:
|
||
|
case PT_PHDR:
|
||
|
case PT_MIPS_REGINFO:
|
||
|
case PT_MIPS_ABIFLAGS:
|
||
|
continue;
|
||
|
|
||
|
case PT_LOAD:
|
||
|
/* Writable (data) segment? */
|
||
|
if (ph[i].p_flags & PF_W) {
|
||
|
struct sect ndata, nbss;
|
||
|
|
||
|
ndata.vaddr = ph[i].p_vaddr;
|
||
|
ndata.len = ph[i].p_filesz;
|
||
|
nbss.vaddr = ph[i].p_vaddr + ph[i].p_filesz;
|
||
|
nbss.len = ph[i].p_memsz - ph[i].p_filesz;
|
||
|
|
||
|
combine(&data, &ndata, 0);
|
||
|
combine(&bss, &nbss, 1);
|
||
|
} else {
|
||
|
struct sect ntxt;
|
||
|
|
||
|
ntxt.vaddr = ph[i].p_vaddr;
|
||
|
ntxt.len = ph[i].p_filesz;
|
||
|
|
||
|
combine(&text, &ntxt, 0);
|
||
|
}
|
||
|
/* Remember the lowest segment start address. */
|
||
|
if (ph[i].p_vaddr < cur_vma)
|
||
|
cur_vma = ph[i].p_vaddr;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
/* Section types we can't handle... */
|
||
|
fprintf(stderr,
|
||
|
"Program header %d type %d can't be converted.\n",
|
||
|
ex.e_phnum, ph[i].p_type);
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Sections must be in order to be converted... */
|
||
|
if (text.vaddr > data.vaddr || data.vaddr > bss.vaddr ||
|
||
|
text.vaddr + text.len > data.vaddr
|
||
|
|| data.vaddr + data.len > bss.vaddr) {
|
||
|
fprintf(stderr,
|
||
|
"Sections ordering prevents a.out conversion.\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
/* If there's a data section but no text section, then the loader
|
||
|
combined everything into one section. That needs to be the
|
||
|
text section, so just make the data section zero length following
|
||
|
text. */
|
||
|
if (data.len && !text.len) {
|
||
|
text = data;
|
||
|
data.vaddr = text.vaddr + text.len;
|
||
|
data.len = 0;
|
||
|
}
|
||
|
|
||
|
/* If there is a gap between text and data, we'll fill it when we copy
|
||
|
the data, so update the length of the text segment as represented in
|
||
|
a.out to reflect that, since a.out doesn't allow gaps in the program
|
||
|
address space. */
|
||
|
if (text.vaddr + text.len < data.vaddr)
|
||
|
text.len = data.vaddr - text.vaddr;
|
||
|
|
||
|
/* We now have enough information to cons up an a.out header... */
|
||
|
eah.magic = OMAGIC;
|
||
|
eah.vstamp = 200;
|
||
|
eah.tsize = text.len;
|
||
|
eah.dsize = data.len;
|
||
|
eah.bsize = bss.len;
|
||
|
eah.entry = ex.e_entry;
|
||
|
eah.text_start = text.vaddr;
|
||
|
eah.data_start = data.vaddr;
|
||
|
eah.bss_start = bss.vaddr;
|
||
|
eah.gprmask = 0xf3fffffe;
|
||
|
memset(&eah.cprmask, '\0', sizeof eah.cprmask);
|
||
|
eah.gp_value = 0; /* unused. */
|
||
|
|
||
|
if (format_bigendian)
|
||
|
efh.f_magic = MIPSEBMAGIC;
|
||
|
else
|
||
|
efh.f_magic = MIPSELMAGIC;
|
||
|
if (addflag)
|
||
|
nosecs = 6;
|
||
|
else
|
||
|
nosecs = 3;
|
||
|
efh.f_nscns = nosecs;
|
||
|
efh.f_timdat = 0; /* bogus */
|
||
|
efh.f_symptr = 0;
|
||
|
efh.f_nsyms = 0;
|
||
|
efh.f_opthdr = sizeof eah;
|
||
|
efh.f_flags = 0x100f; /* Stripped, not sharable. */
|
||
|
|
||
|
memset(esecs, 0, sizeof esecs);
|
||
|
strcpy(esecs[0].s_name, ".text");
|
||
|
strcpy(esecs[1].s_name, ".data");
|
||
|
strcpy(esecs[2].s_name, ".bss");
|
||
|
if (addflag) {
|
||
|
strcpy(esecs[3].s_name, ".rdata");
|
||
|
strcpy(esecs[4].s_name, ".sdata");
|
||
|
strcpy(esecs[5].s_name, ".sbss");
|
||
|
}
|
||
|
esecs[0].s_paddr = esecs[0].s_vaddr = eah.text_start;
|
||
|
esecs[1].s_paddr = esecs[1].s_vaddr = eah.data_start;
|
||
|
esecs[2].s_paddr = esecs[2].s_vaddr = eah.bss_start;
|
||
|
if (addflag) {
|
||
|
esecs[3].s_paddr = esecs[3].s_vaddr = 0;
|
||
|
esecs[4].s_paddr = esecs[4].s_vaddr = 0;
|
||
|
esecs[5].s_paddr = esecs[5].s_vaddr = 0;
|
||
|
}
|
||
|
esecs[0].s_size = eah.tsize;
|
||
|
esecs[1].s_size = eah.dsize;
|
||
|
esecs[2].s_size = eah.bsize;
|
||
|
if (addflag) {
|
||
|
esecs[3].s_size = 0;
|
||
|
esecs[4].s_size = 0;
|
||
|
esecs[5].s_size = 0;
|
||
|
}
|
||
|
esecs[0].s_scnptr = N_TXTOFF(efh, eah);
|
||
|
esecs[1].s_scnptr = N_DATOFF(efh, eah);
|
||
|
#define ECOFF_SEGMENT_ALIGNMENT(a) 0x10
|
||
|
#define ECOFF_ROUND(s, a) (((s)+(a)-1)&~((a)-1))
|
||
|
esecs[2].s_scnptr = esecs[1].s_scnptr +
|
||
|
ECOFF_ROUND(esecs[1].s_size, ECOFF_SEGMENT_ALIGNMENT(&eah));
|
||
|
if (addflag) {
|
||
|
esecs[3].s_scnptr = 0;
|
||
|
esecs[4].s_scnptr = 0;
|
||
|
esecs[5].s_scnptr = 0;
|
||
|
}
|
||
|
esecs[0].s_relptr = esecs[1].s_relptr = esecs[2].s_relptr = 0;
|
||
|
esecs[0].s_lnnoptr = esecs[1].s_lnnoptr = esecs[2].s_lnnoptr = 0;
|
||
|
esecs[0].s_nreloc = esecs[1].s_nreloc = esecs[2].s_nreloc = 0;
|
||
|
esecs[0].s_nlnno = esecs[1].s_nlnno = esecs[2].s_nlnno = 0;
|
||
|
if (addflag) {
|
||
|
esecs[3].s_relptr = esecs[4].s_relptr
|
||
|
= esecs[5].s_relptr = 0;
|
||
|
esecs[3].s_lnnoptr = esecs[4].s_lnnoptr
|
||
|
= esecs[5].s_lnnoptr = 0;
|
||
|
esecs[3].s_nreloc = esecs[4].s_nreloc = esecs[5].s_nreloc =
|
||
|
0;
|
||
|
esecs[3].s_nlnno = esecs[4].s_nlnno = esecs[5].s_nlnno = 0;
|
||
|
}
|
||
|
esecs[0].s_flags = 0x20;
|
||
|
esecs[1].s_flags = 0x40;
|
||
|
esecs[2].s_flags = 0x82;
|
||
|
if (addflag) {
|
||
|
esecs[3].s_flags = 0x100;
|
||
|
esecs[4].s_flags = 0x200;
|
||
|
esecs[5].s_flags = 0x400;
|
||
|
}
|
||
|
|
||
|
/* Make the output file... */
|
||
|
if ((outfile = open(argv[2], O_WRONLY | O_CREAT, 0777)) < 0) {
|
||
|
fprintf(stderr, "Unable to create %s: %s\n", argv[2],
|
||
|
strerror(errno));
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
if (must_convert_endian)
|
||
|
convert_ecoff_filehdr(&efh);
|
||
|
/* Write the headers... */
|
||
|
i = write(outfile, &efh, sizeof efh);
|
||
|
if (i != sizeof efh) {
|
||
|
perror("efh: write");
|
||
|
exit(1);
|
||
|
|
||
|
for (i = 0; i < nosecs; i++) {
|
||
|
printf
|
||
|
("Section %d: %s phys %lx size %lx file offset %lx\n",
|
||
|
i, esecs[i].s_name, esecs[i].s_paddr,
|
||
|
esecs[i].s_size, esecs[i].s_scnptr);
|
||
|
}
|
||
|
}
|
||
|
fprintf(stderr, "wrote %d byte file header.\n", i);
|
||
|
|
||
|
if (must_convert_endian)
|
||
|
convert_ecoff_aouthdr(&eah);
|
||
|
i = write(outfile, &eah, sizeof eah);
|
||
|
if (i != sizeof eah) {
|
||
|
perror("eah: write");
|
||
|
exit(1);
|
||
|
}
|
||
|
fprintf(stderr, "wrote %d byte a.out header.\n", i);
|
||
|
|
||
|
if (must_convert_endian)
|
||
|
convert_ecoff_esecs(&esecs[0], nosecs);
|
||
|
i = write(outfile, &esecs, nosecs * sizeof(struct scnhdr));
|
||
|
if (i != nosecs * sizeof(struct scnhdr)) {
|
||
|
perror("esecs: write");
|
||
|
exit(1);
|
||
|
}
|
||
|
fprintf(stderr, "wrote %d bytes of section headers.\n", i);
|
||
|
|
||
|
pad = (sizeof(efh) + sizeof(eah) + nosecs * sizeof(struct scnhdr)) & 15;
|
||
|
if (pad) {
|
||
|
pad = 16 - pad;
|
||
|
i = write(outfile, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0", pad);
|
||
|
if (i < 0) {
|
||
|
perror("ipad: write");
|
||
|
exit(1);
|
||
|
}
|
||
|
fprintf(stderr, "wrote %d byte pad.\n", i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Copy the loadable sections. Zero-fill any gaps less than 64k;
|
||
|
* complain about any zero-filling, and die if we're asked to zero-fill
|
||
|
* more than 64k.
|
||
|
*/
|
||
|
for (i = 0; i < ex.e_phnum; i++) {
|
||
|
/* Unprocessable sections were handled above, so just verify that
|
||
|
the section can be loaded before copying. */
|
||
|
if (ph[i].p_type == PT_LOAD && ph[i].p_filesz) {
|
||
|
if (cur_vma != ph[i].p_vaddr) {
|
||
|
unsigned long gap =
|
||
|
ph[i].p_vaddr - cur_vma;
|
||
|
char obuf[1024];
|
||
|
if (gap > 65536) {
|
||
|
fprintf(stderr,
|
||
|
"Intersegment gap (%ld bytes) too large.\n",
|
||
|
gap);
|
||
|
exit(1);
|
||
|
}
|
||
|
fprintf(stderr,
|
||
|
"Warning: %ld byte intersegment gap.\n",
|
||
|
gap);
|
||
|
memset(obuf, 0, sizeof obuf);
|
||
|
while (gap) {
|
||
|
int count =
|
||
|
write(outfile, obuf,
|
||
|
(gap >
|
||
|
sizeof obuf ? sizeof
|
||
|
obuf : gap));
|
||
|
if (count < 0) {
|
||
|
fprintf(stderr,
|
||
|
"Error writing gap: %s\n",
|
||
|
strerror(errno));
|
||
|
exit(1);
|
||
|
}
|
||
|
gap -= count;
|
||
|
}
|
||
|
}
|
||
|
fprintf(stderr, "writing %d bytes...\n",
|
||
|
ph[i].p_filesz);
|
||
|
copy(outfile, infile, ph[i].p_offset,
|
||
|
ph[i].p_filesz);
|
||
|
cur_vma = ph[i].p_vaddr + ph[i].p_filesz;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write a page of padding for boot PROMS that read entire pages.
|
||
|
* Without this, they may attempt to read past the end of the
|
||
|
* data section, incur an error, and refuse to boot.
|
||
|
*/
|
||
|
{
|
||
|
char obuf[4096];
|
||
|
memset(obuf, 0, sizeof obuf);
|
||
|
if (write(outfile, obuf, sizeof(obuf)) != sizeof(obuf)) {
|
||
|
fprintf(stderr, "Error writing PROM padding: %s\n",
|
||
|
strerror(errno));
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Looks like we won... */
|
||
|
exit(0);
|
||
|
}
|