265 lines
6.4 KiB
C
265 lines
6.4 KiB
C
|
/*
|
||
|
* IEEE754 floating point arithmetic
|
||
|
* single precision: MADDF.f (Fused Multiply Add)
|
||
|
* MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
|
||
|
*
|
||
|
* MIPS floating point support
|
||
|
* Copyright (C) 2015 Imagination Technologies, Ltd.
|
||
|
* Author: Markos Chandras <markos.chandras@imgtec.com>
|
||
|
*
|
||
|
* This program is free software; you can distribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; version 2 of the License.
|
||
|
*/
|
||
|
|
||
|
#include "ieee754sp.h"
|
||
|
|
||
|
|
||
|
static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
|
||
|
union ieee754sp y, enum maddf_flags flags)
|
||
|
{
|
||
|
int re;
|
||
|
int rs;
|
||
|
unsigned rm;
|
||
|
uint64_t rm64;
|
||
|
uint64_t zm64;
|
||
|
int s;
|
||
|
|
||
|
COMPXSP;
|
||
|
COMPYSP;
|
||
|
COMPZSP;
|
||
|
|
||
|
EXPLODEXSP;
|
||
|
EXPLODEYSP;
|
||
|
EXPLODEZSP;
|
||
|
|
||
|
FLUSHXSP;
|
||
|
FLUSHYSP;
|
||
|
FLUSHZSP;
|
||
|
|
||
|
ieee754_clearcx();
|
||
|
|
||
|
/*
|
||
|
* Handle the cases when at least one of x, y or z is a NaN.
|
||
|
* Order of precedence is sNaN, qNaN and z, x, y.
|
||
|
*/
|
||
|
if (zc == IEEE754_CLASS_SNAN)
|
||
|
return ieee754sp_nanxcpt(z);
|
||
|
if (xc == IEEE754_CLASS_SNAN)
|
||
|
return ieee754sp_nanxcpt(x);
|
||
|
if (yc == IEEE754_CLASS_SNAN)
|
||
|
return ieee754sp_nanxcpt(y);
|
||
|
if (zc == IEEE754_CLASS_QNAN)
|
||
|
return z;
|
||
|
if (xc == IEEE754_CLASS_QNAN)
|
||
|
return x;
|
||
|
if (yc == IEEE754_CLASS_QNAN)
|
||
|
return y;
|
||
|
|
||
|
if (zc == IEEE754_CLASS_DNORM)
|
||
|
SPDNORMZ;
|
||
|
/* ZERO z cases are handled separately below */
|
||
|
|
||
|
switch (CLPAIR(xc, yc)) {
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Infinity handling
|
||
|
*/
|
||
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
|
||
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
|
||
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
||
|
return ieee754sp_indef();
|
||
|
|
||
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
|
||
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
|
||
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
|
||
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
|
||
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
|
||
|
if ((zc == IEEE754_CLASS_INF) &&
|
||
|
((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
|
||
|
((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
|
||
|
/*
|
||
|
* Cases of addition of infinities with opposite signs
|
||
|
* or subtraction of infinities with same signs.
|
||
|
*/
|
||
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
||
|
return ieee754sp_indef();
|
||
|
}
|
||
|
/*
|
||
|
* z is here either not an infinity, or an infinity having the
|
||
|
* same sign as product (x*y) (in case of MADDF.D instruction)
|
||
|
* or product -(x*y) (in MSUBF.D case). The result must be an
|
||
|
* infinity, and its sign is determined only by the value of
|
||
|
* (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
|
||
|
*/
|
||
|
if (flags & MADDF_NEGATE_PRODUCT)
|
||
|
return ieee754sp_inf(1 ^ (xs ^ ys));
|
||
|
else
|
||
|
return ieee754sp_inf(xs ^ ys);
|
||
|
|
||
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
|
||
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
|
||
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
|
||
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
|
||
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
|
||
|
if (zc == IEEE754_CLASS_INF)
|
||
|
return ieee754sp_inf(zs);
|
||
|
if (zc == IEEE754_CLASS_ZERO) {
|
||
|
/* Handle cases +0 + (-0) and similar ones. */
|
||
|
if ((!(flags & MADDF_NEGATE_PRODUCT)
|
||
|
&& (zs == (xs ^ ys))) ||
|
||
|
((flags & MADDF_NEGATE_PRODUCT)
|
||
|
&& (zs != (xs ^ ys))))
|
||
|
/*
|
||
|
* Cases of addition of zeros of equal signs
|
||
|
* or subtraction of zeroes of opposite signs.
|
||
|
* The sign of the resulting zero is in any
|
||
|
* such case determined only by the sign of z.
|
||
|
*/
|
||
|
return z;
|
||
|
|
||
|
return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
||
|
}
|
||
|
/* x*y is here 0, and z is not 0, so just return z */
|
||
|
return z;
|
||
|
|
||
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
|
||
|
SPDNORMX;
|
||
|
|
||
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
|
||
|
if (zc == IEEE754_CLASS_INF)
|
||
|
return ieee754sp_inf(zs);
|
||
|
SPDNORMY;
|
||
|
break;
|
||
|
|
||
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
|
||
|
if (zc == IEEE754_CLASS_INF)
|
||
|
return ieee754sp_inf(zs);
|
||
|
SPDNORMX;
|
||
|
break;
|
||
|
|
||
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
|
||
|
if (zc == IEEE754_CLASS_INF)
|
||
|
return ieee754sp_inf(zs);
|
||
|
/* fall through to real computations */
|
||
|
}
|
||
|
|
||
|
/* Finally get to do some computation */
|
||
|
|
||
|
/*
|
||
|
* Do the multiplication bit first
|
||
|
*
|
||
|
* rm = xm * ym, re = xe + ye basically
|
||
|
*
|
||
|
* At this point xm and ym should have been normalized.
|
||
|
*/
|
||
|
|
||
|
/* rm = xm * ym, re = xe+ye basically */
|
||
|
assert(xm & SP_HIDDEN_BIT);
|
||
|
assert(ym & SP_HIDDEN_BIT);
|
||
|
|
||
|
re = xe + ye;
|
||
|
rs = xs ^ ys;
|
||
|
if (flags & MADDF_NEGATE_PRODUCT)
|
||
|
rs ^= 1;
|
||
|
|
||
|
/* Multiple 24 bit xm and ym to give 48 bit results */
|
||
|
rm64 = (uint64_t)xm * ym;
|
||
|
|
||
|
/* Shunt to top of word */
|
||
|
rm64 = rm64 << 16;
|
||
|
|
||
|
/* Put explicit bit at bit 62 if necessary */
|
||
|
if ((int64_t) rm64 < 0) {
|
||
|
rm64 = rm64 >> 1;
|
||
|
re++;
|
||
|
}
|
||
|
|
||
|
assert(rm64 & (1 << 62));
|
||
|
|
||
|
if (zc == IEEE754_CLASS_ZERO) {
|
||
|
/*
|
||
|
* Move explicit bit from bit 62 to bit 26 since the
|
||
|
* ieee754sp_format code expects the mantissa to be
|
||
|
* 27 bits wide (24 + 3 rounding bits).
|
||
|
*/
|
||
|
rm = XSPSRS64(rm64, (62 - 26));
|
||
|
return ieee754sp_format(rs, re, rm);
|
||
|
}
|
||
|
|
||
|
/* Move explicit bit from bit 23 to bit 62 */
|
||
|
zm64 = (uint64_t)zm << (62 - 23);
|
||
|
assert(zm64 & (1 << 62));
|
||
|
|
||
|
/* Make the exponents the same */
|
||
|
if (ze > re) {
|
||
|
/*
|
||
|
* Have to shift r fraction right to align.
|
||
|
*/
|
||
|
s = ze - re;
|
||
|
rm64 = XSPSRS64(rm64, s);
|
||
|
re += s;
|
||
|
} else if (re > ze) {
|
||
|
/*
|
||
|
* Have to shift z fraction right to align.
|
||
|
*/
|
||
|
s = re - ze;
|
||
|
zm64 = XSPSRS64(zm64, s);
|
||
|
ze += s;
|
||
|
}
|
||
|
assert(ze == re);
|
||
|
assert(ze <= SP_EMAX);
|
||
|
|
||
|
/* Do the addition */
|
||
|
if (zs == rs) {
|
||
|
/*
|
||
|
* Generate 64 bit result by adding two 63 bit numbers
|
||
|
* leaving result in zm64, zs and ze.
|
||
|
*/
|
||
|
zm64 = zm64 + rm64;
|
||
|
if ((int64_t)zm64 < 0) { /* carry out */
|
||
|
zm64 = XSPSRS1(zm64);
|
||
|
ze++;
|
||
|
}
|
||
|
} else {
|
||
|
if (zm64 >= rm64) {
|
||
|
zm64 = zm64 - rm64;
|
||
|
} else {
|
||
|
zm64 = rm64 - zm64;
|
||
|
zs = rs;
|
||
|
}
|
||
|
if (zm64 == 0)
|
||
|
return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
||
|
|
||
|
/*
|
||
|
* Put explicit bit at bit 62 if necessary.
|
||
|
*/
|
||
|
while ((zm64 >> 62) == 0) {
|
||
|
zm64 <<= 1;
|
||
|
ze--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Move explicit bit from bit 62 to bit 26 since the
|
||
|
* ieee754sp_format code expects the mantissa to be
|
||
|
* 27 bits wide (24 + 3 rounding bits).
|
||
|
*/
|
||
|
zm = XSPSRS64(zm64, (62 - 26));
|
||
|
|
||
|
return ieee754sp_format(zs, ze, zm);
|
||
|
}
|
||
|
|
||
|
union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
|
||
|
union ieee754sp y)
|
||
|
{
|
||
|
return _sp_maddf(z, x, y, 0);
|
||
|
}
|
||
|
|
||
|
union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
|
||
|
union ieee754sp y)
|
||
|
{
|
||
|
return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
|
||
|
}
|