157 lines
4.2 KiB
C
157 lines
4.2 KiB
C
|
#ifndef _ASM_PGALLOC_H
|
||
|
#define _ASM_PGALLOC_H
|
||
|
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/threads.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
|
||
|
#include <asm/cache.h>
|
||
|
|
||
|
/* Allocate the top level pgd (page directory)
|
||
|
*
|
||
|
* Here (for 64 bit kernels) we implement a Hybrid L2/L3 scheme: we
|
||
|
* allocate the first pmd adjacent to the pgd. This means that we can
|
||
|
* subtract a constant offset to get to it. The pmd and pgd sizes are
|
||
|
* arranged so that a single pmd covers 4GB (giving a full 64-bit
|
||
|
* process access to 8TB) so our lookups are effectively L2 for the
|
||
|
* first 4GB of the kernel (i.e. for all ILP32 processes and all the
|
||
|
* kernel for machines with under 4GB of memory) */
|
||
|
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *pgd = (pgd_t *)__get_free_pages(GFP_KERNEL,
|
||
|
PGD_ALLOC_ORDER);
|
||
|
pgd_t *actual_pgd = pgd;
|
||
|
|
||
|
if (likely(pgd != NULL)) {
|
||
|
memset(pgd, 0, PAGE_SIZE<<PGD_ALLOC_ORDER);
|
||
|
#if CONFIG_PGTABLE_LEVELS == 3
|
||
|
actual_pgd += PTRS_PER_PGD;
|
||
|
/* Populate first pmd with allocated memory. We mark it
|
||
|
* with PxD_FLAG_ATTACHED as a signal to the system that this
|
||
|
* pmd entry may not be cleared. */
|
||
|
__pgd_val_set(*actual_pgd, (PxD_FLAG_PRESENT |
|
||
|
PxD_FLAG_VALID |
|
||
|
PxD_FLAG_ATTACHED)
|
||
|
+ (__u32)(__pa((unsigned long)pgd) >> PxD_VALUE_SHIFT));
|
||
|
/* The first pmd entry also is marked with PxD_FLAG_ATTACHED as
|
||
|
* a signal that this pmd may not be freed */
|
||
|
__pgd_val_set(*pgd, PxD_FLAG_ATTACHED);
|
||
|
#endif
|
||
|
}
|
||
|
return actual_pgd;
|
||
|
}
|
||
|
|
||
|
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
||
|
{
|
||
|
#if CONFIG_PGTABLE_LEVELS == 3
|
||
|
pgd -= PTRS_PER_PGD;
|
||
|
#endif
|
||
|
free_pages((unsigned long)pgd, PGD_ALLOC_ORDER);
|
||
|
}
|
||
|
|
||
|
#if CONFIG_PGTABLE_LEVELS == 3
|
||
|
|
||
|
/* Three Level Page Table Support for pmd's */
|
||
|
|
||
|
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmd)
|
||
|
{
|
||
|
__pgd_val_set(*pgd, (PxD_FLAG_PRESENT | PxD_FLAG_VALID) +
|
||
|
(__u32)(__pa((unsigned long)pmd) >> PxD_VALUE_SHIFT));
|
||
|
}
|
||
|
|
||
|
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long address)
|
||
|
{
|
||
|
pmd_t *pmd = (pmd_t *)__get_free_pages(GFP_KERNEL, PMD_ORDER);
|
||
|
if (pmd)
|
||
|
memset(pmd, 0, PAGE_SIZE<<PMD_ORDER);
|
||
|
return pmd;
|
||
|
}
|
||
|
|
||
|
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
|
||
|
{
|
||
|
if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) {
|
||
|
/*
|
||
|
* This is the permanent pmd attached to the pgd;
|
||
|
* cannot free it.
|
||
|
* Increment the counter to compensate for the decrement
|
||
|
* done by generic mm code.
|
||
|
*/
|
||
|
mm_inc_nr_pmds(mm);
|
||
|
return;
|
||
|
}
|
||
|
free_pages((unsigned long)pmd, PMD_ORDER);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Two Level Page Table Support for pmd's */
|
||
|
|
||
|
/*
|
||
|
* allocating and freeing a pmd is trivial: the 1-entry pmd is
|
||
|
* inside the pgd, so has no extra memory associated with it.
|
||
|
*/
|
||
|
|
||
|
#define pmd_alloc_one(mm, addr) ({ BUG(); ((pmd_t *)2); })
|
||
|
#define pmd_free(mm, x) do { } while (0)
|
||
|
#define pgd_populate(mm, pmd, pte) BUG()
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static inline void
|
||
|
pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, pte_t *pte)
|
||
|
{
|
||
|
#if CONFIG_PGTABLE_LEVELS == 3
|
||
|
/* preserve the gateway marker if this is the beginning of
|
||
|
* the permanent pmd */
|
||
|
if(pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
|
||
|
__pmd_val_set(*pmd, (PxD_FLAG_PRESENT |
|
||
|
PxD_FLAG_VALID |
|
||
|
PxD_FLAG_ATTACHED)
|
||
|
+ (__u32)(__pa((unsigned long)pte) >> PxD_VALUE_SHIFT));
|
||
|
else
|
||
|
#endif
|
||
|
__pmd_val_set(*pmd, (PxD_FLAG_PRESENT | PxD_FLAG_VALID)
|
||
|
+ (__u32)(__pa((unsigned long)pte) >> PxD_VALUE_SHIFT));
|
||
|
}
|
||
|
|
||
|
#define pmd_populate(mm, pmd, pte_page) \
|
||
|
pmd_populate_kernel(mm, pmd, page_address(pte_page))
|
||
|
#define pmd_pgtable(pmd) pmd_page(pmd)
|
||
|
|
||
|
static inline pgtable_t
|
||
|
pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
||
|
{
|
||
|
struct page *page = alloc_page(GFP_KERNEL|__GFP_ZERO);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
if (!pgtable_page_ctor(page)) {
|
||
|
__free_page(page);
|
||
|
return NULL;
|
||
|
}
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static inline pte_t *
|
||
|
pte_alloc_one_kernel(struct mm_struct *mm, unsigned long addr)
|
||
|
{
|
||
|
pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_ZERO);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
|
||
|
{
|
||
|
free_page((unsigned long)pte);
|
||
|
}
|
||
|
|
||
|
static inline void pte_free(struct mm_struct *mm, struct page *pte)
|
||
|
{
|
||
|
pgtable_page_dtor(pte);
|
||
|
pte_free_kernel(mm, page_address(pte));
|
||
|
}
|
||
|
|
||
|
#define check_pgt_cache() do { } while (0)
|
||
|
|
||
|
#endif
|