296 lines
8.3 KiB
C
296 lines
8.3 KiB
C
|
#ifndef __PARISC_UACCESS_H
|
||
|
#define __PARISC_UACCESS_H
|
||
|
|
||
|
/*
|
||
|
* User space memory access functions
|
||
|
*/
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/cache.h>
|
||
|
#include <asm/errno.h>
|
||
|
#include <asm-generic/uaccess-unaligned.h>
|
||
|
|
||
|
#include <linux/bug.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/thread_info.h>
|
||
|
|
||
|
#define VERIFY_READ 0
|
||
|
#define VERIFY_WRITE 1
|
||
|
|
||
|
#define KERNEL_DS ((mm_segment_t){0})
|
||
|
#define USER_DS ((mm_segment_t){1})
|
||
|
|
||
|
#define segment_eq(a, b) ((a).seg == (b).seg)
|
||
|
|
||
|
#define get_ds() (KERNEL_DS)
|
||
|
#define get_fs() (current_thread_info()->addr_limit)
|
||
|
#define set_fs(x) (current_thread_info()->addr_limit = (x))
|
||
|
|
||
|
/*
|
||
|
* Note that since kernel addresses are in a separate address space on
|
||
|
* parisc, we don't need to do anything for access_ok().
|
||
|
* We just let the page fault handler do the right thing. This also means
|
||
|
* that put_user is the same as __put_user, etc.
|
||
|
*/
|
||
|
|
||
|
static inline long access_ok(int type, const void __user * addr,
|
||
|
unsigned long size)
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
#define put_user __put_user
|
||
|
#define get_user __get_user
|
||
|
|
||
|
#if !defined(CONFIG_64BIT)
|
||
|
#define LDD_USER(val, ptr) __get_user_asm64(val, ptr)
|
||
|
#define STD_USER(x, ptr) __put_user_asm64(x, ptr)
|
||
|
#else
|
||
|
#define LDD_USER(val, ptr) __get_user_asm(val, "ldd", ptr)
|
||
|
#define STD_USER(x, ptr) __put_user_asm("std", x, ptr)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The exception table contains two values: the first is the relative offset to
|
||
|
* the address of the instruction that is allowed to fault, and the second is
|
||
|
* the relative offset to the address of the fixup routine. Since relative
|
||
|
* addresses are used, 32bit values are sufficient even on 64bit kernel.
|
||
|
*/
|
||
|
|
||
|
#define ARCH_HAS_RELATIVE_EXTABLE
|
||
|
struct exception_table_entry {
|
||
|
int insn; /* relative address of insn that is allowed to fault. */
|
||
|
int fixup; /* relative address of fixup routine */
|
||
|
};
|
||
|
|
||
|
#define ASM_EXCEPTIONTABLE_ENTRY( fault_addr, except_addr )\
|
||
|
".section __ex_table,\"aw\"\n" \
|
||
|
".word (" #fault_addr " - .), (" #except_addr " - .)\n\t" \
|
||
|
".previous\n"
|
||
|
|
||
|
/*
|
||
|
* ASM_EXCEPTIONTABLE_ENTRY_EFAULT() creates a special exception table entry
|
||
|
* (with lowest bit set) for which the fault handler in fixup_exception() will
|
||
|
* load -EFAULT into %r8 for a read or write fault, and zeroes the target
|
||
|
* register in case of a read fault in get_user().
|
||
|
*/
|
||
|
#define ASM_EXCEPTIONTABLE_ENTRY_EFAULT( fault_addr, except_addr )\
|
||
|
ASM_EXCEPTIONTABLE_ENTRY( fault_addr, except_addr + 1)
|
||
|
|
||
|
/*
|
||
|
* The page fault handler stores, in a per-cpu area, the following information
|
||
|
* if a fixup routine is available.
|
||
|
*/
|
||
|
struct exception_data {
|
||
|
unsigned long fault_ip;
|
||
|
unsigned long fault_gp;
|
||
|
unsigned long fault_space;
|
||
|
unsigned long fault_addr;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* load_sr2() preloads the space register %%sr2 - based on the value of
|
||
|
* get_fs() - with either a value of 0 to access kernel space (KERNEL_DS which
|
||
|
* is 0), or with the current value of %%sr3 to access user space (USER_DS)
|
||
|
* memory. The following __get_user_asm() and __put_user_asm() functions have
|
||
|
* %%sr2 hard-coded to access the requested memory.
|
||
|
*/
|
||
|
#define load_sr2() \
|
||
|
__asm__(" or,= %0,%%r0,%%r0\n\t" \
|
||
|
" mfsp %%sr3,%0\n\t" \
|
||
|
" mtsp %0,%%sr2\n\t" \
|
||
|
: : "r"(get_fs()) : )
|
||
|
|
||
|
#define __get_user_internal(val, ptr) \
|
||
|
({ \
|
||
|
register long __gu_err __asm__ ("r8") = 0; \
|
||
|
\
|
||
|
switch (sizeof(*(ptr))) { \
|
||
|
case 1: __get_user_asm(val, "ldb", ptr); break; \
|
||
|
case 2: __get_user_asm(val, "ldh", ptr); break; \
|
||
|
case 4: __get_user_asm(val, "ldw", ptr); break; \
|
||
|
case 8: LDD_USER(val, ptr); break; \
|
||
|
default: BUILD_BUG(); \
|
||
|
} \
|
||
|
\
|
||
|
__gu_err; \
|
||
|
})
|
||
|
|
||
|
#define __get_user(val, ptr) \
|
||
|
({ \
|
||
|
load_sr2(); \
|
||
|
__get_user_internal(val, ptr); \
|
||
|
})
|
||
|
|
||
|
#define __get_user_asm(val, ldx, ptr) \
|
||
|
{ \
|
||
|
register long __gu_val; \
|
||
|
\
|
||
|
__asm__("1: " ldx " 0(%%sr2,%2),%0\n" \
|
||
|
"9:\n" \
|
||
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \
|
||
|
: "=r"(__gu_val), "=r"(__gu_err) \
|
||
|
: "r"(ptr), "1"(__gu_err)); \
|
||
|
\
|
||
|
(val) = (__force __typeof__(*(ptr))) __gu_val; \
|
||
|
}
|
||
|
|
||
|
#if !defined(CONFIG_64BIT)
|
||
|
|
||
|
#define __get_user_asm64(val, ptr) \
|
||
|
{ \
|
||
|
union { \
|
||
|
unsigned long long l; \
|
||
|
__typeof__(*(ptr)) t; \
|
||
|
} __gu_tmp; \
|
||
|
\
|
||
|
__asm__(" copy %%r0,%R0\n" \
|
||
|
"1: ldw 0(%%sr2,%2),%0\n" \
|
||
|
"2: ldw 4(%%sr2,%2),%R0\n" \
|
||
|
"9:\n" \
|
||
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \
|
||
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(2b, 9b) \
|
||
|
: "=&r"(__gu_tmp.l), "=r"(__gu_err) \
|
||
|
: "r"(ptr), "1"(__gu_err)); \
|
||
|
\
|
||
|
(val) = __gu_tmp.t; \
|
||
|
}
|
||
|
|
||
|
#endif /* !defined(CONFIG_64BIT) */
|
||
|
|
||
|
|
||
|
#define __put_user_internal(x, ptr) \
|
||
|
({ \
|
||
|
register long __pu_err __asm__ ("r8") = 0; \
|
||
|
__typeof__(*(ptr)) __x = (__typeof__(*(ptr)))(x); \
|
||
|
\
|
||
|
switch (sizeof(*(ptr))) { \
|
||
|
case 1: __put_user_asm("stb", __x, ptr); break; \
|
||
|
case 2: __put_user_asm("sth", __x, ptr); break; \
|
||
|
case 4: __put_user_asm("stw", __x, ptr); break; \
|
||
|
case 8: STD_USER(__x, ptr); break; \
|
||
|
default: BUILD_BUG(); \
|
||
|
} \
|
||
|
\
|
||
|
__pu_err; \
|
||
|
})
|
||
|
|
||
|
#define __put_user(x, ptr) \
|
||
|
({ \
|
||
|
load_sr2(); \
|
||
|
__put_user_internal(x, ptr); \
|
||
|
})
|
||
|
|
||
|
|
||
|
/*
|
||
|
* The "__put_user/kernel_asm()" macros tell gcc they read from memory
|
||
|
* instead of writing. This is because they do not write to any memory
|
||
|
* gcc knows about, so there are no aliasing issues. These macros must
|
||
|
* also be aware that fixups are executed in the context of the fault,
|
||
|
* and any registers used there must be listed as clobbers.
|
||
|
* r8 is already listed as err.
|
||
|
*/
|
||
|
|
||
|
#define __put_user_asm(stx, x, ptr) \
|
||
|
__asm__ __volatile__ ( \
|
||
|
"1: " stx " %2,0(%%sr2,%1)\n" \
|
||
|
"9:\n" \
|
||
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \
|
||
|
: "=r"(__pu_err) \
|
||
|
: "r"(ptr), "r"(x), "0"(__pu_err))
|
||
|
|
||
|
|
||
|
#if !defined(CONFIG_64BIT)
|
||
|
|
||
|
#define __put_user_asm64(__val, ptr) do { \
|
||
|
__asm__ __volatile__ ( \
|
||
|
"1: stw %2,0(%%sr2,%1)\n" \
|
||
|
"2: stw %R2,4(%%sr2,%1)\n" \
|
||
|
"9:\n" \
|
||
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 9b) \
|
||
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(2b, 9b) \
|
||
|
: "=r"(__pu_err) \
|
||
|
: "r"(ptr), "r"(__val), "0"(__pu_err)); \
|
||
|
} while (0)
|
||
|
|
||
|
#endif /* !defined(CONFIG_64BIT) */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Complex access routines -- external declarations
|
||
|
*/
|
||
|
|
||
|
extern unsigned long lcopy_to_user(void __user *, const void *, unsigned long);
|
||
|
extern unsigned long lcopy_from_user(void *, const void __user *, unsigned long);
|
||
|
extern unsigned long lcopy_in_user(void __user *, const void __user *, unsigned long);
|
||
|
extern long strncpy_from_user(char *, const char __user *, long);
|
||
|
extern unsigned lclear_user(void __user *, unsigned long);
|
||
|
extern long lstrnlen_user(const char __user *, long);
|
||
|
/*
|
||
|
* Complex access routines -- macros
|
||
|
*/
|
||
|
#define user_addr_max() (~0UL)
|
||
|
|
||
|
#define strnlen_user lstrnlen_user
|
||
|
#define strlen_user(str) lstrnlen_user(str, 0x7fffffffL)
|
||
|
#define clear_user lclear_user
|
||
|
#define __clear_user lclear_user
|
||
|
|
||
|
unsigned long __must_check __copy_to_user(void __user *dst, const void *src,
|
||
|
unsigned long len);
|
||
|
unsigned long __must_check __copy_from_user(void *dst, const void __user *src,
|
||
|
unsigned long len);
|
||
|
unsigned long copy_in_user(void __user *dst, const void __user *src,
|
||
|
unsigned long len);
|
||
|
#define __copy_in_user copy_in_user
|
||
|
#define __copy_to_user_inatomic __copy_to_user
|
||
|
#define __copy_from_user_inatomic __copy_from_user
|
||
|
|
||
|
extern void __compiletime_error("usercopy buffer size is too small")
|
||
|
__bad_copy_user(void);
|
||
|
|
||
|
static inline void copy_user_overflow(int size, unsigned long count)
|
||
|
{
|
||
|
WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count);
|
||
|
}
|
||
|
|
||
|
static __always_inline unsigned long __must_check
|
||
|
copy_from_user(void *to, const void __user *from, unsigned long n)
|
||
|
{
|
||
|
int sz = __compiletime_object_size(to);
|
||
|
unsigned long ret = n;
|
||
|
|
||
|
if (likely(sz < 0 || sz >= n)) {
|
||
|
check_object_size(to, n, false);
|
||
|
ret = __copy_from_user(to, from, n);
|
||
|
} else if (!__builtin_constant_p(n))
|
||
|
copy_user_overflow(sz, n);
|
||
|
else
|
||
|
__bad_copy_user();
|
||
|
|
||
|
if (unlikely(ret))
|
||
|
memset(to + (n - ret), 0, ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static __always_inline unsigned long __must_check
|
||
|
copy_to_user(void __user *to, const void *from, unsigned long n)
|
||
|
{
|
||
|
int sz = __compiletime_object_size(from);
|
||
|
|
||
|
if (likely(sz < 0 || sz >= n)) {
|
||
|
check_object_size(from, n, true);
|
||
|
n = __copy_to_user(to, from, n);
|
||
|
} else if (!__builtin_constant_p(n))
|
||
|
copy_user_overflow(sz, n);
|
||
|
else
|
||
|
__bad_copy_user();
|
||
|
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
struct pt_regs;
|
||
|
int fixup_exception(struct pt_regs *regs);
|
||
|
|
||
|
#endif /* __PARISC_UACCESS_H */
|