1798 lines
46 KiB
C
1798 lines
46 KiB
C
|
/*
|
||
|
* The file intends to implement the platform dependent EEH operations on
|
||
|
* powernv platform. Actually, the powernv was created in order to fully
|
||
|
* hypervisor support.
|
||
|
*
|
||
|
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/msi.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/rbtree.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
|
||
|
#include <asm/eeh.h>
|
||
|
#include <asm/eeh_event.h>
|
||
|
#include <asm/firmware.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/iommu.h>
|
||
|
#include <asm/machdep.h>
|
||
|
#include <asm/msi_bitmap.h>
|
||
|
#include <asm/opal.h>
|
||
|
#include <asm/ppc-pci.h>
|
||
|
#include <asm/pnv-pci.h>
|
||
|
|
||
|
#include "powernv.h"
|
||
|
#include "pci.h"
|
||
|
|
||
|
static bool pnv_eeh_nb_init = false;
|
||
|
static int eeh_event_irq = -EINVAL;
|
||
|
|
||
|
static int pnv_eeh_init(void)
|
||
|
{
|
||
|
struct pci_controller *hose;
|
||
|
struct pnv_phb *phb;
|
||
|
|
||
|
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
|
||
|
pr_warn("%s: OPAL is required !\n",
|
||
|
__func__);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Set probe mode */
|
||
|
eeh_add_flag(EEH_PROBE_MODE_DEV);
|
||
|
|
||
|
/*
|
||
|
* P7IOC blocks PCI config access to frozen PE, but PHB3
|
||
|
* doesn't do that. So we have to selectively enable I/O
|
||
|
* prior to collecting error log.
|
||
|
*/
|
||
|
list_for_each_entry(hose, &hose_list, list_node) {
|
||
|
phb = hose->private_data;
|
||
|
|
||
|
if (phb->model == PNV_PHB_MODEL_P7IOC)
|
||
|
eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
|
||
|
|
||
|
/*
|
||
|
* PE#0 should be regarded as valid by EEH core
|
||
|
* if it's not the reserved one. Currently, we
|
||
|
* have the reserved PE#255 and PE#127 for PHB3
|
||
|
* and P7IOC separately. So we should regard
|
||
|
* PE#0 as valid for PHB3 and P7IOC.
|
||
|
*/
|
||
|
if (phb->ioda.reserved_pe_idx != 0)
|
||
|
eeh_add_flag(EEH_VALID_PE_ZERO);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t pnv_eeh_event(int irq, void *data)
|
||
|
{
|
||
|
/*
|
||
|
* We simply send a special EEH event if EEH has been
|
||
|
* enabled. We don't care about EEH events until we've
|
||
|
* finished processing the outstanding ones. Event processing
|
||
|
* gets unmasked in next_error() if EEH is enabled.
|
||
|
*/
|
||
|
disable_irq_nosync(irq);
|
||
|
|
||
|
if (eeh_enabled())
|
||
|
eeh_send_failure_event(NULL);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_DEBUG_FS
|
||
|
static ssize_t pnv_eeh_ei_write(struct file *filp,
|
||
|
const char __user *user_buf,
|
||
|
size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct pci_controller *hose = filp->private_data;
|
||
|
struct eeh_dev *edev;
|
||
|
struct eeh_pe *pe;
|
||
|
int pe_no, type, func;
|
||
|
unsigned long addr, mask;
|
||
|
char buf[50];
|
||
|
int ret;
|
||
|
|
||
|
if (!eeh_ops || !eeh_ops->err_inject)
|
||
|
return -ENXIO;
|
||
|
|
||
|
/* Copy over argument buffer */
|
||
|
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
|
||
|
if (!ret)
|
||
|
return -EFAULT;
|
||
|
|
||
|
/* Retrieve parameters */
|
||
|
ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
|
||
|
&pe_no, &type, &func, &addr, &mask);
|
||
|
if (ret != 5)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Retrieve PE */
|
||
|
edev = kzalloc(sizeof(*edev), GFP_KERNEL);
|
||
|
if (!edev)
|
||
|
return -ENOMEM;
|
||
|
edev->phb = hose;
|
||
|
edev->pe_config_addr = pe_no;
|
||
|
pe = eeh_pe_get(edev);
|
||
|
kfree(edev);
|
||
|
if (!pe)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Do error injection */
|
||
|
ret = eeh_ops->err_inject(pe, type, func, addr, mask);
|
||
|
return ret < 0 ? ret : count;
|
||
|
}
|
||
|
|
||
|
static const struct file_operations pnv_eeh_ei_fops = {
|
||
|
.open = simple_open,
|
||
|
.llseek = no_llseek,
|
||
|
.write = pnv_eeh_ei_write,
|
||
|
};
|
||
|
|
||
|
static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
|
||
|
{
|
||
|
struct pci_controller *hose = data;
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
|
||
|
out_be64(phb->regs + offset, val);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
|
||
|
{
|
||
|
struct pci_controller *hose = data;
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
|
||
|
*val = in_be64(phb->regs + offset);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define PNV_EEH_DBGFS_ENTRY(name, reg) \
|
||
|
static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \
|
||
|
{ \
|
||
|
return pnv_eeh_dbgfs_set(data, reg, val); \
|
||
|
} \
|
||
|
\
|
||
|
static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \
|
||
|
{ \
|
||
|
return pnv_eeh_dbgfs_get(data, reg, val); \
|
||
|
} \
|
||
|
\
|
||
|
DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \
|
||
|
pnv_eeh_dbgfs_get_##name, \
|
||
|
pnv_eeh_dbgfs_set_##name, \
|
||
|
"0x%llx\n")
|
||
|
|
||
|
PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
|
||
|
PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
|
||
|
PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
|
||
|
|
||
|
#endif /* CONFIG_DEBUG_FS */
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_post_init - EEH platform dependent post initialization
|
||
|
*
|
||
|
* EEH platform dependent post initialization on powernv. When
|
||
|
* the function is called, the EEH PEs and devices should have
|
||
|
* been built. If the I/O cache staff has been built, EEH is
|
||
|
* ready to supply service.
|
||
|
*/
|
||
|
static int pnv_eeh_post_init(void)
|
||
|
{
|
||
|
struct pci_controller *hose;
|
||
|
struct pnv_phb *phb;
|
||
|
int ret = 0;
|
||
|
|
||
|
/* Register OPAL event notifier */
|
||
|
if (!pnv_eeh_nb_init) {
|
||
|
eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
|
||
|
if (eeh_event_irq < 0) {
|
||
|
pr_err("%s: Can't register OPAL event interrupt (%d)\n",
|
||
|
__func__, eeh_event_irq);
|
||
|
return eeh_event_irq;
|
||
|
}
|
||
|
|
||
|
ret = request_irq(eeh_event_irq, pnv_eeh_event,
|
||
|
IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
|
||
|
if (ret < 0) {
|
||
|
irq_dispose_mapping(eeh_event_irq);
|
||
|
pr_err("%s: Can't request OPAL event interrupt (%d)\n",
|
||
|
__func__, eeh_event_irq);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
pnv_eeh_nb_init = true;
|
||
|
}
|
||
|
|
||
|
if (!eeh_enabled())
|
||
|
disable_irq(eeh_event_irq);
|
||
|
|
||
|
list_for_each_entry(hose, &hose_list, list_node) {
|
||
|
phb = hose->private_data;
|
||
|
|
||
|
/*
|
||
|
* If EEH is enabled, we're going to rely on that.
|
||
|
* Otherwise, we restore to conventional mechanism
|
||
|
* to clear frozen PE during PCI config access.
|
||
|
*/
|
||
|
if (eeh_enabled())
|
||
|
phb->flags |= PNV_PHB_FLAG_EEH;
|
||
|
else
|
||
|
phb->flags &= ~PNV_PHB_FLAG_EEH;
|
||
|
|
||
|
/* Create debugfs entries */
|
||
|
#ifdef CONFIG_DEBUG_FS
|
||
|
if (phb->has_dbgfs || !phb->dbgfs)
|
||
|
continue;
|
||
|
|
||
|
phb->has_dbgfs = 1;
|
||
|
debugfs_create_file("err_injct", 0200,
|
||
|
phb->dbgfs, hose,
|
||
|
&pnv_eeh_ei_fops);
|
||
|
|
||
|
debugfs_create_file("err_injct_outbound", 0600,
|
||
|
phb->dbgfs, hose,
|
||
|
&pnv_eeh_dbgfs_ops_outb);
|
||
|
debugfs_create_file("err_injct_inboundA", 0600,
|
||
|
phb->dbgfs, hose,
|
||
|
&pnv_eeh_dbgfs_ops_inbA);
|
||
|
debugfs_create_file("err_injct_inboundB", 0600,
|
||
|
phb->dbgfs, hose,
|
||
|
&pnv_eeh_dbgfs_ops_inbB);
|
||
|
#endif /* CONFIG_DEBUG_FS */
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
|
||
|
{
|
||
|
int pos = PCI_CAPABILITY_LIST;
|
||
|
int cnt = 48; /* Maximal number of capabilities */
|
||
|
u32 status, id;
|
||
|
|
||
|
if (!pdn)
|
||
|
return 0;
|
||
|
|
||
|
/* Check if the device supports capabilities */
|
||
|
pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
|
||
|
if (!(status & PCI_STATUS_CAP_LIST))
|
||
|
return 0;
|
||
|
|
||
|
while (cnt--) {
|
||
|
pnv_pci_cfg_read(pdn, pos, 1, &pos);
|
||
|
if (pos < 0x40)
|
||
|
break;
|
||
|
|
||
|
pos &= ~3;
|
||
|
pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
|
||
|
if (id == 0xff)
|
||
|
break;
|
||
|
|
||
|
/* Found */
|
||
|
if (id == cap)
|
||
|
return pos;
|
||
|
|
||
|
/* Next one */
|
||
|
pos += PCI_CAP_LIST_NEXT;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
u32 header;
|
||
|
int pos = 256, ttl = (4096 - 256) / 8;
|
||
|
|
||
|
if (!edev || !edev->pcie_cap)
|
||
|
return 0;
|
||
|
if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
|
||
|
return 0;
|
||
|
else if (!header)
|
||
|
return 0;
|
||
|
|
||
|
while (ttl-- > 0) {
|
||
|
if (PCI_EXT_CAP_ID(header) == cap && pos)
|
||
|
return pos;
|
||
|
|
||
|
pos = PCI_EXT_CAP_NEXT(header);
|
||
|
if (pos < 256)
|
||
|
break;
|
||
|
|
||
|
if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_probe - Do probe on PCI device
|
||
|
* @pdn: PCI device node
|
||
|
* @data: unused
|
||
|
*
|
||
|
* When EEH module is installed during system boot, all PCI devices
|
||
|
* are checked one by one to see if it supports EEH. The function
|
||
|
* is introduced for the purpose. By default, EEH has been enabled
|
||
|
* on all PCI devices. That's to say, we only need do necessary
|
||
|
* initialization on the corresponding eeh device and create PE
|
||
|
* accordingly.
|
||
|
*
|
||
|
* It's notable that's unsafe to retrieve the EEH device through
|
||
|
* the corresponding PCI device. During the PCI device hotplug, which
|
||
|
* was possiblly triggered by EEH core, the binding between EEH device
|
||
|
* and the PCI device isn't built yet.
|
||
|
*/
|
||
|
static void *pnv_eeh_probe(struct pci_dn *pdn, void *data)
|
||
|
{
|
||
|
struct pci_controller *hose = pdn->phb;
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
uint32_t pcie_flags;
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* When probing the root bridge, which doesn't have any
|
||
|
* subordinate PCI devices. We don't have OF node for
|
||
|
* the root bridge. So it's not reasonable to continue
|
||
|
* the probing.
|
||
|
*/
|
||
|
if (!edev || edev->pe)
|
||
|
return NULL;
|
||
|
|
||
|
/* Skip for PCI-ISA bridge */
|
||
|
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
|
||
|
return NULL;
|
||
|
|
||
|
/* Initialize eeh device */
|
||
|
edev->class_code = pdn->class_code;
|
||
|
edev->mode &= 0xFFFFFF00;
|
||
|
edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
|
||
|
edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
|
||
|
edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
|
||
|
edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
|
||
|
if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
|
||
|
edev->mode |= EEH_DEV_BRIDGE;
|
||
|
if (edev->pcie_cap) {
|
||
|
pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
|
||
|
2, &pcie_flags);
|
||
|
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
|
||
|
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
|
||
|
edev->mode |= EEH_DEV_ROOT_PORT;
|
||
|
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
|
||
|
edev->mode |= EEH_DEV_DS_PORT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
edev->config_addr = (pdn->busno << 8) | (pdn->devfn);
|
||
|
edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr];
|
||
|
|
||
|
/* Create PE */
|
||
|
ret = eeh_add_to_parent_pe(edev);
|
||
|
if (ret) {
|
||
|
pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n",
|
||
|
__func__, hose->global_number, pdn->busno,
|
||
|
PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the PE contains any one of following adapters, the
|
||
|
* PCI config space can't be accessed when dumping EEH log.
|
||
|
* Otherwise, we will run into fenced PHB caused by shortage
|
||
|
* of outbound credits in the adapter. The PCI config access
|
||
|
* should be blocked until PE reset. MMIO access is dropped
|
||
|
* by hardware certainly. In order to drop PCI config requests,
|
||
|
* one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
|
||
|
* will be checked in the backend for PE state retrival. If
|
||
|
* the PE becomes frozen for the first time and the flag has
|
||
|
* been set for the PE, we will set EEH_PE_CFG_BLOCKED for
|
||
|
* that PE to block its config space.
|
||
|
*
|
||
|
* Broadcom Austin 4-ports NICs (14e4:1657)
|
||
|
* Broadcom Shiner 4-ports 1G NICs (14e4:168a)
|
||
|
* Broadcom Shiner 2-ports 10G NICs (14e4:168e)
|
||
|
*/
|
||
|
if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
|
||
|
pdn->device_id == 0x1657) ||
|
||
|
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
|
||
|
pdn->device_id == 0x168a) ||
|
||
|
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
|
||
|
pdn->device_id == 0x168e))
|
||
|
edev->pe->state |= EEH_PE_CFG_RESTRICTED;
|
||
|
|
||
|
/*
|
||
|
* Cache the PE primary bus, which can't be fetched when
|
||
|
* full hotplug is in progress. In that case, all child
|
||
|
* PCI devices of the PE are expected to be removed prior
|
||
|
* to PE reset.
|
||
|
*/
|
||
|
if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
|
||
|
edev->pe->bus = pci_find_bus(hose->global_number,
|
||
|
pdn->busno);
|
||
|
if (edev->pe->bus)
|
||
|
edev->pe->state |= EEH_PE_PRI_BUS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable EEH explicitly so that we will do EEH check
|
||
|
* while accessing I/O stuff
|
||
|
*/
|
||
|
eeh_add_flag(EEH_ENABLED);
|
||
|
|
||
|
/* Save memory bars */
|
||
|
eeh_save_bars(edev);
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
|
||
|
* @pe: EEH PE
|
||
|
* @option: operation to be issued
|
||
|
*
|
||
|
* The function is used to control the EEH functionality globally.
|
||
|
* Currently, following options are support according to PAPR:
|
||
|
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
|
||
|
*/
|
||
|
static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
|
||
|
{
|
||
|
struct pci_controller *hose = pe->phb;
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
bool freeze_pe = false;
|
||
|
int opt;
|
||
|
s64 rc;
|
||
|
|
||
|
switch (option) {
|
||
|
case EEH_OPT_DISABLE:
|
||
|
return -EPERM;
|
||
|
case EEH_OPT_ENABLE:
|
||
|
return 0;
|
||
|
case EEH_OPT_THAW_MMIO:
|
||
|
opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
|
||
|
break;
|
||
|
case EEH_OPT_THAW_DMA:
|
||
|
opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
|
||
|
break;
|
||
|
case EEH_OPT_FREEZE_PE:
|
||
|
freeze_pe = true;
|
||
|
opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
|
||
|
break;
|
||
|
default:
|
||
|
pr_warn("%s: Invalid option %d\n", __func__, option);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Freeze master and slave PEs if PHB supports compound PEs */
|
||
|
if (freeze_pe) {
|
||
|
if (phb->freeze_pe) {
|
||
|
phb->freeze_pe(phb, pe->addr);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
|
||
|
__func__, rc, phb->hose->global_number,
|
||
|
pe->addr);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Unfreeze master and slave PEs if PHB supports */
|
||
|
if (phb->unfreeze_pe)
|
||
|
return phb->unfreeze_pe(phb, pe->addr, opt);
|
||
|
|
||
|
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
|
||
|
__func__, rc, option, phb->hose->global_number,
|
||
|
pe->addr);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_get_pe_addr - Retrieve PE address
|
||
|
* @pe: EEH PE
|
||
|
*
|
||
|
* Retrieve the PE address according to the given tranditional
|
||
|
* PCI BDF (Bus/Device/Function) address.
|
||
|
*/
|
||
|
static int pnv_eeh_get_pe_addr(struct eeh_pe *pe)
|
||
|
{
|
||
|
return pe->addr;
|
||
|
}
|
||
|
|
||
|
static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
|
||
|
{
|
||
|
struct pnv_phb *phb = pe->phb->private_data;
|
||
|
s64 rc;
|
||
|
|
||
|
rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
|
||
|
PNV_PCI_DIAG_BUF_SIZE);
|
||
|
if (rc != OPAL_SUCCESS)
|
||
|
pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
|
||
|
__func__, rc, pe->phb->global_number);
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
|
||
|
{
|
||
|
struct pnv_phb *phb = pe->phb->private_data;
|
||
|
u8 fstate = 0;
|
||
|
__be16 pcierr = 0;
|
||
|
s64 rc;
|
||
|
int result = 0;
|
||
|
|
||
|
rc = opal_pci_eeh_freeze_status(phb->opal_id,
|
||
|
pe->addr,
|
||
|
&fstate,
|
||
|
&pcierr,
|
||
|
NULL);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failure %lld getting PHB#%x state\n",
|
||
|
__func__, rc, phb->hose->global_number);
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check PHB state. If the PHB is frozen for the
|
||
|
* first time, to dump the PHB diag-data.
|
||
|
*/
|
||
|
if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
|
||
|
result = (EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_DMA_ACTIVE |
|
||
|
EEH_STATE_MMIO_ENABLED |
|
||
|
EEH_STATE_DMA_ENABLED);
|
||
|
} else if (!(pe->state & EEH_PE_ISOLATED)) {
|
||
|
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
|
||
|
pnv_eeh_get_phb_diag(pe);
|
||
|
|
||
|
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
|
||
|
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
|
||
|
{
|
||
|
struct pnv_phb *phb = pe->phb->private_data;
|
||
|
u8 fstate = 0;
|
||
|
__be16 pcierr = 0;
|
||
|
s64 rc;
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* We don't clobber hardware frozen state until PE
|
||
|
* reset is completed. In order to keep EEH core
|
||
|
* moving forward, we have to return operational
|
||
|
* state during PE reset.
|
||
|
*/
|
||
|
if (pe->state & EEH_PE_RESET) {
|
||
|
result = (EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_DMA_ACTIVE |
|
||
|
EEH_STATE_MMIO_ENABLED |
|
||
|
EEH_STATE_DMA_ENABLED);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fetch PE state from hardware. If the PHB
|
||
|
* supports compound PE, let it handle that.
|
||
|
*/
|
||
|
if (phb->get_pe_state) {
|
||
|
fstate = phb->get_pe_state(phb, pe->addr);
|
||
|
} else {
|
||
|
rc = opal_pci_eeh_freeze_status(phb->opal_id,
|
||
|
pe->addr,
|
||
|
&fstate,
|
||
|
&pcierr,
|
||
|
NULL);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
|
||
|
__func__, rc, phb->hose->global_number,
|
||
|
pe->addr);
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Figure out state */
|
||
|
switch (fstate) {
|
||
|
case OPAL_EEH_STOPPED_NOT_FROZEN:
|
||
|
result = (EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_DMA_ACTIVE |
|
||
|
EEH_STATE_MMIO_ENABLED |
|
||
|
EEH_STATE_DMA_ENABLED);
|
||
|
break;
|
||
|
case OPAL_EEH_STOPPED_MMIO_FREEZE:
|
||
|
result = (EEH_STATE_DMA_ACTIVE |
|
||
|
EEH_STATE_DMA_ENABLED);
|
||
|
break;
|
||
|
case OPAL_EEH_STOPPED_DMA_FREEZE:
|
||
|
result = (EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_MMIO_ENABLED);
|
||
|
break;
|
||
|
case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
|
||
|
result = 0;
|
||
|
break;
|
||
|
case OPAL_EEH_STOPPED_RESET:
|
||
|
result = EEH_STATE_RESET_ACTIVE;
|
||
|
break;
|
||
|
case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
|
||
|
result = EEH_STATE_UNAVAILABLE;
|
||
|
break;
|
||
|
case OPAL_EEH_STOPPED_PERM_UNAVAIL:
|
||
|
result = EEH_STATE_NOT_SUPPORT;
|
||
|
break;
|
||
|
default:
|
||
|
result = EEH_STATE_NOT_SUPPORT;
|
||
|
pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
|
||
|
__func__, phb->hose->global_number,
|
||
|
pe->addr, fstate);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If PHB supports compound PE, to freeze all
|
||
|
* slave PEs for consistency.
|
||
|
*
|
||
|
* If the PE is switching to frozen state for the
|
||
|
* first time, to dump the PHB diag-data.
|
||
|
*/
|
||
|
if (!(result & EEH_STATE_NOT_SUPPORT) &&
|
||
|
!(result & EEH_STATE_UNAVAILABLE) &&
|
||
|
!(result & EEH_STATE_MMIO_ACTIVE) &&
|
||
|
!(result & EEH_STATE_DMA_ACTIVE) &&
|
||
|
!(pe->state & EEH_PE_ISOLATED)) {
|
||
|
if (phb->freeze_pe)
|
||
|
phb->freeze_pe(phb, pe->addr);
|
||
|
|
||
|
eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
|
||
|
pnv_eeh_get_phb_diag(pe);
|
||
|
|
||
|
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
|
||
|
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_get_state - Retrieve PE state
|
||
|
* @pe: EEH PE
|
||
|
* @delay: delay while PE state is temporarily unavailable
|
||
|
*
|
||
|
* Retrieve the state of the specified PE. For IODA-compitable
|
||
|
* platform, it should be retrieved from IODA table. Therefore,
|
||
|
* we prefer passing down to hardware implementation to handle
|
||
|
* it.
|
||
|
*/
|
||
|
static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (pe->type & EEH_PE_PHB)
|
||
|
ret = pnv_eeh_get_phb_state(pe);
|
||
|
else
|
||
|
ret = pnv_eeh_get_pe_state(pe);
|
||
|
|
||
|
if (!delay)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* If the PE state is temporarily unavailable,
|
||
|
* to inform the EEH core delay for default
|
||
|
* period (1 second)
|
||
|
*/
|
||
|
*delay = 0;
|
||
|
if (ret & EEH_STATE_UNAVAILABLE)
|
||
|
*delay = 1000;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static s64 pnv_eeh_poll(unsigned long id)
|
||
|
{
|
||
|
s64 rc = OPAL_HARDWARE;
|
||
|
|
||
|
while (1) {
|
||
|
rc = opal_pci_poll(id);
|
||
|
if (rc <= 0)
|
||
|
break;
|
||
|
|
||
|
if (system_state < SYSTEM_RUNNING)
|
||
|
udelay(1000 * rc);
|
||
|
else
|
||
|
msleep(rc);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
|
||
|
{
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
s64 rc = OPAL_HARDWARE;
|
||
|
|
||
|
pr_debug("%s: Reset PHB#%x, option=%d\n",
|
||
|
__func__, hose->global_number, option);
|
||
|
|
||
|
/* Issue PHB complete reset request */
|
||
|
if (option == EEH_RESET_FUNDAMENTAL ||
|
||
|
option == EEH_RESET_HOT)
|
||
|
rc = opal_pci_reset(phb->opal_id,
|
||
|
OPAL_RESET_PHB_COMPLETE,
|
||
|
OPAL_ASSERT_RESET);
|
||
|
else if (option == EEH_RESET_DEACTIVATE)
|
||
|
rc = opal_pci_reset(phb->opal_id,
|
||
|
OPAL_RESET_PHB_COMPLETE,
|
||
|
OPAL_DEASSERT_RESET);
|
||
|
if (rc < 0)
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Poll state of the PHB until the request is done
|
||
|
* successfully. The PHB reset is usually PHB complete
|
||
|
* reset followed by hot reset on root bus. So we also
|
||
|
* need the PCI bus settlement delay.
|
||
|
*/
|
||
|
if (rc > 0)
|
||
|
rc = pnv_eeh_poll(phb->opal_id);
|
||
|
if (option == EEH_RESET_DEACTIVATE) {
|
||
|
if (system_state < SYSTEM_RUNNING)
|
||
|
udelay(1000 * EEH_PE_RST_SETTLE_TIME);
|
||
|
else
|
||
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
||
|
}
|
||
|
out:
|
||
|
if (rc != OPAL_SUCCESS)
|
||
|
return -EIO;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
|
||
|
{
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
s64 rc = OPAL_HARDWARE;
|
||
|
|
||
|
pr_debug("%s: Reset PHB#%x, option=%d\n",
|
||
|
__func__, hose->global_number, option);
|
||
|
|
||
|
/*
|
||
|
* During the reset deassert time, we needn't care
|
||
|
* the reset scope because the firmware does nothing
|
||
|
* for fundamental or hot reset during deassert phase.
|
||
|
*/
|
||
|
if (option == EEH_RESET_FUNDAMENTAL)
|
||
|
rc = opal_pci_reset(phb->opal_id,
|
||
|
OPAL_RESET_PCI_FUNDAMENTAL,
|
||
|
OPAL_ASSERT_RESET);
|
||
|
else if (option == EEH_RESET_HOT)
|
||
|
rc = opal_pci_reset(phb->opal_id,
|
||
|
OPAL_RESET_PCI_HOT,
|
||
|
OPAL_ASSERT_RESET);
|
||
|
else if (option == EEH_RESET_DEACTIVATE)
|
||
|
rc = opal_pci_reset(phb->opal_id,
|
||
|
OPAL_RESET_PCI_HOT,
|
||
|
OPAL_DEASSERT_RESET);
|
||
|
if (rc < 0)
|
||
|
goto out;
|
||
|
|
||
|
/* Poll state of the PHB until the request is done */
|
||
|
if (rc > 0)
|
||
|
rc = pnv_eeh_poll(phb->opal_id);
|
||
|
if (option == EEH_RESET_DEACTIVATE)
|
||
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
||
|
out:
|
||
|
if (rc != OPAL_SUCCESS)
|
||
|
return -EIO;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
|
||
|
{
|
||
|
struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
int aer = edev ? edev->aer_cap : 0;
|
||
|
u32 ctrl;
|
||
|
|
||
|
pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n",
|
||
|
__func__, pci_domain_nr(dev->bus),
|
||
|
dev->bus->number, option);
|
||
|
|
||
|
switch (option) {
|
||
|
case EEH_RESET_FUNDAMENTAL:
|
||
|
case EEH_RESET_HOT:
|
||
|
/* Don't report linkDown event */
|
||
|
if (aer) {
|
||
|
eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
|
||
|
4, &ctrl);
|
||
|
ctrl |= PCI_ERR_UNC_SURPDN;
|
||
|
eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
|
||
|
4, ctrl);
|
||
|
}
|
||
|
|
||
|
eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
|
||
|
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
|
||
|
eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
|
||
|
|
||
|
msleep(EEH_PE_RST_HOLD_TIME);
|
||
|
break;
|
||
|
case EEH_RESET_DEACTIVATE:
|
||
|
eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl);
|
||
|
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
|
||
|
eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl);
|
||
|
|
||
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
||
|
|
||
|
/* Continue reporting linkDown event */
|
||
|
if (aer) {
|
||
|
eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK,
|
||
|
4, &ctrl);
|
||
|
ctrl &= ~PCI_ERR_UNC_SURPDN;
|
||
|
eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK,
|
||
|
4, ctrl);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
|
||
|
{
|
||
|
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
struct device_node *dn = pci_device_to_OF_node(pdev);
|
||
|
uint64_t id = PCI_SLOT_ID(phb->opal_id,
|
||
|
(pdev->bus->number << 8) | pdev->devfn);
|
||
|
uint8_t scope;
|
||
|
int64_t rc;
|
||
|
|
||
|
/* Hot reset to the bus if firmware cannot handle */
|
||
|
if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
|
||
|
return __pnv_eeh_bridge_reset(pdev, option);
|
||
|
|
||
|
switch (option) {
|
||
|
case EEH_RESET_FUNDAMENTAL:
|
||
|
scope = OPAL_RESET_PCI_FUNDAMENTAL;
|
||
|
break;
|
||
|
case EEH_RESET_HOT:
|
||
|
scope = OPAL_RESET_PCI_HOT;
|
||
|
break;
|
||
|
case EEH_RESET_DEACTIVATE:
|
||
|
return 0;
|
||
|
default:
|
||
|
dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
|
||
|
__func__, option);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
|
||
|
if (rc <= OPAL_SUCCESS)
|
||
|
goto out;
|
||
|
|
||
|
rc = pnv_eeh_poll(id);
|
||
|
out:
|
||
|
return (rc == OPAL_SUCCESS) ? 0 : -EIO;
|
||
|
}
|
||
|
|
||
|
void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
|
||
|
{
|
||
|
struct pci_controller *hose;
|
||
|
|
||
|
if (pci_is_root_bus(dev->bus)) {
|
||
|
hose = pci_bus_to_host(dev->bus);
|
||
|
pnv_eeh_root_reset(hose, EEH_RESET_HOT);
|
||
|
pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
|
||
|
} else {
|
||
|
pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
|
||
|
pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
|
||
|
int pos, u16 mask)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
int i, status = 0;
|
||
|
|
||
|
/* Wait for Transaction Pending bit to be cleared */
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
eeh_ops->read_config(pdn, pos, 2, &status);
|
||
|
if (!(status & mask))
|
||
|
return;
|
||
|
|
||
|
msleep((1 << i) * 100);
|
||
|
}
|
||
|
|
||
|
pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
|
||
|
__func__, type,
|
||
|
edev->phb->global_number, pdn->busno,
|
||
|
PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
u32 reg = 0;
|
||
|
|
||
|
if (WARN_ON(!edev->pcie_cap))
|
||
|
return -ENOTTY;
|
||
|
|
||
|
eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®);
|
||
|
if (!(reg & PCI_EXP_DEVCAP_FLR))
|
||
|
return -ENOTTY;
|
||
|
|
||
|
switch (option) {
|
||
|
case EEH_RESET_HOT:
|
||
|
case EEH_RESET_FUNDAMENTAL:
|
||
|
pnv_eeh_wait_for_pending(pdn, "",
|
||
|
edev->pcie_cap + PCI_EXP_DEVSTA,
|
||
|
PCI_EXP_DEVSTA_TRPND);
|
||
|
eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
4, ®);
|
||
|
reg |= PCI_EXP_DEVCTL_BCR_FLR;
|
||
|
eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
4, reg);
|
||
|
msleep(EEH_PE_RST_HOLD_TIME);
|
||
|
break;
|
||
|
case EEH_RESET_DEACTIVATE:
|
||
|
eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
4, ®);
|
||
|
reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
|
||
|
eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
4, reg);
|
||
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
u32 cap = 0;
|
||
|
|
||
|
if (WARN_ON(!edev->af_cap))
|
||
|
return -ENOTTY;
|
||
|
|
||
|
eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap);
|
||
|
if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
|
||
|
return -ENOTTY;
|
||
|
|
||
|
switch (option) {
|
||
|
case EEH_RESET_HOT:
|
||
|
case EEH_RESET_FUNDAMENTAL:
|
||
|
/*
|
||
|
* Wait for Transaction Pending bit to clear. A word-aligned
|
||
|
* test is used, so we use the conrol offset rather than status
|
||
|
* and shift the test bit to match.
|
||
|
*/
|
||
|
pnv_eeh_wait_for_pending(pdn, "AF",
|
||
|
edev->af_cap + PCI_AF_CTRL,
|
||
|
PCI_AF_STATUS_TP << 8);
|
||
|
eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL,
|
||
|
1, PCI_AF_CTRL_FLR);
|
||
|
msleep(EEH_PE_RST_HOLD_TIME);
|
||
|
break;
|
||
|
case EEH_RESET_DEACTIVATE:
|
||
|
eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0);
|
||
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
|
||
|
{
|
||
|
struct eeh_dev *edev;
|
||
|
struct pci_dn *pdn;
|
||
|
int ret;
|
||
|
|
||
|
/* The VF PE should have only one child device */
|
||
|
edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
|
||
|
pdn = eeh_dev_to_pdn(edev);
|
||
|
if (!pdn)
|
||
|
return -ENXIO;
|
||
|
|
||
|
ret = pnv_eeh_do_flr(pdn, option);
|
||
|
if (!ret)
|
||
|
return ret;
|
||
|
|
||
|
return pnv_eeh_do_af_flr(pdn, option);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_reset - Reset the specified PE
|
||
|
* @pe: EEH PE
|
||
|
* @option: reset option
|
||
|
*
|
||
|
* Do reset on the indicated PE. For PCI bus sensitive PE,
|
||
|
* we need to reset the parent p2p bridge. The PHB has to
|
||
|
* be reinitialized if the p2p bridge is root bridge. For
|
||
|
* PCI device sensitive PE, we will try to reset the device
|
||
|
* through FLR. For now, we don't have OPAL APIs to do HARD
|
||
|
* reset yet, so all reset would be SOFT (HOT) reset.
|
||
|
*/
|
||
|
static int pnv_eeh_reset(struct eeh_pe *pe, int option)
|
||
|
{
|
||
|
struct pci_controller *hose = pe->phb;
|
||
|
struct pnv_phb *phb;
|
||
|
struct pci_bus *bus;
|
||
|
int64_t rc;
|
||
|
|
||
|
/*
|
||
|
* For PHB reset, we always have complete reset. For those PEs whose
|
||
|
* primary bus derived from root complex (root bus) or root port
|
||
|
* (usually bus#1), we apply hot or fundamental reset on the root port.
|
||
|
* For other PEs, we always have hot reset on the PE primary bus.
|
||
|
*
|
||
|
* Here, we have different design to pHyp, which always clear the
|
||
|
* frozen state during PE reset. However, the good idea here from
|
||
|
* benh is to keep frozen state before we get PE reset done completely
|
||
|
* (until BAR restore). With the frozen state, HW drops illegal IO
|
||
|
* or MMIO access, which can incur recrusive frozen PE during PE
|
||
|
* reset. The side effect is that EEH core has to clear the frozen
|
||
|
* state explicitly after BAR restore.
|
||
|
*/
|
||
|
if (pe->type & EEH_PE_PHB)
|
||
|
return pnv_eeh_phb_reset(hose, option);
|
||
|
|
||
|
/*
|
||
|
* The frozen PE might be caused by PAPR error injection
|
||
|
* registers, which are expected to be cleared after hitting
|
||
|
* frozen PE as stated in the hardware spec. Unfortunately,
|
||
|
* that's not true on P7IOC. So we have to clear it manually
|
||
|
* to avoid recursive EEH errors during recovery.
|
||
|
*/
|
||
|
phb = hose->private_data;
|
||
|
if (phb->model == PNV_PHB_MODEL_P7IOC &&
|
||
|
(option == EEH_RESET_HOT ||
|
||
|
option == EEH_RESET_FUNDAMENTAL)) {
|
||
|
rc = opal_pci_reset(phb->opal_id,
|
||
|
OPAL_RESET_PHB_ERROR,
|
||
|
OPAL_ASSERT_RESET);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failure %lld clearing error injection registers\n",
|
||
|
__func__, rc);
|
||
|
return -EIO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (pe->type & EEH_PE_VF)
|
||
|
return pnv_eeh_reset_vf_pe(pe, option);
|
||
|
|
||
|
bus = eeh_pe_bus_get(pe);
|
||
|
if (!bus) {
|
||
|
pr_err("%s: Cannot find PCI bus for PHB#%d-PE#%x\n",
|
||
|
__func__, pe->phb->global_number, pe->addr);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
if (pci_is_root_bus(bus) ||
|
||
|
pci_is_root_bus(bus->parent))
|
||
|
return pnv_eeh_root_reset(hose, option);
|
||
|
|
||
|
return pnv_eeh_bridge_reset(bus->self, option);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_wait_state - Wait for PE state
|
||
|
* @pe: EEH PE
|
||
|
* @max_wait: maximal period in millisecond
|
||
|
*
|
||
|
* Wait for the state of associated PE. It might take some time
|
||
|
* to retrieve the PE's state.
|
||
|
*/
|
||
|
static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait)
|
||
|
{
|
||
|
int ret;
|
||
|
int mwait;
|
||
|
|
||
|
while (1) {
|
||
|
ret = pnv_eeh_get_state(pe, &mwait);
|
||
|
|
||
|
/*
|
||
|
* If the PE's state is temporarily unavailable,
|
||
|
* we have to wait for the specified time. Otherwise,
|
||
|
* the PE's state will be returned immediately.
|
||
|
*/
|
||
|
if (ret != EEH_STATE_UNAVAILABLE)
|
||
|
return ret;
|
||
|
|
||
|
if (max_wait <= 0) {
|
||
|
pr_warn("%s: Timeout getting PE#%x's state (%d)\n",
|
||
|
__func__, pe->addr, max_wait);
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
max_wait -= mwait;
|
||
|
msleep(mwait);
|
||
|
}
|
||
|
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_get_log - Retrieve error log
|
||
|
* @pe: EEH PE
|
||
|
* @severity: temporary or permanent error log
|
||
|
* @drv_log: driver log to be combined with retrieved error log
|
||
|
* @len: length of driver log
|
||
|
*
|
||
|
* Retrieve the temporary or permanent error from the PE.
|
||
|
*/
|
||
|
static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
|
||
|
char *drv_log, unsigned long len)
|
||
|
{
|
||
|
if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
|
||
|
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
|
||
|
* @pe: EEH PE
|
||
|
*
|
||
|
* The function will be called to reconfigure the bridges included
|
||
|
* in the specified PE so that the mulfunctional PE would be recovered
|
||
|
* again.
|
||
|
*/
|
||
|
static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_pe_err_inject - Inject specified error to the indicated PE
|
||
|
* @pe: the indicated PE
|
||
|
* @type: error type
|
||
|
* @func: specific error type
|
||
|
* @addr: address
|
||
|
* @mask: address mask
|
||
|
*
|
||
|
* The routine is called to inject specified error, which is
|
||
|
* determined by @type and @func, to the indicated PE for
|
||
|
* testing purpose.
|
||
|
*/
|
||
|
static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
|
||
|
unsigned long addr, unsigned long mask)
|
||
|
{
|
||
|
struct pci_controller *hose = pe->phb;
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
s64 rc;
|
||
|
|
||
|
if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
|
||
|
type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
|
||
|
pr_warn("%s: Invalid error type %d\n",
|
||
|
__func__, type);
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
|
||
|
if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
|
||
|
func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
|
||
|
pr_warn("%s: Invalid error function %d\n",
|
||
|
__func__, func);
|
||
|
return -ERANGE;
|
||
|
}
|
||
|
|
||
|
/* Firmware supports error injection ? */
|
||
|
if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
|
||
|
pr_warn("%s: Firmware doesn't support error injection\n",
|
||
|
__func__);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
/* Do error injection */
|
||
|
rc = opal_pci_err_inject(phb->opal_id, pe->addr,
|
||
|
type, func, addr, mask);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failure %lld injecting error "
|
||
|
"%d-%d to PHB#%x-PE#%x\n",
|
||
|
__func__, rc, type, func,
|
||
|
hose->global_number, pe->addr);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
|
||
|
if (!edev || !edev->pe)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* We will issue FLR or AF FLR to all VFs, which are contained
|
||
|
* in VF PE. It relies on the EEH PCI config accessors. So we
|
||
|
* can't block them during the window.
|
||
|
*/
|
||
|
if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
|
||
|
return false;
|
||
|
|
||
|
if (edev->pe->state & EEH_PE_CFG_BLOCKED)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_read_config(struct pci_dn *pdn,
|
||
|
int where, int size, u32 *val)
|
||
|
{
|
||
|
if (!pdn)
|
||
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
||
|
|
||
|
if (pnv_eeh_cfg_blocked(pdn)) {
|
||
|
*val = 0xFFFFFFFF;
|
||
|
return PCIBIOS_SET_FAILED;
|
||
|
}
|
||
|
|
||
|
return pnv_pci_cfg_read(pdn, where, size, val);
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_write_config(struct pci_dn *pdn,
|
||
|
int where, int size, u32 val)
|
||
|
{
|
||
|
if (!pdn)
|
||
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
||
|
|
||
|
if (pnv_eeh_cfg_blocked(pdn))
|
||
|
return PCIBIOS_SET_FAILED;
|
||
|
|
||
|
return pnv_pci_cfg_write(pdn, where, size, val);
|
||
|
}
|
||
|
|
||
|
static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
|
||
|
{
|
||
|
/* GEM */
|
||
|
if (data->gemXfir || data->gemRfir ||
|
||
|
data->gemRirqfir || data->gemMask || data->gemRwof)
|
||
|
pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
|
||
|
be64_to_cpu(data->gemXfir),
|
||
|
be64_to_cpu(data->gemRfir),
|
||
|
be64_to_cpu(data->gemRirqfir),
|
||
|
be64_to_cpu(data->gemMask),
|
||
|
be64_to_cpu(data->gemRwof));
|
||
|
|
||
|
/* LEM */
|
||
|
if (data->lemFir || data->lemErrMask ||
|
||
|
data->lemAction0 || data->lemAction1 || data->lemWof)
|
||
|
pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
|
||
|
be64_to_cpu(data->lemFir),
|
||
|
be64_to_cpu(data->lemErrMask),
|
||
|
be64_to_cpu(data->lemAction0),
|
||
|
be64_to_cpu(data->lemAction1),
|
||
|
be64_to_cpu(data->lemWof));
|
||
|
}
|
||
|
|
||
|
static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
|
||
|
{
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag;
|
||
|
long rc;
|
||
|
|
||
|
rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
|
||
|
__func__, phb->hub_id, rc);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch (be16_to_cpu(data->type)) {
|
||
|
case OPAL_P7IOC_DIAG_TYPE_RGC:
|
||
|
pr_info("P7IOC diag-data for RGC\n\n");
|
||
|
pnv_eeh_dump_hub_diag_common(data);
|
||
|
if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
|
||
|
pr_info(" RGC: %016llx %016llx\n",
|
||
|
be64_to_cpu(data->rgc.rgcStatus),
|
||
|
be64_to_cpu(data->rgc.rgcLdcp));
|
||
|
break;
|
||
|
case OPAL_P7IOC_DIAG_TYPE_BI:
|
||
|
pr_info("P7IOC diag-data for BI %s\n\n",
|
||
|
data->bi.biDownbound ? "Downbound" : "Upbound");
|
||
|
pnv_eeh_dump_hub_diag_common(data);
|
||
|
if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
|
||
|
data->bi.biLdcp2 || data->bi.biFenceStatus)
|
||
|
pr_info(" BI: %016llx %016llx %016llx %016llx\n",
|
||
|
be64_to_cpu(data->bi.biLdcp0),
|
||
|
be64_to_cpu(data->bi.biLdcp1),
|
||
|
be64_to_cpu(data->bi.biLdcp2),
|
||
|
be64_to_cpu(data->bi.biFenceStatus));
|
||
|
break;
|
||
|
case OPAL_P7IOC_DIAG_TYPE_CI:
|
||
|
pr_info("P7IOC diag-data for CI Port %d\n\n",
|
||
|
data->ci.ciPort);
|
||
|
pnv_eeh_dump_hub_diag_common(data);
|
||
|
if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
|
||
|
pr_info(" CI: %016llx %016llx\n",
|
||
|
be64_to_cpu(data->ci.ciPortStatus),
|
||
|
be64_to_cpu(data->ci.ciPortLdcp));
|
||
|
break;
|
||
|
case OPAL_P7IOC_DIAG_TYPE_MISC:
|
||
|
pr_info("P7IOC diag-data for MISC\n\n");
|
||
|
pnv_eeh_dump_hub_diag_common(data);
|
||
|
break;
|
||
|
case OPAL_P7IOC_DIAG_TYPE_I2C:
|
||
|
pr_info("P7IOC diag-data for I2C\n\n");
|
||
|
pnv_eeh_dump_hub_diag_common(data);
|
||
|
break;
|
||
|
default:
|
||
|
pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
|
||
|
__func__, phb->hub_id, data->type);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_get_pe(struct pci_controller *hose,
|
||
|
u16 pe_no, struct eeh_pe **pe)
|
||
|
{
|
||
|
struct pnv_phb *phb = hose->private_data;
|
||
|
struct pnv_ioda_pe *pnv_pe;
|
||
|
struct eeh_pe *dev_pe;
|
||
|
struct eeh_dev edev;
|
||
|
|
||
|
/*
|
||
|
* If PHB supports compound PE, to fetch
|
||
|
* the master PE because slave PE is invisible
|
||
|
* to EEH core.
|
||
|
*/
|
||
|
pnv_pe = &phb->ioda.pe_array[pe_no];
|
||
|
if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
|
||
|
pnv_pe = pnv_pe->master;
|
||
|
WARN_ON(!pnv_pe ||
|
||
|
!(pnv_pe->flags & PNV_IODA_PE_MASTER));
|
||
|
pe_no = pnv_pe->pe_number;
|
||
|
}
|
||
|
|
||
|
/* Find the PE according to PE# */
|
||
|
memset(&edev, 0, sizeof(struct eeh_dev));
|
||
|
edev.phb = hose;
|
||
|
edev.pe_config_addr = pe_no;
|
||
|
dev_pe = eeh_pe_get(&edev);
|
||
|
if (!dev_pe)
|
||
|
return -EEXIST;
|
||
|
|
||
|
/* Freeze the (compound) PE */
|
||
|
*pe = dev_pe;
|
||
|
if (!(dev_pe->state & EEH_PE_ISOLATED))
|
||
|
phb->freeze_pe(phb, pe_no);
|
||
|
|
||
|
/*
|
||
|
* At this point, we're sure the (compound) PE should
|
||
|
* have been frozen. However, we still need poke until
|
||
|
* hitting the frozen PE on top level.
|
||
|
*/
|
||
|
dev_pe = dev_pe->parent;
|
||
|
while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
|
||
|
int ret;
|
||
|
int active_flags = (EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_DMA_ACTIVE);
|
||
|
|
||
|
ret = eeh_ops->get_state(dev_pe, NULL);
|
||
|
if (ret <= 0 || (ret & active_flags) == active_flags) {
|
||
|
dev_pe = dev_pe->parent;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Frozen parent PE */
|
||
|
*pe = dev_pe;
|
||
|
if (!(dev_pe->state & EEH_PE_ISOLATED))
|
||
|
phb->freeze_pe(phb, dev_pe->addr);
|
||
|
|
||
|
/* Next one */
|
||
|
dev_pe = dev_pe->parent;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pnv_eeh_next_error - Retrieve next EEH error to handle
|
||
|
* @pe: Affected PE
|
||
|
*
|
||
|
* The function is expected to be called by EEH core while it gets
|
||
|
* special EEH event (without binding PE). The function calls to
|
||
|
* OPAL APIs for next error to handle. The informational error is
|
||
|
* handled internally by platform. However, the dead IOC, dead PHB,
|
||
|
* fenced PHB and frozen PE should be handled by EEH core eventually.
|
||
|
*/
|
||
|
static int pnv_eeh_next_error(struct eeh_pe **pe)
|
||
|
{
|
||
|
struct pci_controller *hose;
|
||
|
struct pnv_phb *phb;
|
||
|
struct eeh_pe *phb_pe, *parent_pe;
|
||
|
__be64 frozen_pe_no;
|
||
|
__be16 err_type, severity;
|
||
|
int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
|
||
|
long rc;
|
||
|
int state, ret = EEH_NEXT_ERR_NONE;
|
||
|
|
||
|
/*
|
||
|
* While running here, it's safe to purge the event queue. The
|
||
|
* event should still be masked.
|
||
|
*/
|
||
|
eeh_remove_event(NULL, false);
|
||
|
|
||
|
list_for_each_entry(hose, &hose_list, list_node) {
|
||
|
/*
|
||
|
* If the subordinate PCI buses of the PHB has been
|
||
|
* removed or is exactly under error recovery, we
|
||
|
* needn't take care of it any more.
|
||
|
*/
|
||
|
phb = hose->private_data;
|
||
|
phb_pe = eeh_phb_pe_get(hose);
|
||
|
if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
|
||
|
continue;
|
||
|
|
||
|
rc = opal_pci_next_error(phb->opal_id,
|
||
|
&frozen_pe_no, &err_type, &severity);
|
||
|
if (rc != OPAL_SUCCESS) {
|
||
|
pr_devel("%s: Invalid return value on "
|
||
|
"PHB#%x (0x%lx) from opal_pci_next_error",
|
||
|
__func__, hose->global_number, rc);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* If the PHB doesn't have error, stop processing */
|
||
|
if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
|
||
|
be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
|
||
|
pr_devel("%s: No error found on PHB#%x\n",
|
||
|
__func__, hose->global_number);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Processing the error. We're expecting the error with
|
||
|
* highest priority reported upon multiple errors on the
|
||
|
* specific PHB.
|
||
|
*/
|
||
|
pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
|
||
|
__func__, be16_to_cpu(err_type),
|
||
|
be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
|
||
|
hose->global_number);
|
||
|
switch (be16_to_cpu(err_type)) {
|
||
|
case OPAL_EEH_IOC_ERROR:
|
||
|
if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
|
||
|
pr_err("EEH: dead IOC detected\n");
|
||
|
ret = EEH_NEXT_ERR_DEAD_IOC;
|
||
|
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
|
||
|
pr_info("EEH: IOC informative error "
|
||
|
"detected\n");
|
||
|
pnv_eeh_get_and_dump_hub_diag(hose);
|
||
|
ret = EEH_NEXT_ERR_NONE;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
case OPAL_EEH_PHB_ERROR:
|
||
|
if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
|
||
|
*pe = phb_pe;
|
||
|
pr_err("EEH: dead PHB#%x detected, "
|
||
|
"location: %s\n",
|
||
|
hose->global_number,
|
||
|
eeh_pe_loc_get(phb_pe));
|
||
|
ret = EEH_NEXT_ERR_DEAD_PHB;
|
||
|
} else if (be16_to_cpu(severity) ==
|
||
|
OPAL_EEH_SEV_PHB_FENCED) {
|
||
|
*pe = phb_pe;
|
||
|
pr_err("EEH: Fenced PHB#%x detected, "
|
||
|
"location: %s\n",
|
||
|
hose->global_number,
|
||
|
eeh_pe_loc_get(phb_pe));
|
||
|
ret = EEH_NEXT_ERR_FENCED_PHB;
|
||
|
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
|
||
|
pr_info("EEH: PHB#%x informative error "
|
||
|
"detected, location: %s\n",
|
||
|
hose->global_number,
|
||
|
eeh_pe_loc_get(phb_pe));
|
||
|
pnv_eeh_get_phb_diag(phb_pe);
|
||
|
pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
|
||
|
ret = EEH_NEXT_ERR_NONE;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
case OPAL_EEH_PE_ERROR:
|
||
|
/*
|
||
|
* If we can't find the corresponding PE, we
|
||
|
* just try to unfreeze.
|
||
|
*/
|
||
|
if (pnv_eeh_get_pe(hose,
|
||
|
be64_to_cpu(frozen_pe_no), pe)) {
|
||
|
pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
|
||
|
hose->global_number, be64_to_cpu(frozen_pe_no));
|
||
|
pr_info("EEH: PHB location: %s\n",
|
||
|
eeh_pe_loc_get(phb_pe));
|
||
|
|
||
|
/* Dump PHB diag-data */
|
||
|
rc = opal_pci_get_phb_diag_data2(phb->opal_id,
|
||
|
phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE);
|
||
|
if (rc == OPAL_SUCCESS)
|
||
|
pnv_pci_dump_phb_diag_data(hose,
|
||
|
phb->diag.blob);
|
||
|
|
||
|
/* Try best to clear it */
|
||
|
opal_pci_eeh_freeze_clear(phb->opal_id,
|
||
|
be64_to_cpu(frozen_pe_no),
|
||
|
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
|
||
|
ret = EEH_NEXT_ERR_NONE;
|
||
|
} else if ((*pe)->state & EEH_PE_ISOLATED ||
|
||
|
eeh_pe_passed(*pe)) {
|
||
|
ret = EEH_NEXT_ERR_NONE;
|
||
|
} else {
|
||
|
pr_err("EEH: Frozen PE#%x "
|
||
|
"on PHB#%x detected\n",
|
||
|
(*pe)->addr,
|
||
|
(*pe)->phb->global_number);
|
||
|
pr_err("EEH: PE location: %s, "
|
||
|
"PHB location: %s\n",
|
||
|
eeh_pe_loc_get(*pe),
|
||
|
eeh_pe_loc_get(phb_pe));
|
||
|
ret = EEH_NEXT_ERR_FROZEN_PE;
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
default:
|
||
|
pr_warn("%s: Unexpected error type %d\n",
|
||
|
__func__, be16_to_cpu(err_type));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* EEH core will try recover from fenced PHB or
|
||
|
* frozen PE. In the time for frozen PE, EEH core
|
||
|
* enable IO path for that before collecting logs,
|
||
|
* but it ruins the site. So we have to dump the
|
||
|
* log in advance here.
|
||
|
*/
|
||
|
if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
|
||
|
ret == EEH_NEXT_ERR_FENCED_PHB) &&
|
||
|
!((*pe)->state & EEH_PE_ISOLATED)) {
|
||
|
eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
|
||
|
pnv_eeh_get_phb_diag(*pe);
|
||
|
|
||
|
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
|
||
|
pnv_pci_dump_phb_diag_data((*pe)->phb,
|
||
|
(*pe)->data);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We probably have the frozen parent PE out there and
|
||
|
* we need have to handle frozen parent PE firstly.
|
||
|
*/
|
||
|
if (ret == EEH_NEXT_ERR_FROZEN_PE) {
|
||
|
parent_pe = (*pe)->parent;
|
||
|
while (parent_pe) {
|
||
|
/* Hit the ceiling ? */
|
||
|
if (parent_pe->type & EEH_PE_PHB)
|
||
|
break;
|
||
|
|
||
|
/* Frozen parent PE ? */
|
||
|
state = eeh_ops->get_state(parent_pe, NULL);
|
||
|
if (state > 0 &&
|
||
|
(state & active_flags) != active_flags)
|
||
|
*pe = parent_pe;
|
||
|
|
||
|
/* Next parent level */
|
||
|
parent_pe = parent_pe->parent;
|
||
|
}
|
||
|
|
||
|
/* We possibly migrate to another PE */
|
||
|
eeh_pe_state_mark(*pe, EEH_PE_ISOLATED);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we have no errors on the specific PHB or only
|
||
|
* informative error there, we continue poking it.
|
||
|
* Otherwise, we need actions to be taken by upper
|
||
|
* layer.
|
||
|
*/
|
||
|
if (ret > EEH_NEXT_ERR_INF)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Unmask the event */
|
||
|
if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
|
||
|
enable_irq(eeh_event_irq);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_restore_vf_config(struct pci_dn *pdn)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
u32 devctl, cmd, cap2, aer_capctl;
|
||
|
int old_mps;
|
||
|
|
||
|
if (edev->pcie_cap) {
|
||
|
/* Restore MPS */
|
||
|
old_mps = (ffs(pdn->mps) - 8) << 5;
|
||
|
eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
2, &devctl);
|
||
|
devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
|
||
|
devctl |= old_mps;
|
||
|
eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
2, devctl);
|
||
|
|
||
|
/* Disable Completion Timeout */
|
||
|
eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
|
||
|
4, &cap2);
|
||
|
if (cap2 & 0x10) {
|
||
|
eeh_ops->read_config(pdn,
|
||
|
edev->pcie_cap + PCI_EXP_DEVCTL2,
|
||
|
4, &cap2);
|
||
|
cap2 |= 0x10;
|
||
|
eeh_ops->write_config(pdn,
|
||
|
edev->pcie_cap + PCI_EXP_DEVCTL2,
|
||
|
4, cap2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Enable SERR and parity checking */
|
||
|
eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
|
||
|
cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
|
||
|
eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
|
||
|
|
||
|
/* Enable report various errors */
|
||
|
if (edev->pcie_cap) {
|
||
|
eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
2, &devctl);
|
||
|
devctl &= ~PCI_EXP_DEVCTL_CERE;
|
||
|
devctl |= (PCI_EXP_DEVCTL_NFERE |
|
||
|
PCI_EXP_DEVCTL_FERE |
|
||
|
PCI_EXP_DEVCTL_URRE);
|
||
|
eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
|
||
|
2, devctl);
|
||
|
}
|
||
|
|
||
|
/* Enable ECRC generation and check */
|
||
|
if (edev->pcie_cap && edev->aer_cap) {
|
||
|
eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
|
||
|
4, &aer_capctl);
|
||
|
aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
|
||
|
eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
|
||
|
4, aer_capctl);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pnv_eeh_restore_config(struct pci_dn *pdn)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
struct pnv_phb *phb;
|
||
|
s64 ret;
|
||
|
|
||
|
if (!edev)
|
||
|
return -EEXIST;
|
||
|
|
||
|
/*
|
||
|
* We have to restore the PCI config space after reset since the
|
||
|
* firmware can't see SRIOV VFs.
|
||
|
*
|
||
|
* FIXME: The MPS, error routing rules, timeout setting are worthy
|
||
|
* to be exported by firmware in extendible way.
|
||
|
*/
|
||
|
if (edev->physfn) {
|
||
|
ret = pnv_eeh_restore_vf_config(pdn);
|
||
|
} else {
|
||
|
phb = edev->phb->private_data;
|
||
|
ret = opal_pci_reinit(phb->opal_id,
|
||
|
OPAL_REINIT_PCI_DEV, edev->config_addr);
|
||
|
}
|
||
|
|
||
|
if (ret) {
|
||
|
pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
|
||
|
__func__, edev->config_addr, ret);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct eeh_ops pnv_eeh_ops = {
|
||
|
.name = "powernv",
|
||
|
.init = pnv_eeh_init,
|
||
|
.post_init = pnv_eeh_post_init,
|
||
|
.probe = pnv_eeh_probe,
|
||
|
.set_option = pnv_eeh_set_option,
|
||
|
.get_pe_addr = pnv_eeh_get_pe_addr,
|
||
|
.get_state = pnv_eeh_get_state,
|
||
|
.reset = pnv_eeh_reset,
|
||
|
.wait_state = pnv_eeh_wait_state,
|
||
|
.get_log = pnv_eeh_get_log,
|
||
|
.configure_bridge = pnv_eeh_configure_bridge,
|
||
|
.err_inject = pnv_eeh_err_inject,
|
||
|
.read_config = pnv_eeh_read_config,
|
||
|
.write_config = pnv_eeh_write_config,
|
||
|
.next_error = pnv_eeh_next_error,
|
||
|
.restore_config = pnv_eeh_restore_config
|
||
|
};
|
||
|
|
||
|
void pcibios_bus_add_device(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
||
|
|
||
|
if (!pdev->is_virtfn)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* The following operations will fail if VF's sysfs files
|
||
|
* aren't created or its resources aren't finalized.
|
||
|
*/
|
||
|
eeh_add_device_early(pdn);
|
||
|
eeh_add_device_late(pdev);
|
||
|
eeh_sysfs_add_device(pdev);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PCI_IOV
|
||
|
static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct pci_dn *pdn = pci_get_pdn(pdev);
|
||
|
int parent_mps;
|
||
|
|
||
|
if (!pdev->is_virtfn)
|
||
|
return;
|
||
|
|
||
|
/* Synchronize MPS for VF and PF */
|
||
|
parent_mps = pcie_get_mps(pdev->physfn);
|
||
|
if ((128 << pdev->pcie_mpss) >= parent_mps)
|
||
|
pcie_set_mps(pdev, parent_mps);
|
||
|
pdn->mps = pcie_get_mps(pdev);
|
||
|
}
|
||
|
DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps);
|
||
|
#endif /* CONFIG_PCI_IOV */
|
||
|
|
||
|
/**
|
||
|
* eeh_powernv_init - Register platform dependent EEH operations
|
||
|
*
|
||
|
* EEH initialization on powernv platform. This function should be
|
||
|
* called before any EEH related functions.
|
||
|
*/
|
||
|
static int __init eeh_powernv_init(void)
|
||
|
{
|
||
|
int ret = -EINVAL;
|
||
|
|
||
|
eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE);
|
||
|
ret = eeh_ops_register(&pnv_eeh_ops);
|
||
|
if (!ret)
|
||
|
pr_info("EEH: PowerNV platform initialized\n");
|
||
|
else
|
||
|
pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
machine_early_initcall(powernv, eeh_powernv_init);
|