727 lines
20 KiB
C
727 lines
20 KiB
C
|
/*
|
||
|
* The file intends to implement the platform dependent EEH operations on pseries.
|
||
|
* Actually, the pseries platform is built based on RTAS heavily. That means the
|
||
|
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
|
||
|
* are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
|
||
|
* been done.
|
||
|
*
|
||
|
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
|
||
|
* Copyright IBM Corporation 2001, 2005, 2006
|
||
|
* Copyright Dave Engebretsen & Todd Inglett 2001
|
||
|
* Copyright Linas Vepstas 2005, 2006
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/proc_fs.h>
|
||
|
#include <linux/rbtree.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
|
||
|
#include <asm/eeh.h>
|
||
|
#include <asm/eeh_event.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/machdep.h>
|
||
|
#include <asm/ppc-pci.h>
|
||
|
#include <asm/rtas.h>
|
||
|
|
||
|
/* RTAS tokens */
|
||
|
static int ibm_set_eeh_option;
|
||
|
static int ibm_set_slot_reset;
|
||
|
static int ibm_read_slot_reset_state;
|
||
|
static int ibm_read_slot_reset_state2;
|
||
|
static int ibm_slot_error_detail;
|
||
|
static int ibm_get_config_addr_info;
|
||
|
static int ibm_get_config_addr_info2;
|
||
|
static int ibm_configure_pe;
|
||
|
|
||
|
/*
|
||
|
* Buffer for reporting slot-error-detail rtas calls. Its here
|
||
|
* in BSS, and not dynamically alloced, so that it ends up in
|
||
|
* RMO where RTAS can access it.
|
||
|
*/
|
||
|
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
|
||
|
static DEFINE_SPINLOCK(slot_errbuf_lock);
|
||
|
static int eeh_error_buf_size;
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_init - EEH platform dependent initialization
|
||
|
*
|
||
|
* EEH platform dependent initialization on pseries.
|
||
|
*/
|
||
|
static int pseries_eeh_init(void)
|
||
|
{
|
||
|
/* figure out EEH RTAS function call tokens */
|
||
|
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
|
||
|
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
|
||
|
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
|
||
|
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
|
||
|
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
|
||
|
ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
|
||
|
ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
|
||
|
ibm_configure_pe = rtas_token("ibm,configure-pe");
|
||
|
|
||
|
/*
|
||
|
* ibm,configure-pe and ibm,configure-bridge have the same semantics,
|
||
|
* however ibm,configure-pe can be faster. If we can't find
|
||
|
* ibm,configure-pe then fall back to using ibm,configure-bridge.
|
||
|
*/
|
||
|
if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
|
||
|
ibm_configure_pe = rtas_token("ibm,configure-bridge");
|
||
|
|
||
|
/*
|
||
|
* Necessary sanity check. We needn't check "get-config-addr-info"
|
||
|
* and its variant since the old firmware probably support address
|
||
|
* of domain/bus/slot/function for EEH RTAS operations.
|
||
|
*/
|
||
|
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
|
||
|
ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
|
||
|
(ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
|
||
|
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
|
||
|
ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
|
||
|
ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
|
||
|
pr_info("EEH functionality not supported\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Initialize error log lock and size */
|
||
|
spin_lock_init(&slot_errbuf_lock);
|
||
|
eeh_error_buf_size = rtas_token("rtas-error-log-max");
|
||
|
if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
|
||
|
pr_info("%s: unknown EEH error log size\n",
|
||
|
__func__);
|
||
|
eeh_error_buf_size = 1024;
|
||
|
} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
|
||
|
pr_info("%s: EEH error log size %d exceeds the maximal %d\n",
|
||
|
__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
|
||
|
eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
|
||
|
}
|
||
|
|
||
|
/* Set EEH probe mode */
|
||
|
eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pseries_eeh_cap_start(struct pci_dn *pdn)
|
||
|
{
|
||
|
u32 status;
|
||
|
|
||
|
if (!pdn)
|
||
|
return 0;
|
||
|
|
||
|
rtas_read_config(pdn, PCI_STATUS, 2, &status);
|
||
|
if (!(status & PCI_STATUS_CAP_LIST))
|
||
|
return 0;
|
||
|
|
||
|
return PCI_CAPABILITY_LIST;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
|
||
|
{
|
||
|
int pos = pseries_eeh_cap_start(pdn);
|
||
|
int cnt = 48; /* Maximal number of capabilities */
|
||
|
u32 id;
|
||
|
|
||
|
if (!pos)
|
||
|
return 0;
|
||
|
|
||
|
while (cnt--) {
|
||
|
rtas_read_config(pdn, pos, 1, &pos);
|
||
|
if (pos < 0x40)
|
||
|
break;
|
||
|
pos &= ~3;
|
||
|
rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
|
||
|
if (id == 0xff)
|
||
|
break;
|
||
|
if (id == cap)
|
||
|
return pos;
|
||
|
pos += PCI_CAP_LIST_NEXT;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
|
||
|
{
|
||
|
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
|
||
|
u32 header;
|
||
|
int pos = 256;
|
||
|
int ttl = (4096 - 256) / 8;
|
||
|
|
||
|
if (!edev || !edev->pcie_cap)
|
||
|
return 0;
|
||
|
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
|
||
|
return 0;
|
||
|
else if (!header)
|
||
|
return 0;
|
||
|
|
||
|
while (ttl-- > 0) {
|
||
|
if (PCI_EXT_CAP_ID(header) == cap && pos)
|
||
|
return pos;
|
||
|
|
||
|
pos = PCI_EXT_CAP_NEXT(header);
|
||
|
if (pos < 256)
|
||
|
break;
|
||
|
|
||
|
if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_probe - EEH probe on the given device
|
||
|
* @pdn: PCI device node
|
||
|
* @data: Unused
|
||
|
*
|
||
|
* When EEH module is installed during system boot, all PCI devices
|
||
|
* are checked one by one to see if it supports EEH. The function
|
||
|
* is introduced for the purpose.
|
||
|
*/
|
||
|
static void *pseries_eeh_probe(struct pci_dn *pdn, void *data)
|
||
|
{
|
||
|
struct eeh_dev *edev;
|
||
|
struct eeh_pe pe;
|
||
|
u32 pcie_flags;
|
||
|
int enable = 0;
|
||
|
int ret;
|
||
|
|
||
|
/* Retrieve OF node and eeh device */
|
||
|
edev = pdn_to_eeh_dev(pdn);
|
||
|
if (!edev || edev->pe)
|
||
|
return NULL;
|
||
|
|
||
|
/* Check class/vendor/device IDs */
|
||
|
if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
|
||
|
return NULL;
|
||
|
|
||
|
/* Skip for PCI-ISA bridge */
|
||
|
if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* Update class code and mode of eeh device. We need
|
||
|
* correctly reflects that current device is root port
|
||
|
* or PCIe switch downstream port.
|
||
|
*/
|
||
|
edev->class_code = pdn->class_code;
|
||
|
edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
|
||
|
edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
|
||
|
edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
|
||
|
edev->mode &= 0xFFFFFF00;
|
||
|
if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
|
||
|
edev->mode |= EEH_DEV_BRIDGE;
|
||
|
if (edev->pcie_cap) {
|
||
|
rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
|
||
|
2, &pcie_flags);
|
||
|
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
|
||
|
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
|
||
|
edev->mode |= EEH_DEV_ROOT_PORT;
|
||
|
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
|
||
|
edev->mode |= EEH_DEV_DS_PORT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Initialize the fake PE */
|
||
|
memset(&pe, 0, sizeof(struct eeh_pe));
|
||
|
pe.phb = edev->phb;
|
||
|
pe.config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
|
||
|
|
||
|
/* Enable EEH on the device */
|
||
|
ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
|
||
|
if (!ret) {
|
||
|
/* Retrieve PE address */
|
||
|
edev->config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
|
||
|
edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
|
||
|
pe.addr = edev->pe_config_addr;
|
||
|
|
||
|
/* Some older systems (Power4) allow the ibm,set-eeh-option
|
||
|
* call to succeed even on nodes where EEH is not supported.
|
||
|
* Verify support explicitly.
|
||
|
*/
|
||
|
ret = eeh_ops->get_state(&pe, NULL);
|
||
|
if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
|
||
|
enable = 1;
|
||
|
|
||
|
if (enable) {
|
||
|
eeh_add_flag(EEH_ENABLED);
|
||
|
eeh_add_to_parent_pe(edev);
|
||
|
|
||
|
pr_debug("%s: EEH enabled on %02x:%02x.%01x PHB#%d-PE#%x\n",
|
||
|
__func__, pdn->busno, PCI_SLOT(pdn->devfn),
|
||
|
PCI_FUNC(pdn->devfn), pe.phb->global_number,
|
||
|
pe.addr);
|
||
|
} else if (pdn->parent && pdn_to_eeh_dev(pdn->parent) &&
|
||
|
(pdn_to_eeh_dev(pdn->parent))->pe) {
|
||
|
/* This device doesn't support EEH, but it may have an
|
||
|
* EEH parent, in which case we mark it as supported.
|
||
|
*/
|
||
|
edev->config_addr = pdn_to_eeh_dev(pdn->parent)->config_addr;
|
||
|
edev->pe_config_addr = pdn_to_eeh_dev(pdn->parent)->pe_config_addr;
|
||
|
eeh_add_to_parent_pe(edev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Save memory bars */
|
||
|
eeh_save_bars(edev);
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
|
||
|
* @pe: EEH PE
|
||
|
* @option: operation to be issued
|
||
|
*
|
||
|
* The function is used to control the EEH functionality globally.
|
||
|
* Currently, following options are support according to PAPR:
|
||
|
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
|
||
|
*/
|
||
|
static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
int config_addr;
|
||
|
|
||
|
/*
|
||
|
* When we're enabling or disabling EEH functioality on
|
||
|
* the particular PE, the PE config address is possibly
|
||
|
* unavailable. Therefore, we have to figure it out from
|
||
|
* the FDT node.
|
||
|
*/
|
||
|
switch (option) {
|
||
|
case EEH_OPT_DISABLE:
|
||
|
case EEH_OPT_ENABLE:
|
||
|
case EEH_OPT_THAW_MMIO:
|
||
|
case EEH_OPT_THAW_DMA:
|
||
|
config_addr = pe->config_addr;
|
||
|
if (pe->addr)
|
||
|
config_addr = pe->addr;
|
||
|
break;
|
||
|
case EEH_OPT_FREEZE_PE:
|
||
|
/* Not support */
|
||
|
return 0;
|
||
|
default:
|
||
|
pr_err("%s: Invalid option %d\n",
|
||
|
__func__, option);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
|
||
|
config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid), option);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_get_pe_addr - Retrieve PE address
|
||
|
* @pe: EEH PE
|
||
|
*
|
||
|
* Retrieve the assocated PE address. Actually, there're 2 RTAS
|
||
|
* function calls dedicated for the purpose. We need implement
|
||
|
* it through the new function and then the old one. Besides,
|
||
|
* you should make sure the config address is figured out from
|
||
|
* FDT node before calling the function.
|
||
|
*
|
||
|
* It's notable that zero'ed return value means invalid PE config
|
||
|
* address.
|
||
|
*/
|
||
|
static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
int rets[3];
|
||
|
|
||
|
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
|
||
|
/*
|
||
|
* First of all, we need to make sure there has one PE
|
||
|
* associated with the device. Otherwise, PE address is
|
||
|
* meaningless.
|
||
|
*/
|
||
|
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
|
||
|
pe->config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid), 1);
|
||
|
if (ret || (rets[0] == 0))
|
||
|
return 0;
|
||
|
|
||
|
/* Retrieve the associated PE config address */
|
||
|
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
|
||
|
pe->config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid), 0);
|
||
|
if (ret) {
|
||
|
pr_warn("%s: Failed to get address for PHB#%d-PE#%x\n",
|
||
|
__func__, pe->phb->global_number, pe->config_addr);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return rets[0];
|
||
|
}
|
||
|
|
||
|
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
|
||
|
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
|
||
|
pe->config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid), 0);
|
||
|
if (ret) {
|
||
|
pr_warn("%s: Failed to get address for PHB#%d-PE#%x\n",
|
||
|
__func__, pe->phb->global_number, pe->config_addr);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return rets[0];
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_get_state - Retrieve PE state
|
||
|
* @pe: EEH PE
|
||
|
* @state: return value
|
||
|
*
|
||
|
* Retrieve the state of the specified PE. On RTAS compliant
|
||
|
* pseries platform, there already has one dedicated RTAS function
|
||
|
* for the purpose. It's notable that the associated PE config address
|
||
|
* might be ready when calling the function. Therefore, endeavour to
|
||
|
* use the PE config address if possible. Further more, there're 2
|
||
|
* RTAS calls for the purpose, we need to try the new one and back
|
||
|
* to the old one if the new one couldn't work properly.
|
||
|
*/
|
||
|
static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
|
||
|
{
|
||
|
int config_addr;
|
||
|
int ret;
|
||
|
int rets[4];
|
||
|
int result;
|
||
|
|
||
|
/* Figure out PE config address if possible */
|
||
|
config_addr = pe->config_addr;
|
||
|
if (pe->addr)
|
||
|
config_addr = pe->addr;
|
||
|
|
||
|
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
|
||
|
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
|
||
|
config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid));
|
||
|
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
|
||
|
/* Fake PE unavailable info */
|
||
|
rets[2] = 0;
|
||
|
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
|
||
|
config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid));
|
||
|
} else {
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Parse the result out */
|
||
|
if (!rets[1])
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
|
||
|
switch(rets[0]) {
|
||
|
case 0:
|
||
|
result = EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_DMA_ACTIVE;
|
||
|
break;
|
||
|
case 1:
|
||
|
result = EEH_STATE_RESET_ACTIVE |
|
||
|
EEH_STATE_MMIO_ACTIVE |
|
||
|
EEH_STATE_DMA_ACTIVE;
|
||
|
break;
|
||
|
case 2:
|
||
|
result = 0;
|
||
|
break;
|
||
|
case 4:
|
||
|
result = EEH_STATE_MMIO_ENABLED;
|
||
|
break;
|
||
|
case 5:
|
||
|
if (rets[2]) {
|
||
|
if (state) *state = rets[2];
|
||
|
result = EEH_STATE_UNAVAILABLE;
|
||
|
} else {
|
||
|
result = EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
result = EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_reset - Reset the specified PE
|
||
|
* @pe: EEH PE
|
||
|
* @option: reset option
|
||
|
*
|
||
|
* Reset the specified PE
|
||
|
*/
|
||
|
static int pseries_eeh_reset(struct eeh_pe *pe, int option)
|
||
|
{
|
||
|
int config_addr;
|
||
|
int ret;
|
||
|
|
||
|
/* Figure out PE address */
|
||
|
config_addr = pe->config_addr;
|
||
|
if (pe->addr)
|
||
|
config_addr = pe->addr;
|
||
|
|
||
|
/* Reset PE through RTAS call */
|
||
|
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
|
||
|
config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid), option);
|
||
|
|
||
|
/* If fundamental-reset not supported, try hot-reset */
|
||
|
if (option == EEH_RESET_FUNDAMENTAL &&
|
||
|
ret == -8) {
|
||
|
option = EEH_RESET_HOT;
|
||
|
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
|
||
|
config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid), option);
|
||
|
}
|
||
|
|
||
|
/* We need reset hold or settlement delay */
|
||
|
if (option == EEH_RESET_FUNDAMENTAL ||
|
||
|
option == EEH_RESET_HOT)
|
||
|
msleep(EEH_PE_RST_HOLD_TIME);
|
||
|
else
|
||
|
msleep(EEH_PE_RST_SETTLE_TIME);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_wait_state - Wait for PE state
|
||
|
* @pe: EEH PE
|
||
|
* @max_wait: maximal period in millisecond
|
||
|
*
|
||
|
* Wait for the state of associated PE. It might take some time
|
||
|
* to retrieve the PE's state.
|
||
|
*/
|
||
|
static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
|
||
|
{
|
||
|
int ret;
|
||
|
int mwait;
|
||
|
|
||
|
/*
|
||
|
* According to PAPR, the state of PE might be temporarily
|
||
|
* unavailable. Under the circumstance, we have to wait
|
||
|
* for indicated time determined by firmware. The maximal
|
||
|
* wait time is 5 minutes, which is acquired from the original
|
||
|
* EEH implementation. Also, the original implementation
|
||
|
* also defined the minimal wait time as 1 second.
|
||
|
*/
|
||
|
#define EEH_STATE_MIN_WAIT_TIME (1000)
|
||
|
#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
|
||
|
|
||
|
while (1) {
|
||
|
ret = pseries_eeh_get_state(pe, &mwait);
|
||
|
|
||
|
/*
|
||
|
* If the PE's state is temporarily unavailable,
|
||
|
* we have to wait for the specified time. Otherwise,
|
||
|
* the PE's state will be returned immediately.
|
||
|
*/
|
||
|
if (ret != EEH_STATE_UNAVAILABLE)
|
||
|
return ret;
|
||
|
|
||
|
if (max_wait <= 0) {
|
||
|
pr_warn("%s: Timeout when getting PE's state (%d)\n",
|
||
|
__func__, max_wait);
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
if (mwait <= 0) {
|
||
|
pr_warn("%s: Firmware returned bad wait value %d\n",
|
||
|
__func__, mwait);
|
||
|
mwait = EEH_STATE_MIN_WAIT_TIME;
|
||
|
} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
|
||
|
pr_warn("%s: Firmware returned too long wait value %d\n",
|
||
|
__func__, mwait);
|
||
|
mwait = EEH_STATE_MAX_WAIT_TIME;
|
||
|
}
|
||
|
|
||
|
max_wait -= mwait;
|
||
|
msleep(mwait);
|
||
|
}
|
||
|
|
||
|
return EEH_STATE_NOT_SUPPORT;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_get_log - Retrieve error log
|
||
|
* @pe: EEH PE
|
||
|
* @severity: temporary or permanent error log
|
||
|
* @drv_log: driver log to be combined with retrieved error log
|
||
|
* @len: length of driver log
|
||
|
*
|
||
|
* Retrieve the temporary or permanent error from the PE.
|
||
|
* Actually, the error will be retrieved through the dedicated
|
||
|
* RTAS call.
|
||
|
*/
|
||
|
static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
|
||
|
{
|
||
|
int config_addr;
|
||
|
unsigned long flags;
|
||
|
int ret;
|
||
|
|
||
|
spin_lock_irqsave(&slot_errbuf_lock, flags);
|
||
|
memset(slot_errbuf, 0, eeh_error_buf_size);
|
||
|
|
||
|
/* Figure out the PE address */
|
||
|
config_addr = pe->config_addr;
|
||
|
if (pe->addr)
|
||
|
config_addr = pe->addr;
|
||
|
|
||
|
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
|
||
|
BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
|
||
|
virt_to_phys(drv_log), len,
|
||
|
virt_to_phys(slot_errbuf), eeh_error_buf_size,
|
||
|
severity);
|
||
|
if (!ret)
|
||
|
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
|
||
|
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
|
||
|
* @pe: EEH PE
|
||
|
*
|
||
|
* The function will be called to reconfigure the bridges included
|
||
|
* in the specified PE so that the mulfunctional PE would be recovered
|
||
|
* again.
|
||
|
*/
|
||
|
static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
|
||
|
{
|
||
|
int config_addr;
|
||
|
int ret;
|
||
|
/* Waiting 0.2s maximum before skipping configuration */
|
||
|
int max_wait = 200;
|
||
|
|
||
|
/* Figure out the PE address */
|
||
|
config_addr = pe->config_addr;
|
||
|
if (pe->addr)
|
||
|
config_addr = pe->addr;
|
||
|
|
||
|
while (max_wait > 0) {
|
||
|
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
|
||
|
config_addr, BUID_HI(pe->phb->buid),
|
||
|
BUID_LO(pe->phb->buid));
|
||
|
|
||
|
if (!ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* If RTAS returns a delay value that's above 100ms, cut it
|
||
|
* down to 100ms in case firmware made a mistake. For more
|
||
|
* on how these delay values work see rtas_busy_delay_time
|
||
|
*/
|
||
|
if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
|
||
|
ret <= RTAS_EXTENDED_DELAY_MAX)
|
||
|
ret = RTAS_EXTENDED_DELAY_MIN+2;
|
||
|
|
||
|
max_wait -= rtas_busy_delay_time(ret);
|
||
|
|
||
|
if (max_wait < 0)
|
||
|
break;
|
||
|
|
||
|
rtas_busy_delay(ret);
|
||
|
}
|
||
|
|
||
|
pr_warn("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
|
||
|
__func__, pe->phb->global_number, pe->addr, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_read_config - Read PCI config space
|
||
|
* @pdn: PCI device node
|
||
|
* @where: PCI address
|
||
|
* @size: size to read
|
||
|
* @val: return value
|
||
|
*
|
||
|
* Read config space from the speicifed device
|
||
|
*/
|
||
|
static int pseries_eeh_read_config(struct pci_dn *pdn, int where, int size, u32 *val)
|
||
|
{
|
||
|
return rtas_read_config(pdn, where, size, val);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pseries_eeh_write_config - Write PCI config space
|
||
|
* @pdn: PCI device node
|
||
|
* @where: PCI address
|
||
|
* @size: size to write
|
||
|
* @val: value to be written
|
||
|
*
|
||
|
* Write config space to the specified device
|
||
|
*/
|
||
|
static int pseries_eeh_write_config(struct pci_dn *pdn, int where, int size, u32 val)
|
||
|
{
|
||
|
return rtas_write_config(pdn, where, size, val);
|
||
|
}
|
||
|
|
||
|
static struct eeh_ops pseries_eeh_ops = {
|
||
|
.name = "pseries",
|
||
|
.init = pseries_eeh_init,
|
||
|
.probe = pseries_eeh_probe,
|
||
|
.set_option = pseries_eeh_set_option,
|
||
|
.get_pe_addr = pseries_eeh_get_pe_addr,
|
||
|
.get_state = pseries_eeh_get_state,
|
||
|
.reset = pseries_eeh_reset,
|
||
|
.wait_state = pseries_eeh_wait_state,
|
||
|
.get_log = pseries_eeh_get_log,
|
||
|
.configure_bridge = pseries_eeh_configure_bridge,
|
||
|
.err_inject = NULL,
|
||
|
.read_config = pseries_eeh_read_config,
|
||
|
.write_config = pseries_eeh_write_config,
|
||
|
.next_error = NULL,
|
||
|
.restore_config = NULL
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* eeh_pseries_init - Register platform dependent EEH operations
|
||
|
*
|
||
|
* EEH initialization on pseries platform. This function should be
|
||
|
* called before any EEH related functions.
|
||
|
*/
|
||
|
static int __init eeh_pseries_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = eeh_ops_register(&pseries_eeh_ops);
|
||
|
if (!ret)
|
||
|
pr_info("EEH: pSeries platform initialized\n");
|
||
|
else
|
||
|
pr_info("EEH: pSeries platform initialization failure (%d)\n",
|
||
|
ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
machine_early_initcall(pseries, eeh_pseries_init);
|