585 lines
16 KiB
C
585 lines
16 KiB
C
|
/*
|
||
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* as published by the Free Software Foundation, version 2.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
||
|
* NON INFRINGEMENT. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/smp.h>
|
||
|
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
#include <asm/tlb.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/homecache.h>
|
||
|
|
||
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
||
|
|
||
|
/*
|
||
|
* The normal show_free_areas() is too verbose on Tile, with dozens
|
||
|
* of processors and often four NUMA zones each with high and lowmem.
|
||
|
*/
|
||
|
void show_mem(unsigned int filter)
|
||
|
{
|
||
|
struct zone *zone;
|
||
|
|
||
|
pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu pagecache:%lu swap:%lu\n",
|
||
|
(global_node_page_state(NR_ACTIVE_ANON) +
|
||
|
global_node_page_state(NR_ACTIVE_FILE)),
|
||
|
(global_node_page_state(NR_INACTIVE_ANON) +
|
||
|
global_node_page_state(NR_INACTIVE_FILE)),
|
||
|
global_node_page_state(NR_FILE_DIRTY),
|
||
|
global_node_page_state(NR_WRITEBACK),
|
||
|
global_node_page_state(NR_UNSTABLE_NFS),
|
||
|
global_page_state(NR_FREE_PAGES),
|
||
|
(global_page_state(NR_SLAB_RECLAIMABLE) +
|
||
|
global_page_state(NR_SLAB_UNRECLAIMABLE)),
|
||
|
global_node_page_state(NR_FILE_MAPPED),
|
||
|
global_page_state(NR_PAGETABLE),
|
||
|
global_page_state(NR_BOUNCE),
|
||
|
global_node_page_state(NR_FILE_PAGES),
|
||
|
get_nr_swap_pages());
|
||
|
|
||
|
for_each_zone(zone) {
|
||
|
unsigned long flags, order, total = 0, largest_order = -1;
|
||
|
|
||
|
if (!populated_zone(zone))
|
||
|
continue;
|
||
|
|
||
|
spin_lock_irqsave(&zone->lock, flags);
|
||
|
for (order = 0; order < MAX_ORDER; order++) {
|
||
|
int nr = zone->free_area[order].nr_free;
|
||
|
total += nr << order;
|
||
|
if (nr)
|
||
|
largest_order = order;
|
||
|
}
|
||
|
spin_unlock_irqrestore(&zone->lock, flags);
|
||
|
pr_err("Node %d %7s: %lukB (largest %luKb)\n",
|
||
|
zone_to_nid(zone), zone->name,
|
||
|
K(total), largest_order ? K(1UL) << largest_order : 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* shatter_huge_page() - ensure a given address is mapped by a small page.
|
||
|
*
|
||
|
* This function converts a huge PTE mapping kernel LOWMEM into a bunch
|
||
|
* of small PTEs with the same caching. No cache flush required, but we
|
||
|
* must do a global TLB flush.
|
||
|
*
|
||
|
* Any caller that wishes to modify a kernel mapping that might
|
||
|
* have been made with a huge page should call this function,
|
||
|
* since doing so properly avoids race conditions with installing the
|
||
|
* newly-shattered page and then flushing all the TLB entries.
|
||
|
*
|
||
|
* @addr: Address at which to shatter any existing huge page.
|
||
|
*/
|
||
|
void shatter_huge_page(unsigned long addr)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
unsigned long flags = 0; /* happy compiler */
|
||
|
#ifdef __PAGETABLE_PMD_FOLDED
|
||
|
struct list_head *pos;
|
||
|
#endif
|
||
|
|
||
|
/* Get a pointer to the pmd entry that we need to change. */
|
||
|
addr &= HPAGE_MASK;
|
||
|
BUG_ON(pgd_addr_invalid(addr));
|
||
|
BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
|
||
|
pgd = swapper_pg_dir + pgd_index(addr);
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
BUG_ON(!pud_present(*pud));
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
BUG_ON(!pmd_present(*pmd));
|
||
|
if (!pmd_huge_page(*pmd))
|
||
|
return;
|
||
|
|
||
|
spin_lock_irqsave(&init_mm.page_table_lock, flags);
|
||
|
if (!pmd_huge_page(*pmd)) {
|
||
|
/* Lost the race to convert the huge page. */
|
||
|
spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Shatter the huge page into the preallocated L2 page table. */
|
||
|
pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
|
||
|
|
||
|
#ifdef __PAGETABLE_PMD_FOLDED
|
||
|
/* Walk every pgd on the system and update the pmd there. */
|
||
|
spin_lock(&pgd_lock);
|
||
|
list_for_each(pos, &pgd_list) {
|
||
|
pmd_t *copy_pmd;
|
||
|
pgd = list_to_pgd(pos) + pgd_index(addr);
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
copy_pmd = pmd_offset(pud, addr);
|
||
|
__set_pmd(copy_pmd, *pmd);
|
||
|
}
|
||
|
spin_unlock(&pgd_lock);
|
||
|
#endif
|
||
|
|
||
|
/* Tell every cpu to notice the change. */
|
||
|
flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
|
||
|
cpu_possible_mask, NULL, 0);
|
||
|
|
||
|
/* Hold the lock until the TLB flush is finished to avoid races. */
|
||
|
spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* List of all pgd's needed so it can invalidate entries in both cached
|
||
|
* and uncached pgd's. This is essentially codepath-based locking
|
||
|
* against pageattr.c; it is the unique case in which a valid change
|
||
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
||
|
* vmalloc faults work because attached pagetables are never freed.
|
||
|
*
|
||
|
* The lock is always taken with interrupts disabled, unlike on x86
|
||
|
* and other platforms, because we need to take the lock in
|
||
|
* shatter_huge_page(), which may be called from an interrupt context.
|
||
|
* We are not at risk from the tlbflush IPI deadlock that was seen on
|
||
|
* x86, since we use the flush_remote() API to have the hypervisor do
|
||
|
* the TLB flushes regardless of irq disabling.
|
||
|
*/
|
||
|
DEFINE_SPINLOCK(pgd_lock);
|
||
|
LIST_HEAD(pgd_list);
|
||
|
|
||
|
static inline void pgd_list_add(pgd_t *pgd)
|
||
|
{
|
||
|
list_add(pgd_to_list(pgd), &pgd_list);
|
||
|
}
|
||
|
|
||
|
static inline void pgd_list_del(pgd_t *pgd)
|
||
|
{
|
||
|
list_del(pgd_to_list(pgd));
|
||
|
}
|
||
|
|
||
|
#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
|
||
|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
|
||
|
|
||
|
static void pgd_ctor(pgd_t *pgd)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
|
||
|
spin_lock_irqsave(&pgd_lock, flags);
|
||
|
|
||
|
#ifndef __tilegx__
|
||
|
/*
|
||
|
* Check that the user interrupt vector has no L2.
|
||
|
* It never should for the swapper, and new page tables
|
||
|
* should always start with an empty user interrupt vector.
|
||
|
*/
|
||
|
BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
|
||
|
#endif
|
||
|
|
||
|
memcpy(pgd + KERNEL_PGD_INDEX_START,
|
||
|
swapper_pg_dir + KERNEL_PGD_INDEX_START,
|
||
|
KERNEL_PGD_PTRS * sizeof(pgd_t));
|
||
|
|
||
|
pgd_list_add(pgd);
|
||
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
||
|
}
|
||
|
|
||
|
static void pgd_dtor(pgd_t *pgd)
|
||
|
{
|
||
|
unsigned long flags; /* can be called from interrupt context */
|
||
|
|
||
|
spin_lock_irqsave(&pgd_lock, flags);
|
||
|
pgd_list_del(pgd);
|
||
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
||
|
}
|
||
|
|
||
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
||
|
{
|
||
|
pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
|
||
|
if (pgd)
|
||
|
pgd_ctor(pgd);
|
||
|
return pgd;
|
||
|
}
|
||
|
|
||
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
||
|
{
|
||
|
pgd_dtor(pgd);
|
||
|
kmem_cache_free(pgd_cache, pgd);
|
||
|
}
|
||
|
|
||
|
|
||
|
#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
|
||
|
|
||
|
struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
|
||
|
int order)
|
||
|
{
|
||
|
gfp_t flags = GFP_KERNEL|__GFP_ZERO;
|
||
|
struct page *p;
|
||
|
int i;
|
||
|
|
||
|
p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
|
||
|
if (p == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
if (!pgtable_page_ctor(p)) {
|
||
|
__free_pages(p, L2_USER_PGTABLE_ORDER);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make every page have a page_count() of one, not just the first.
|
||
|
* We don't use __GFP_COMP since it doesn't look like it works
|
||
|
* correctly with tlb_remove_page().
|
||
|
*/
|
||
|
for (i = 1; i < order; ++i) {
|
||
|
init_page_count(p+i);
|
||
|
inc_zone_page_state(p+i, NR_PAGETABLE);
|
||
|
}
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free page immediately (used in __pte_alloc if we raced with another
|
||
|
* process). We have to correct whatever pte_alloc_one() did before
|
||
|
* returning the pages to the allocator.
|
||
|
*/
|
||
|
void pgtable_free(struct mm_struct *mm, struct page *p, int order)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
pgtable_page_dtor(p);
|
||
|
__free_page(p);
|
||
|
|
||
|
for (i = 1; i < order; ++i) {
|
||
|
__free_page(p+i);
|
||
|
dec_zone_page_state(p+i, NR_PAGETABLE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
|
||
|
unsigned long address, int order)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
pgtable_page_dtor(pte);
|
||
|
tlb_remove_page(tlb, pte);
|
||
|
|
||
|
for (i = 1; i < order; ++i) {
|
||
|
tlb_remove_page(tlb, pte + i);
|
||
|
dec_zone_page_state(pte + i, NR_PAGETABLE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef __tilegx__
|
||
|
|
||
|
/*
|
||
|
* FIXME: needs to be atomic vs hypervisor writes. For now we make the
|
||
|
* window of vulnerability a bit smaller by doing an unlocked 8-bit update.
|
||
|
*/
|
||
|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
|
||
|
# error Code assumes HV_PTE "accessed" bit in second byte
|
||
|
#endif
|
||
|
u8 *tmp = (u8 *)ptep;
|
||
|
u8 second_byte = tmp[1];
|
||
|
if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
|
||
|
return 0;
|
||
|
tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This implementation is atomic vs hypervisor writes, since the hypervisor
|
||
|
* always writes the low word (where "accessed" and "dirty" are) and this
|
||
|
* routine only writes the high word.
|
||
|
*/
|
||
|
void ptep_set_wrprotect(struct mm_struct *mm,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
#if HV_PTE_INDEX_WRITABLE < 32
|
||
|
# error Code assumes HV_PTE "writable" bit in high word
|
||
|
#endif
|
||
|
u32 *tmp = (u32 *)ptep;
|
||
|
tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Return a pointer to the PTE that corresponds to the given
|
||
|
* address in the given page table. A NULL page table just uses
|
||
|
* the standard kernel page table; the preferred API in this case
|
||
|
* is virt_to_kpte().
|
||
|
*
|
||
|
* The returned pointer can point to a huge page in other levels
|
||
|
* of the page table than the bottom, if the huge page is present
|
||
|
* in the page table. For bottom-level PTEs, the returned pointer
|
||
|
* can point to a PTE that is either present or not.
|
||
|
*/
|
||
|
pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
|
||
|
if (pgd_addr_invalid(addr))
|
||
|
return NULL;
|
||
|
|
||
|
pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
if (!pud_present(*pud))
|
||
|
return NULL;
|
||
|
if (pud_huge_page(*pud))
|
||
|
return (pte_t *)pud;
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
if (!pmd_present(*pmd))
|
||
|
return NULL;
|
||
|
if (pmd_huge_page(*pmd))
|
||
|
return (pte_t *)pmd;
|
||
|
return pte_offset_kernel(pmd, addr);
|
||
|
}
|
||
|
EXPORT_SYMBOL(virt_to_pte);
|
||
|
|
||
|
pte_t *virt_to_kpte(unsigned long kaddr)
|
||
|
{
|
||
|
BUG_ON(kaddr < PAGE_OFFSET);
|
||
|
return virt_to_pte(NULL, kaddr);
|
||
|
}
|
||
|
EXPORT_SYMBOL(virt_to_kpte);
|
||
|
|
||
|
pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
|
||
|
{
|
||
|
unsigned int width = smp_width;
|
||
|
int x = cpu % width;
|
||
|
int y = cpu / width;
|
||
|
BUG_ON(y >= smp_height);
|
||
|
BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
|
||
|
BUG_ON(cpu < 0 || cpu >= NR_CPUS);
|
||
|
BUG_ON(!cpu_is_valid_lotar(cpu));
|
||
|
return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
|
||
|
}
|
||
|
|
||
|
int get_remote_cache_cpu(pgprot_t prot)
|
||
|
{
|
||
|
HV_LOTAR lotar = hv_pte_get_lotar(prot);
|
||
|
int x = HV_LOTAR_X(lotar);
|
||
|
int y = HV_LOTAR_Y(lotar);
|
||
|
BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
|
||
|
return x + y * smp_width;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert a kernel VA to a PA and homing information.
|
||
|
*/
|
||
|
int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
|
||
|
{
|
||
|
struct page *page = virt_to_page(va);
|
||
|
pte_t null_pte = { 0 };
|
||
|
|
||
|
*cpa = __pa(va);
|
||
|
|
||
|
/* Note that this is not writing a page table, just returning a pte. */
|
||
|
*pte = pte_set_home(null_pte, page_home(page));
|
||
|
|
||
|
return 0; /* return non-zero if not hfh? */
|
||
|
}
|
||
|
EXPORT_SYMBOL(va_to_cpa_and_pte);
|
||
|
|
||
|
void __set_pte(pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
#ifdef __tilegx__
|
||
|
*ptep = pte;
|
||
|
#else
|
||
|
# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
|
||
|
# error Must write the present and migrating bits last
|
||
|
# endif
|
||
|
if (pte_present(pte)) {
|
||
|
((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
|
||
|
barrier();
|
||
|
((u32 *)ptep)[0] = (u32)(pte_val(pte));
|
||
|
} else {
|
||
|
((u32 *)ptep)[0] = (u32)(pte_val(pte));
|
||
|
barrier();
|
||
|
((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
|
||
|
}
|
||
|
#endif /* __tilegx__ */
|
||
|
}
|
||
|
|
||
|
void set_pte(pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
if (pte_present(pte) &&
|
||
|
(!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
|
||
|
/* The PTE actually references physical memory. */
|
||
|
unsigned long pfn = pte_pfn(pte);
|
||
|
if (pfn_valid(pfn)) {
|
||
|
/* Update the home of the PTE from the struct page. */
|
||
|
pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
|
||
|
} else if (hv_pte_get_mode(pte) == 0) {
|
||
|
/* remap_pfn_range(), etc, must supply PTE mode. */
|
||
|
panic("set_pte(): out-of-range PFN and mode 0\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
__set_pte(ptep, pte);
|
||
|
}
|
||
|
|
||
|
/* Can this mm load a PTE with cached_priority set? */
|
||
|
static inline int mm_is_priority_cached(struct mm_struct *mm)
|
||
|
{
|
||
|
return mm->context.priority_cached != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a priority mapping to an mm_context and
|
||
|
* notify the hypervisor if this is the first one.
|
||
|
*/
|
||
|
void start_mm_caching(struct mm_struct *mm)
|
||
|
{
|
||
|
if (!mm_is_priority_cached(mm)) {
|
||
|
mm->context.priority_cached = -1UL;
|
||
|
hv_set_caching(-1UL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Validate and return the priority_cached flag. We know if it's zero
|
||
|
* that we don't need to scan, since we immediately set it non-zero
|
||
|
* when we first consider a MAP_CACHE_PRIORITY mapping.
|
||
|
*
|
||
|
* We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
|
||
|
* since we're in an interrupt context (servicing switch_mm) we don't
|
||
|
* worry about it and don't unset the "priority_cached" field.
|
||
|
* Presumably we'll come back later and have more luck and clear
|
||
|
* the value then; for now we'll just keep the cache marked for priority.
|
||
|
*/
|
||
|
static unsigned long update_priority_cached(struct mm_struct *mm)
|
||
|
{
|
||
|
if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
|
||
|
struct vm_area_struct *vm;
|
||
|
for (vm = mm->mmap; vm; vm = vm->vm_next) {
|
||
|
if (hv_pte_get_cached_priority(vm->vm_page_prot))
|
||
|
break;
|
||
|
}
|
||
|
if (vm == NULL)
|
||
|
mm->context.priority_cached = 0;
|
||
|
up_write(&mm->mmap_sem);
|
||
|
}
|
||
|
return mm->context.priority_cached;
|
||
|
}
|
||
|
|
||
|
/* Set caching correctly for an mm that we are switching to. */
|
||
|
void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
|
||
|
{
|
||
|
if (!mm_is_priority_cached(next)) {
|
||
|
/*
|
||
|
* If the new mm doesn't use priority caching, just see if we
|
||
|
* need the hv_set_caching(), or can assume it's already zero.
|
||
|
*/
|
||
|
if (mm_is_priority_cached(prev))
|
||
|
hv_set_caching(0);
|
||
|
} else {
|
||
|
hv_set_caching(update_priority_cached(next));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if CHIP_HAS_MMIO()
|
||
|
|
||
|
/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
|
||
|
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
|
||
|
pgprot_t home)
|
||
|
{
|
||
|
void *addr;
|
||
|
struct vm_struct *area;
|
||
|
unsigned long offset, last_addr;
|
||
|
pgprot_t pgprot;
|
||
|
|
||
|
/* Don't allow wraparound or zero size */
|
||
|
last_addr = phys_addr + size - 1;
|
||
|
if (!size || last_addr < phys_addr)
|
||
|
return NULL;
|
||
|
|
||
|
/* Create a read/write, MMIO VA mapping homed at the requested shim. */
|
||
|
pgprot = PAGE_KERNEL;
|
||
|
pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
|
||
|
pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
|
||
|
|
||
|
/*
|
||
|
* Mappings have to be page-aligned
|
||
|
*/
|
||
|
offset = phys_addr & ~PAGE_MASK;
|
||
|
phys_addr &= PAGE_MASK;
|
||
|
size = PAGE_ALIGN(last_addr+1) - phys_addr;
|
||
|
|
||
|
/*
|
||
|
* Ok, go for it..
|
||
|
*/
|
||
|
area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
|
||
|
if (!area)
|
||
|
return NULL;
|
||
|
area->phys_addr = phys_addr;
|
||
|
addr = area->addr;
|
||
|
if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
|
||
|
phys_addr, pgprot)) {
|
||
|
free_vm_area(area);
|
||
|
return NULL;
|
||
|
}
|
||
|
return (__force void __iomem *) (offset + (char *)addr);
|
||
|
}
|
||
|
EXPORT_SYMBOL(ioremap_prot);
|
||
|
|
||
|
/* Unmap an MMIO VA mapping. */
|
||
|
void iounmap(volatile void __iomem *addr_in)
|
||
|
{
|
||
|
volatile void __iomem *addr = (volatile void __iomem *)
|
||
|
(PAGE_MASK & (unsigned long __force)addr_in);
|
||
|
#if 1
|
||
|
vunmap((void * __force)addr);
|
||
|
#else
|
||
|
/* x86 uses this complicated flow instead of vunmap(). Is
|
||
|
* there any particular reason we should do the same? */
|
||
|
struct vm_struct *p, *o;
|
||
|
|
||
|
/* Use the vm area unlocked, assuming the caller
|
||
|
ensures there isn't another iounmap for the same address
|
||
|
in parallel. Reuse of the virtual address is prevented by
|
||
|
leaving it in the global lists until we're done with it.
|
||
|
cpa takes care of the direct mappings. */
|
||
|
p = find_vm_area((void *)addr);
|
||
|
|
||
|
if (!p) {
|
||
|
pr_err("iounmap: bad address %p\n", addr);
|
||
|
dump_stack();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Finally remove it */
|
||
|
o = remove_vm_area((void *)addr);
|
||
|
BUG_ON(p != o || o == NULL);
|
||
|
kfree(p);
|
||
|
#endif
|
||
|
}
|
||
|
EXPORT_SYMBOL(iounmap);
|
||
|
|
||
|
#endif /* CHIP_HAS_MMIO() */
|