730 lines
21 KiB
C
730 lines
21 KiB
C
|
/*---------------------------------------------------------------------------+
|
||
|
| fpu_entry.c |
|
||
|
| |
|
||
|
| The entry functions for wm-FPU-emu |
|
||
|
| |
|
||
|
| Copyright (C) 1992,1993,1994,1996,1997 |
|
||
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
|
||
|
| E-mail billm@suburbia.net |
|
||
|
| |
|
||
|
| See the files "README" and "COPYING" for further copyright and warranty |
|
||
|
| information. |
|
||
|
| |
|
||
|
+---------------------------------------------------------------------------*/
|
||
|
|
||
|
/*---------------------------------------------------------------------------+
|
||
|
| Note: |
|
||
|
| The file contains code which accesses user memory. |
|
||
|
| Emulator static data may change when user memory is accessed, due to |
|
||
|
| other processes using the emulator while swapping is in progress. |
|
||
|
+---------------------------------------------------------------------------*/
|
||
|
|
||
|
/*---------------------------------------------------------------------------+
|
||
|
| math_emulate(), restore_i387_soft() and save_i387_soft() are the only |
|
||
|
| entry points for wm-FPU-emu. |
|
||
|
+---------------------------------------------------------------------------*/
|
||
|
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/regset.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/traps.h>
|
||
|
#include <asm/user.h>
|
||
|
#include <asm/fpu/internal.h>
|
||
|
|
||
|
#include "fpu_system.h"
|
||
|
#include "fpu_emu.h"
|
||
|
#include "exception.h"
|
||
|
#include "control_w.h"
|
||
|
#include "status_w.h"
|
||
|
|
||
|
#define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */
|
||
|
|
||
|
/* fcmovCC and f(u)comi(p) are enabled if CPUID(1).EDX(15) "cmov" is set */
|
||
|
|
||
|
/* WARNING: "u" entries are not documented by Intel in their 80486 manual
|
||
|
and may not work on FPU clones or later Intel FPUs.
|
||
|
Changes to support them provided by Linus Torvalds. */
|
||
|
|
||
|
static FUNC const st_instr_table[64] = {
|
||
|
/* Opcode: d8 d9 da db */
|
||
|
/* dc dd de df */
|
||
|
/* c0..7 */ fadd__, fld_i_, fcmovb, fcmovnb,
|
||
|
/* c0..7 */ fadd_i, ffree_, faddp_, ffreep,/*u*/
|
||
|
/* c8..f */ fmul__, fxch_i, fcmove, fcmovne,
|
||
|
/* c8..f */ fmul_i, fxch_i,/*u*/ fmulp_, fxch_i,/*u*/
|
||
|
/* d0..7 */ fcom_st, fp_nop, fcmovbe, fcmovnbe,
|
||
|
/* d0..7 */ fcom_st,/*u*/ fst_i_, fcompst,/*u*/ fstp_i,/*u*/
|
||
|
/* d8..f */ fcompst, fstp_i,/*u*/ fcmovu, fcmovnu,
|
||
|
/* d8..f */ fcompst,/*u*/ fstp_i, fcompp, fstp_i,/*u*/
|
||
|
/* e0..7 */ fsub__, FPU_etc, __BAD__, finit_,
|
||
|
/* e0..7 */ fsubri, fucom_, fsubrp, fstsw_,
|
||
|
/* e8..f */ fsubr_, fconst, fucompp, fucomi_,
|
||
|
/* e8..f */ fsub_i, fucomp, fsubp_, fucomip,
|
||
|
/* f0..7 */ fdiv__, FPU_triga, __BAD__, fcomi_,
|
||
|
/* f0..7 */ fdivri, __BAD__, fdivrp, fcomip,
|
||
|
/* f8..f */ fdivr_, FPU_trigb, __BAD__, __BAD__,
|
||
|
/* f8..f */ fdiv_i, __BAD__, fdivp_, __BAD__,
|
||
|
};
|
||
|
|
||
|
#define _NONE_ 0 /* Take no special action */
|
||
|
#define _REG0_ 1 /* Need to check for not empty st(0) */
|
||
|
#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
|
||
|
#define _REGi_ 0 /* Uses st(rm) */
|
||
|
#define _PUSH_ 3 /* Need to check for space to push onto stack */
|
||
|
#define _null_ 4 /* Function illegal or not implemented */
|
||
|
#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
|
||
|
#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
|
||
|
#define _REGIc 0 /* Compare st(0) and st(rm) */
|
||
|
#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
|
||
|
|
||
|
static u_char const type_table[64] = {
|
||
|
/* Opcode: d8 d9 da db dc dd de df */
|
||
|
/* c0..7 */ _REGI_, _NONE_, _REGIn, _REGIn, _REGIi, _REGi_, _REGIp, _REGi_,
|
||
|
/* c8..f */ _REGI_, _REGIn, _REGIn, _REGIn, _REGIi, _REGI_, _REGIp, _REGI_,
|
||
|
/* d0..7 */ _REGIc, _NONE_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_,
|
||
|
/* d8..f */ _REGIc, _REG0_, _REGIn, _REGIn, _REGIc, _REG0_, _REGIc, _REG0_,
|
||
|
/* e0..7 */ _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
|
||
|
/* e8..f */ _REGI_, _NONE_, _REGIc, _REGIc, _REGIi, _REGIc, _REGIp, _REGIc,
|
||
|
/* f0..7 */ _REGI_, _NONE_, _null_, _REGIc, _REGIi, _null_, _REGIp, _REGIc,
|
||
|
/* f8..f */ _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
|
||
|
};
|
||
|
|
||
|
#ifdef RE_ENTRANT_CHECKING
|
||
|
u_char emulating = 0;
|
||
|
#endif /* RE_ENTRANT_CHECKING */
|
||
|
|
||
|
static int valid_prefix(u_char *Byte, u_char __user ** fpu_eip,
|
||
|
overrides * override);
|
||
|
|
||
|
void math_emulate(struct math_emu_info *info)
|
||
|
{
|
||
|
u_char FPU_modrm, byte1;
|
||
|
unsigned short code;
|
||
|
fpu_addr_modes addr_modes;
|
||
|
int unmasked;
|
||
|
FPU_REG loaded_data;
|
||
|
FPU_REG *st0_ptr;
|
||
|
u_char loaded_tag, st0_tag;
|
||
|
void __user *data_address;
|
||
|
struct address data_sel_off;
|
||
|
struct address entry_sel_off;
|
||
|
unsigned long code_base = 0;
|
||
|
unsigned long code_limit = 0; /* Initialized to stop compiler warnings */
|
||
|
struct desc_struct code_descriptor;
|
||
|
struct fpu *fpu = ¤t->thread.fpu;
|
||
|
|
||
|
fpu__activate_curr(fpu);
|
||
|
|
||
|
#ifdef RE_ENTRANT_CHECKING
|
||
|
if (emulating) {
|
||
|
printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");
|
||
|
}
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
#endif /* RE_ENTRANT_CHECKING */
|
||
|
|
||
|
FPU_info = info;
|
||
|
|
||
|
FPU_ORIG_EIP = FPU_EIP;
|
||
|
|
||
|
if ((FPU_EFLAGS & 0x00020000) != 0) {
|
||
|
/* Virtual 8086 mode */
|
||
|
addr_modes.default_mode = VM86;
|
||
|
FPU_EIP += code_base = FPU_CS << 4;
|
||
|
code_limit = code_base + 0xffff; /* Assumes code_base <= 0xffff0000 */
|
||
|
} else if (FPU_CS == __USER_CS && FPU_DS == __USER_DS) {
|
||
|
addr_modes.default_mode = 0;
|
||
|
} else if (FPU_CS == __KERNEL_CS) {
|
||
|
printk("math_emulate: %04x:%08lx\n", FPU_CS, FPU_EIP);
|
||
|
panic("Math emulation needed in kernel");
|
||
|
} else {
|
||
|
|
||
|
if ((FPU_CS & 4) != 4) { /* Must be in the LDT */
|
||
|
/* Can only handle segmented addressing via the LDT
|
||
|
for now, and it must be 16 bit */
|
||
|
printk("FPU emulator: Unsupported addressing mode\n");
|
||
|
math_abort(FPU_info, SIGILL);
|
||
|
}
|
||
|
|
||
|
code_descriptor = FPU_get_ldt_descriptor(FPU_CS);
|
||
|
if (SEG_D_SIZE(code_descriptor)) {
|
||
|
/* The above test may be wrong, the book is not clear */
|
||
|
/* Segmented 32 bit protected mode */
|
||
|
addr_modes.default_mode = SEG32;
|
||
|
} else {
|
||
|
/* 16 bit protected mode */
|
||
|
addr_modes.default_mode = PM16;
|
||
|
}
|
||
|
FPU_EIP += code_base = SEG_BASE_ADDR(code_descriptor);
|
||
|
code_limit = code_base
|
||
|
+ (SEG_LIMIT(code_descriptor) +
|
||
|
1) * SEG_GRANULARITY(code_descriptor)
|
||
|
- 1;
|
||
|
if (code_limit < code_base)
|
||
|
code_limit = 0xffffffff;
|
||
|
}
|
||
|
|
||
|
FPU_lookahead = !(FPU_EFLAGS & X86_EFLAGS_TF);
|
||
|
|
||
|
if (!valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
|
||
|
&addr_modes.override)) {
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
printk
|
||
|
("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n"
|
||
|
"FPU emulator: self-modifying code! (emulation impossible)\n",
|
||
|
byte1);
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
EXCEPTION(EX_INTERNAL | 0x126);
|
||
|
math_abort(FPU_info, SIGILL);
|
||
|
}
|
||
|
|
||
|
do_another_FPU_instruction:
|
||
|
|
||
|
no_ip_update = 0;
|
||
|
|
||
|
FPU_EIP++; /* We have fetched the prefix and first code bytes. */
|
||
|
|
||
|
if (addr_modes.default_mode) {
|
||
|
/* This checks for the minimum instruction bytes.
|
||
|
We also need to check any extra (address mode) code access. */
|
||
|
if (FPU_EIP > code_limit)
|
||
|
math_abort(FPU_info, SIGSEGV);
|
||
|
}
|
||
|
|
||
|
if ((byte1 & 0xf8) != 0xd8) {
|
||
|
if (byte1 == FWAIT_OPCODE) {
|
||
|
if (partial_status & SW_Summary)
|
||
|
goto do_the_FPU_interrupt;
|
||
|
else
|
||
|
goto FPU_fwait_done;
|
||
|
}
|
||
|
#ifdef PARANOID
|
||
|
EXCEPTION(EX_INTERNAL | 0x128);
|
||
|
math_abort(FPU_info, SIGILL);
|
||
|
#endif /* PARANOID */
|
||
|
}
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
FPU_code_access_ok(1);
|
||
|
FPU_get_user(FPU_modrm, (u_char __user *) FPU_EIP);
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
FPU_EIP++;
|
||
|
|
||
|
if (partial_status & SW_Summary) {
|
||
|
/* Ignore the error for now if the current instruction is a no-wait
|
||
|
control instruction */
|
||
|
/* The 80486 manual contradicts itself on this topic,
|
||
|
but a real 80486 uses the following instructions:
|
||
|
fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
|
||
|
*/
|
||
|
code = (FPU_modrm << 8) | byte1;
|
||
|
if (!((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
|
||
|
(((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
|
||
|
fnstsw */
|
||
|
((code & 0xc000) != 0xc000))))) {
|
||
|
/*
|
||
|
* We need to simulate the action of the kernel to FPU
|
||
|
* interrupts here.
|
||
|
*/
|
||
|
do_the_FPU_interrupt:
|
||
|
|
||
|
FPU_EIP = FPU_ORIG_EIP; /* Point to current FPU instruction. */
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
current->thread.trap_nr = X86_TRAP_MF;
|
||
|
current->thread.error_code = 0;
|
||
|
send_sig(SIGFPE, current, 1);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
entry_sel_off.offset = FPU_ORIG_EIP;
|
||
|
entry_sel_off.selector = FPU_CS;
|
||
|
entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;
|
||
|
entry_sel_off.empty = 0;
|
||
|
|
||
|
FPU_rm = FPU_modrm & 7;
|
||
|
|
||
|
if (FPU_modrm < 0300) {
|
||
|
/* All of these instructions use the mod/rm byte to get a data address */
|
||
|
|
||
|
if ((addr_modes.default_mode & SIXTEEN)
|
||
|
^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX))
|
||
|
data_address =
|
||
|
FPU_get_address_16(FPU_modrm, &FPU_EIP,
|
||
|
&data_sel_off, addr_modes);
|
||
|
else
|
||
|
data_address =
|
||
|
FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off,
|
||
|
addr_modes);
|
||
|
|
||
|
if (addr_modes.default_mode) {
|
||
|
if (FPU_EIP - 1 > code_limit)
|
||
|
math_abort(FPU_info, SIGSEGV);
|
||
|
}
|
||
|
|
||
|
if (!(byte1 & 1)) {
|
||
|
unsigned short status1 = partial_status;
|
||
|
|
||
|
st0_ptr = &st(0);
|
||
|
st0_tag = FPU_gettag0();
|
||
|
|
||
|
/* Stack underflow has priority */
|
||
|
if (NOT_EMPTY_ST0) {
|
||
|
if (addr_modes.default_mode & PROTECTED) {
|
||
|
/* This table works for 16 and 32 bit protected mode */
|
||
|
if (access_limit <
|
||
|
data_sizes_16[(byte1 >> 1) & 3])
|
||
|
math_abort(FPU_info, SIGSEGV);
|
||
|
}
|
||
|
|
||
|
unmasked = 0; /* Do this here to stop compiler warnings. */
|
||
|
switch ((byte1 >> 1) & 3) {
|
||
|
case 0:
|
||
|
unmasked =
|
||
|
FPU_load_single((float __user *)
|
||
|
data_address,
|
||
|
&loaded_data);
|
||
|
loaded_tag = unmasked & 0xff;
|
||
|
unmasked &= ~0xff;
|
||
|
break;
|
||
|
case 1:
|
||
|
loaded_tag =
|
||
|
FPU_load_int32((long __user *)
|
||
|
data_address,
|
||
|
&loaded_data);
|
||
|
break;
|
||
|
case 2:
|
||
|
unmasked =
|
||
|
FPU_load_double((double __user *)
|
||
|
data_address,
|
||
|
&loaded_data);
|
||
|
loaded_tag = unmasked & 0xff;
|
||
|
unmasked &= ~0xff;
|
||
|
break;
|
||
|
case 3:
|
||
|
default: /* Used here to suppress gcc warnings. */
|
||
|
loaded_tag =
|
||
|
FPU_load_int16((short __user *)
|
||
|
data_address,
|
||
|
&loaded_data);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* No more access to user memory, it is safe
|
||
|
to use static data now */
|
||
|
|
||
|
/* NaN operands have the next priority. */
|
||
|
/* We have to delay looking at st(0) until after
|
||
|
loading the data, because that data might contain an SNaN */
|
||
|
if (((st0_tag == TAG_Special) && isNaN(st0_ptr))
|
||
|
|| ((loaded_tag == TAG_Special)
|
||
|
&& isNaN(&loaded_data))) {
|
||
|
/* Restore the status word; we might have loaded a
|
||
|
denormal. */
|
||
|
partial_status = status1;
|
||
|
if ((FPU_modrm & 0x30) == 0x10) {
|
||
|
/* fcom or fcomp */
|
||
|
EXCEPTION(EX_Invalid);
|
||
|
setcc(SW_C3 | SW_C2 | SW_C0);
|
||
|
if ((FPU_modrm & 0x08)
|
||
|
&& (control_word &
|
||
|
CW_Invalid))
|
||
|
FPU_pop(); /* fcomp, masked, so we pop. */
|
||
|
} else {
|
||
|
if (loaded_tag == TAG_Special)
|
||
|
loaded_tag =
|
||
|
FPU_Special
|
||
|
(&loaded_data);
|
||
|
#ifdef PECULIAR_486
|
||
|
/* This is not really needed, but gives behaviour
|
||
|
identical to an 80486 */
|
||
|
if ((FPU_modrm & 0x28) == 0x20)
|
||
|
/* fdiv or fsub */
|
||
|
real_2op_NaN
|
||
|
(&loaded_data,
|
||
|
loaded_tag, 0,
|
||
|
&loaded_data);
|
||
|
else
|
||
|
#endif /* PECULIAR_486 */
|
||
|
/* fadd, fdivr, fmul, or fsubr */
|
||
|
real_2op_NaN
|
||
|
(&loaded_data,
|
||
|
loaded_tag, 0,
|
||
|
st0_ptr);
|
||
|
}
|
||
|
goto reg_mem_instr_done;
|
||
|
}
|
||
|
|
||
|
if (unmasked && !((FPU_modrm & 0x30) == 0x10)) {
|
||
|
/* Is not a comparison instruction. */
|
||
|
if ((FPU_modrm & 0x38) == 0x38) {
|
||
|
/* fdivr */
|
||
|
if ((st0_tag == TAG_Zero) &&
|
||
|
((loaded_tag == TAG_Valid)
|
||
|
|| (loaded_tag ==
|
||
|
TAG_Special
|
||
|
&&
|
||
|
isdenormal
|
||
|
(&loaded_data)))) {
|
||
|
if (FPU_divide_by_zero
|
||
|
(0,
|
||
|
getsign
|
||
|
(&loaded_data))
|
||
|
< 0) {
|
||
|
/* We use the fact here that the unmasked
|
||
|
exception in the loaded data was for a
|
||
|
denormal operand */
|
||
|
/* Restore the state of the denormal op bit */
|
||
|
partial_status
|
||
|
&=
|
||
|
~SW_Denorm_Op;
|
||
|
partial_status
|
||
|
|=
|
||
|
status1 &
|
||
|
SW_Denorm_Op;
|
||
|
} else
|
||
|
setsign(st0_ptr,
|
||
|
getsign
|
||
|
(&loaded_data));
|
||
|
}
|
||
|
}
|
||
|
goto reg_mem_instr_done;
|
||
|
}
|
||
|
|
||
|
switch ((FPU_modrm >> 3) & 7) {
|
||
|
case 0: /* fadd */
|
||
|
clear_C1();
|
||
|
FPU_add(&loaded_data, loaded_tag, 0,
|
||
|
control_word);
|
||
|
break;
|
||
|
case 1: /* fmul */
|
||
|
clear_C1();
|
||
|
FPU_mul(&loaded_data, loaded_tag, 0,
|
||
|
control_word);
|
||
|
break;
|
||
|
case 2: /* fcom */
|
||
|
FPU_compare_st_data(&loaded_data,
|
||
|
loaded_tag);
|
||
|
break;
|
||
|
case 3: /* fcomp */
|
||
|
if (!FPU_compare_st_data
|
||
|
(&loaded_data, loaded_tag)
|
||
|
&& !unmasked)
|
||
|
FPU_pop();
|
||
|
break;
|
||
|
case 4: /* fsub */
|
||
|
clear_C1();
|
||
|
FPU_sub(LOADED | loaded_tag,
|
||
|
(int)&loaded_data,
|
||
|
control_word);
|
||
|
break;
|
||
|
case 5: /* fsubr */
|
||
|
clear_C1();
|
||
|
FPU_sub(REV | LOADED | loaded_tag,
|
||
|
(int)&loaded_data,
|
||
|
control_word);
|
||
|
break;
|
||
|
case 6: /* fdiv */
|
||
|
clear_C1();
|
||
|
FPU_div(LOADED | loaded_tag,
|
||
|
(int)&loaded_data,
|
||
|
control_word);
|
||
|
break;
|
||
|
case 7: /* fdivr */
|
||
|
clear_C1();
|
||
|
if (st0_tag == TAG_Zero)
|
||
|
partial_status = status1; /* Undo any denorm tag,
|
||
|
zero-divide has priority. */
|
||
|
FPU_div(REV | LOADED | loaded_tag,
|
||
|
(int)&loaded_data,
|
||
|
control_word);
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
if ((FPU_modrm & 0x30) == 0x10) {
|
||
|
/* The instruction is fcom or fcomp */
|
||
|
EXCEPTION(EX_StackUnder);
|
||
|
setcc(SW_C3 | SW_C2 | SW_C0);
|
||
|
if ((FPU_modrm & 0x08)
|
||
|
&& (control_word & CW_Invalid))
|
||
|
FPU_pop(); /* fcomp */
|
||
|
} else
|
||
|
FPU_stack_underflow();
|
||
|
}
|
||
|
reg_mem_instr_done:
|
||
|
operand_address = data_sel_off;
|
||
|
} else {
|
||
|
if (!(no_ip_update =
|
||
|
FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6))
|
||
|
>> 1, addr_modes, data_address))) {
|
||
|
operand_address = data_sel_off;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
/* None of these instructions access user memory */
|
||
|
u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7);
|
||
|
|
||
|
#ifdef PECULIAR_486
|
||
|
/* This is supposed to be undefined, but a real 80486 seems
|
||
|
to do this: */
|
||
|
operand_address.offset = 0;
|
||
|
operand_address.selector = FPU_DS;
|
||
|
#endif /* PECULIAR_486 */
|
||
|
|
||
|
st0_ptr = &st(0);
|
||
|
st0_tag = FPU_gettag0();
|
||
|
switch (type_table[(int)instr_index]) {
|
||
|
case _NONE_: /* also _REGIc: _REGIn */
|
||
|
break;
|
||
|
case _REG0_:
|
||
|
if (!NOT_EMPTY_ST0) {
|
||
|
FPU_stack_underflow();
|
||
|
goto FPU_instruction_done;
|
||
|
}
|
||
|
break;
|
||
|
case _REGIi:
|
||
|
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
|
||
|
FPU_stack_underflow_i(FPU_rm);
|
||
|
goto FPU_instruction_done;
|
||
|
}
|
||
|
break;
|
||
|
case _REGIp:
|
||
|
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
|
||
|
FPU_stack_underflow_pop(FPU_rm);
|
||
|
goto FPU_instruction_done;
|
||
|
}
|
||
|
break;
|
||
|
case _REGI_:
|
||
|
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm)) {
|
||
|
FPU_stack_underflow();
|
||
|
goto FPU_instruction_done;
|
||
|
}
|
||
|
break;
|
||
|
case _PUSH_: /* Only used by the fld st(i) instruction */
|
||
|
break;
|
||
|
case _null_:
|
||
|
FPU_illegal();
|
||
|
goto FPU_instruction_done;
|
||
|
default:
|
||
|
EXCEPTION(EX_INTERNAL | 0x111);
|
||
|
goto FPU_instruction_done;
|
||
|
}
|
||
|
(*st_instr_table[(int)instr_index]) ();
|
||
|
|
||
|
FPU_instruction_done:
|
||
|
;
|
||
|
}
|
||
|
|
||
|
if (!no_ip_update)
|
||
|
instruction_address = entry_sel_off;
|
||
|
|
||
|
FPU_fwait_done:
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
FPU_printall();
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
#endif /* DEBUG */
|
||
|
|
||
|
if (FPU_lookahead && !need_resched()) {
|
||
|
FPU_ORIG_EIP = FPU_EIP - code_base;
|
||
|
if (valid_prefix(&byte1, (u_char __user **) & FPU_EIP,
|
||
|
&addr_modes.override))
|
||
|
goto do_another_FPU_instruction;
|
||
|
}
|
||
|
|
||
|
if (addr_modes.default_mode)
|
||
|
FPU_EIP -= code_base;
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
}
|
||
|
|
||
|
/* Support for prefix bytes is not yet complete. To properly handle
|
||
|
all prefix bytes, further changes are needed in the emulator code
|
||
|
which accesses user address space. Access to separate segments is
|
||
|
important for msdos emulation. */
|
||
|
static int valid_prefix(u_char *Byte, u_char __user **fpu_eip,
|
||
|
overrides * override)
|
||
|
{
|
||
|
u_char byte;
|
||
|
u_char __user *ip = *fpu_eip;
|
||
|
|
||
|
*override = (overrides) {
|
||
|
0, 0, PREFIX_DEFAULT}; /* defaults */
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
FPU_code_access_ok(1);
|
||
|
FPU_get_user(byte, ip);
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
|
||
|
while (1) {
|
||
|
switch (byte) {
|
||
|
case ADDR_SIZE_PREFIX:
|
||
|
override->address_size = ADDR_SIZE_PREFIX;
|
||
|
goto do_next_byte;
|
||
|
|
||
|
case OP_SIZE_PREFIX:
|
||
|
override->operand_size = OP_SIZE_PREFIX;
|
||
|
goto do_next_byte;
|
||
|
|
||
|
case PREFIX_CS:
|
||
|
override->segment = PREFIX_CS_;
|
||
|
goto do_next_byte;
|
||
|
case PREFIX_ES:
|
||
|
override->segment = PREFIX_ES_;
|
||
|
goto do_next_byte;
|
||
|
case PREFIX_SS:
|
||
|
override->segment = PREFIX_SS_;
|
||
|
goto do_next_byte;
|
||
|
case PREFIX_FS:
|
||
|
override->segment = PREFIX_FS_;
|
||
|
goto do_next_byte;
|
||
|
case PREFIX_GS:
|
||
|
override->segment = PREFIX_GS_;
|
||
|
goto do_next_byte;
|
||
|
case PREFIX_DS:
|
||
|
override->segment = PREFIX_DS_;
|
||
|
goto do_next_byte;
|
||
|
|
||
|
/* lock is not a valid prefix for FPU instructions,
|
||
|
let the cpu handle it to generate a SIGILL. */
|
||
|
/* case PREFIX_LOCK: */
|
||
|
|
||
|
/* rep.. prefixes have no meaning for FPU instructions */
|
||
|
case PREFIX_REPE:
|
||
|
case PREFIX_REPNE:
|
||
|
|
||
|
do_next_byte:
|
||
|
ip++;
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
FPU_code_access_ok(1);
|
||
|
FPU_get_user(byte, ip);
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
break;
|
||
|
case FWAIT_OPCODE:
|
||
|
*Byte = byte;
|
||
|
return 1;
|
||
|
default:
|
||
|
if ((byte & 0xf8) == 0xd8) {
|
||
|
*Byte = byte;
|
||
|
*fpu_eip = ip;
|
||
|
return 1;
|
||
|
} else {
|
||
|
/* Not a valid sequence of prefix bytes followed by
|
||
|
an FPU instruction. */
|
||
|
*Byte = byte; /* Needed for error message. */
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void math_abort(struct math_emu_info *info, unsigned int signal)
|
||
|
{
|
||
|
FPU_EIP = FPU_ORIG_EIP;
|
||
|
current->thread.trap_nr = X86_TRAP_MF;
|
||
|
current->thread.error_code = 0;
|
||
|
send_sig(signal, current, 1);
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
__asm__("movl %0,%%esp ; ret": :"g"(((long)info) - 4));
|
||
|
#ifdef PARANOID
|
||
|
printk("ERROR: wm-FPU-emu math_abort failed!\n");
|
||
|
#endif /* PARANOID */
|
||
|
}
|
||
|
|
||
|
#define S387 ((struct swregs_state *)s387)
|
||
|
#define sstatus_word() \
|
||
|
((S387->swd & ~SW_Top & 0xffff) | ((S387->ftop << SW_Top_Shift) & SW_Top))
|
||
|
|
||
|
int fpregs_soft_set(struct task_struct *target,
|
||
|
const struct user_regset *regset,
|
||
|
unsigned int pos, unsigned int count,
|
||
|
const void *kbuf, const void __user *ubuf)
|
||
|
{
|
||
|
struct swregs_state *s387 = &target->thread.fpu.state.soft;
|
||
|
void *space = s387->st_space;
|
||
|
int ret;
|
||
|
int offset, other, i, tags, regnr, tag, newtop;
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, s387, 0,
|
||
|
offsetof(struct swregs_state, st_space));
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
S387->ftop = (S387->swd >> SW_Top_Shift) & 7;
|
||
|
offset = (S387->ftop & 7) * 10;
|
||
|
other = 80 - offset;
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
|
||
|
/* Copy all registers in stack order. */
|
||
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||
|
space + offset, 0, other);
|
||
|
if (!ret && offset)
|
||
|
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||
|
space, 0, offset);
|
||
|
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
|
||
|
/* The tags may need to be corrected now. */
|
||
|
tags = S387->twd;
|
||
|
newtop = S387->ftop;
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
regnr = (i + newtop) & 7;
|
||
|
if (((tags >> ((regnr & 7) * 2)) & 3) != TAG_Empty) {
|
||
|
/* The loaded data over-rides all other cases. */
|
||
|
tag =
|
||
|
FPU_tagof((FPU_REG *) ((u_char *) S387->st_space +
|
||
|
10 * regnr));
|
||
|
tags &= ~(3 << (regnr * 2));
|
||
|
tags |= (tag & 3) << (regnr * 2);
|
||
|
}
|
||
|
}
|
||
|
S387->twd = tags;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int fpregs_soft_get(struct task_struct *target,
|
||
|
const struct user_regset *regset,
|
||
|
unsigned int pos, unsigned int count,
|
||
|
void *kbuf, void __user *ubuf)
|
||
|
{
|
||
|
struct swregs_state *s387 = &target->thread.fpu.state.soft;
|
||
|
const void *space = s387->st_space;
|
||
|
int ret;
|
||
|
int offset = (S387->ftop & 7) * 10, other = 80 - offset;
|
||
|
|
||
|
RE_ENTRANT_CHECK_OFF;
|
||
|
|
||
|
#ifdef PECULIAR_486
|
||
|
S387->cwd &= ~0xe080;
|
||
|
/* An 80486 sets nearly all of the reserved bits to 1. */
|
||
|
S387->cwd |= 0xffff0040;
|
||
|
S387->swd = sstatus_word() | 0xffff0000;
|
||
|
S387->twd |= 0xffff0000;
|
||
|
S387->fcs &= ~0xf8000000;
|
||
|
S387->fos |= 0xffff0000;
|
||
|
#endif /* PECULIAR_486 */
|
||
|
|
||
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, s387, 0,
|
||
|
offsetof(struct swregs_state, st_space));
|
||
|
|
||
|
/* Copy all registers in stack order. */
|
||
|
if (!ret)
|
||
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
||
|
space + offset, 0, other);
|
||
|
if (!ret)
|
||
|
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
||
|
space, 0, offset);
|
||
|
|
||
|
RE_ENTRANT_CHECK_ON;
|
||
|
|
||
|
return ret;
|
||
|
}
|