455 lines
11 KiB
C
455 lines
11 KiB
C
|
/*
|
||
|
* Xen time implementation.
|
||
|
*
|
||
|
* This is implemented in terms of a clocksource driver which uses
|
||
|
* the hypervisor clock as a nanosecond timebase, and a clockevent
|
||
|
* driver which uses the hypervisor's timer mechanism.
|
||
|
*
|
||
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
||
|
*/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/clockchips.h>
|
||
|
#include <linux/gfp.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/pvclock_gtod.h>
|
||
|
#include <linux/timekeeper_internal.h>
|
||
|
|
||
|
#include <asm/pvclock.h>
|
||
|
#include <asm/xen/hypervisor.h>
|
||
|
#include <asm/xen/hypercall.h>
|
||
|
|
||
|
#include <xen/events.h>
|
||
|
#include <xen/features.h>
|
||
|
#include <xen/interface/xen.h>
|
||
|
#include <xen/interface/vcpu.h>
|
||
|
|
||
|
#include "xen-ops.h"
|
||
|
|
||
|
/* Xen may fire a timer up to this many ns early */
|
||
|
#define TIMER_SLOP 100000
|
||
|
|
||
|
/* Get the TSC speed from Xen */
|
||
|
static unsigned long xen_tsc_khz(void)
|
||
|
{
|
||
|
struct pvclock_vcpu_time_info *info =
|
||
|
&HYPERVISOR_shared_info->vcpu_info[0].time;
|
||
|
|
||
|
return pvclock_tsc_khz(info);
|
||
|
}
|
||
|
|
||
|
cycle_t xen_clocksource_read(void)
|
||
|
{
|
||
|
struct pvclock_vcpu_time_info *src;
|
||
|
cycle_t ret;
|
||
|
|
||
|
preempt_disable_notrace();
|
||
|
src = &__this_cpu_read(xen_vcpu)->time;
|
||
|
ret = pvclock_clocksource_read(src);
|
||
|
preempt_enable_notrace();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
|
||
|
{
|
||
|
return xen_clocksource_read();
|
||
|
}
|
||
|
|
||
|
static void xen_read_wallclock(struct timespec *ts)
|
||
|
{
|
||
|
struct shared_info *s = HYPERVISOR_shared_info;
|
||
|
struct pvclock_wall_clock *wall_clock = &(s->wc);
|
||
|
struct pvclock_vcpu_time_info *vcpu_time;
|
||
|
|
||
|
vcpu_time = &get_cpu_var(xen_vcpu)->time;
|
||
|
pvclock_read_wallclock(wall_clock, vcpu_time, ts);
|
||
|
put_cpu_var(xen_vcpu);
|
||
|
}
|
||
|
|
||
|
static void xen_get_wallclock(struct timespec *now)
|
||
|
{
|
||
|
xen_read_wallclock(now);
|
||
|
}
|
||
|
|
||
|
static int xen_set_wallclock(const struct timespec *now)
|
||
|
{
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static int xen_pvclock_gtod_notify(struct notifier_block *nb,
|
||
|
unsigned long was_set, void *priv)
|
||
|
{
|
||
|
/* Protected by the calling core code serialization */
|
||
|
static struct timespec64 next_sync;
|
||
|
|
||
|
struct xen_platform_op op;
|
||
|
struct timespec64 now;
|
||
|
struct timekeeper *tk = priv;
|
||
|
static bool settime64_supported = true;
|
||
|
int ret;
|
||
|
|
||
|
now.tv_sec = tk->xtime_sec;
|
||
|
now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
|
||
|
|
||
|
/*
|
||
|
* We only take the expensive HV call when the clock was set
|
||
|
* or when the 11 minutes RTC synchronization time elapsed.
|
||
|
*/
|
||
|
if (!was_set && timespec64_compare(&now, &next_sync) < 0)
|
||
|
return NOTIFY_OK;
|
||
|
|
||
|
again:
|
||
|
if (settime64_supported) {
|
||
|
op.cmd = XENPF_settime64;
|
||
|
op.u.settime64.mbz = 0;
|
||
|
op.u.settime64.secs = now.tv_sec;
|
||
|
op.u.settime64.nsecs = now.tv_nsec;
|
||
|
op.u.settime64.system_time = xen_clocksource_read();
|
||
|
} else {
|
||
|
op.cmd = XENPF_settime32;
|
||
|
op.u.settime32.secs = now.tv_sec;
|
||
|
op.u.settime32.nsecs = now.tv_nsec;
|
||
|
op.u.settime32.system_time = xen_clocksource_read();
|
||
|
}
|
||
|
|
||
|
ret = HYPERVISOR_platform_op(&op);
|
||
|
|
||
|
if (ret == -ENOSYS && settime64_supported) {
|
||
|
settime64_supported = false;
|
||
|
goto again;
|
||
|
}
|
||
|
if (ret < 0)
|
||
|
return NOTIFY_BAD;
|
||
|
|
||
|
/*
|
||
|
* Move the next drift compensation time 11 minutes
|
||
|
* ahead. That's emulating the sync_cmos_clock() update for
|
||
|
* the hardware RTC.
|
||
|
*/
|
||
|
next_sync = now;
|
||
|
next_sync.tv_sec += 11 * 60;
|
||
|
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block xen_pvclock_gtod_notifier = {
|
||
|
.notifier_call = xen_pvclock_gtod_notify,
|
||
|
};
|
||
|
|
||
|
static struct clocksource xen_clocksource __read_mostly = {
|
||
|
.name = "xen",
|
||
|
.rating = 400,
|
||
|
.read = xen_clocksource_get_cycles,
|
||
|
.mask = ~0,
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
Xen clockevent implementation
|
||
|
|
||
|
Xen has two clockevent implementations:
|
||
|
|
||
|
The old timer_op one works with all released versions of Xen prior
|
||
|
to version 3.0.4. This version of the hypervisor provides a
|
||
|
single-shot timer with nanosecond resolution. However, sharing the
|
||
|
same event channel is a 100Hz tick which is delivered while the
|
||
|
vcpu is running. We don't care about or use this tick, but it will
|
||
|
cause the core time code to think the timer fired too soon, and
|
||
|
will end up resetting it each time. It could be filtered, but
|
||
|
doing so has complications when the ktime clocksource is not yet
|
||
|
the xen clocksource (ie, at boot time).
|
||
|
|
||
|
The new vcpu_op-based timer interface allows the tick timer period
|
||
|
to be changed or turned off. The tick timer is not useful as a
|
||
|
periodic timer because events are only delivered to running vcpus.
|
||
|
The one-shot timer can report when a timeout is in the past, so
|
||
|
set_next_event is capable of returning -ETIME when appropriate.
|
||
|
This interface is used when available.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
Get a hypervisor absolute time. In theory we could maintain an
|
||
|
offset between the kernel's time and the hypervisor's time, and
|
||
|
apply that to a kernel's absolute timeout. Unfortunately the
|
||
|
hypervisor and kernel times can drift even if the kernel is using
|
||
|
the Xen clocksource, because ntp can warp the kernel's clocksource.
|
||
|
*/
|
||
|
static s64 get_abs_timeout(unsigned long delta)
|
||
|
{
|
||
|
return xen_clocksource_read() + delta;
|
||
|
}
|
||
|
|
||
|
static int xen_timerop_shutdown(struct clock_event_device *evt)
|
||
|
{
|
||
|
/* cancel timeout */
|
||
|
HYPERVISOR_set_timer_op(0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int xen_timerop_set_next_event(unsigned long delta,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
WARN_ON(!clockevent_state_oneshot(evt));
|
||
|
|
||
|
if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
|
||
|
BUG();
|
||
|
|
||
|
/* We may have missed the deadline, but there's no real way of
|
||
|
knowing for sure. If the event was in the past, then we'll
|
||
|
get an immediate interrupt. */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct clock_event_device xen_timerop_clockevent = {
|
||
|
.name = "xen",
|
||
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
||
|
|
||
|
.max_delta_ns = 0xffffffff,
|
||
|
.min_delta_ns = TIMER_SLOP,
|
||
|
|
||
|
.mult = 1,
|
||
|
.shift = 0,
|
||
|
.rating = 500,
|
||
|
|
||
|
.set_state_shutdown = xen_timerop_shutdown,
|
||
|
.set_next_event = xen_timerop_set_next_event,
|
||
|
};
|
||
|
|
||
|
static int xen_vcpuop_shutdown(struct clock_event_device *evt)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
|
||
|
NULL) ||
|
||
|
HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
|
||
|
NULL))
|
||
|
BUG();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
|
||
|
NULL))
|
||
|
BUG();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int xen_vcpuop_set_next_event(unsigned long delta,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
struct vcpu_set_singleshot_timer single;
|
||
|
int ret;
|
||
|
|
||
|
WARN_ON(!clockevent_state_oneshot(evt));
|
||
|
|
||
|
single.timeout_abs_ns = get_abs_timeout(delta);
|
||
|
/* Get an event anyway, even if the timeout is already expired */
|
||
|
single.flags = 0;
|
||
|
|
||
|
ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
|
||
|
&single);
|
||
|
BUG_ON(ret != 0);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct clock_event_device xen_vcpuop_clockevent = {
|
||
|
.name = "xen",
|
||
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
||
|
|
||
|
.max_delta_ns = 0xffffffff,
|
||
|
.min_delta_ns = TIMER_SLOP,
|
||
|
|
||
|
.mult = 1,
|
||
|
.shift = 0,
|
||
|
.rating = 500,
|
||
|
|
||
|
.set_state_shutdown = xen_vcpuop_shutdown,
|
||
|
.set_state_oneshot = xen_vcpuop_set_oneshot,
|
||
|
.set_next_event = xen_vcpuop_set_next_event,
|
||
|
};
|
||
|
|
||
|
static const struct clock_event_device *xen_clockevent =
|
||
|
&xen_timerop_clockevent;
|
||
|
|
||
|
struct xen_clock_event_device {
|
||
|
struct clock_event_device evt;
|
||
|
char name[16];
|
||
|
};
|
||
|
static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
|
||
|
|
||
|
static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
|
||
|
irqreturn_t ret;
|
||
|
|
||
|
ret = IRQ_NONE;
|
||
|
if (evt->event_handler) {
|
||
|
evt->event_handler(evt);
|
||
|
ret = IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void xen_teardown_timer(int cpu)
|
||
|
{
|
||
|
struct clock_event_device *evt;
|
||
|
BUG_ON(cpu == 0);
|
||
|
evt = &per_cpu(xen_clock_events, cpu).evt;
|
||
|
|
||
|
if (evt->irq >= 0) {
|
||
|
unbind_from_irqhandler(evt->irq, NULL);
|
||
|
evt->irq = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void xen_setup_timer(int cpu)
|
||
|
{
|
||
|
struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
|
||
|
struct clock_event_device *evt = &xevt->evt;
|
||
|
int irq;
|
||
|
|
||
|
WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
|
||
|
if (evt->irq >= 0)
|
||
|
xen_teardown_timer(cpu);
|
||
|
|
||
|
printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
|
||
|
|
||
|
snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
|
||
|
|
||
|
irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
|
||
|
IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
|
||
|
IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
|
||
|
xevt->name, NULL);
|
||
|
(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
|
||
|
|
||
|
memcpy(evt, xen_clockevent, sizeof(*evt));
|
||
|
|
||
|
evt->cpumask = cpumask_of(cpu);
|
||
|
evt->irq = irq;
|
||
|
}
|
||
|
|
||
|
|
||
|
void xen_setup_cpu_clockevents(void)
|
||
|
{
|
||
|
clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
|
||
|
}
|
||
|
|
||
|
void xen_timer_resume(void)
|
||
|
{
|
||
|
int cpu;
|
||
|
|
||
|
pvclock_resume();
|
||
|
|
||
|
if (xen_clockevent != &xen_vcpuop_clockevent)
|
||
|
return;
|
||
|
|
||
|
for_each_online_cpu(cpu) {
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
|
||
|
xen_vcpu_nr(cpu), NULL))
|
||
|
BUG();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const struct pv_time_ops xen_time_ops __initconst = {
|
||
|
.sched_clock = xen_clocksource_read,
|
||
|
.steal_clock = xen_steal_clock,
|
||
|
};
|
||
|
|
||
|
static void __init xen_time_init(void)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
struct timespec tp;
|
||
|
|
||
|
/* As Dom0 is never moved, no penalty on using TSC there */
|
||
|
if (xen_initial_domain())
|
||
|
xen_clocksource.rating = 275;
|
||
|
|
||
|
clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
|
||
|
|
||
|
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
|
||
|
NULL) == 0) {
|
||
|
/* Successfully turned off 100Hz tick, so we have the
|
||
|
vcpuop-based timer interface */
|
||
|
printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
|
||
|
xen_clockevent = &xen_vcpuop_clockevent;
|
||
|
}
|
||
|
|
||
|
/* Set initial system time with full resolution */
|
||
|
xen_read_wallclock(&tp);
|
||
|
do_settimeofday(&tp);
|
||
|
|
||
|
setup_force_cpu_cap(X86_FEATURE_TSC);
|
||
|
|
||
|
xen_setup_runstate_info(cpu);
|
||
|
xen_setup_timer(cpu);
|
||
|
xen_setup_cpu_clockevents();
|
||
|
|
||
|
xen_time_setup_guest();
|
||
|
|
||
|
if (xen_initial_domain())
|
||
|
pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
|
||
|
}
|
||
|
|
||
|
void __init xen_init_time_ops(void)
|
||
|
{
|
||
|
pv_time_ops = xen_time_ops;
|
||
|
|
||
|
x86_init.timers.timer_init = xen_time_init;
|
||
|
x86_init.timers.setup_percpu_clockev = x86_init_noop;
|
||
|
x86_cpuinit.setup_percpu_clockev = x86_init_noop;
|
||
|
|
||
|
x86_platform.calibrate_tsc = xen_tsc_khz;
|
||
|
x86_platform.get_wallclock = xen_get_wallclock;
|
||
|
/* Dom0 uses the native method to set the hardware RTC. */
|
||
|
if (!xen_initial_domain())
|
||
|
x86_platform.set_wallclock = xen_set_wallclock;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_XEN_PVHVM
|
||
|
static void xen_hvm_setup_cpu_clockevents(void)
|
||
|
{
|
||
|
int cpu = smp_processor_id();
|
||
|
xen_setup_runstate_info(cpu);
|
||
|
/*
|
||
|
* xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
|
||
|
* doing it xen_hvm_cpu_notify (which gets called by smp_init during
|
||
|
* early bootup and also during CPU hotplug events).
|
||
|
*/
|
||
|
xen_setup_cpu_clockevents();
|
||
|
}
|
||
|
|
||
|
void __init xen_hvm_init_time_ops(void)
|
||
|
{
|
||
|
/* vector callback is needed otherwise we cannot receive interrupts
|
||
|
* on cpu > 0 and at this point we don't know how many cpus are
|
||
|
* available */
|
||
|
if (!xen_have_vector_callback)
|
||
|
return;
|
||
|
if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
|
||
|
printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
|
||
|
"disable pv timer\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
pv_time_ops = xen_time_ops;
|
||
|
x86_init.timers.setup_percpu_clockev = xen_time_init;
|
||
|
x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
|
||
|
|
||
|
x86_platform.calibrate_tsc = xen_tsc_khz;
|
||
|
x86_platform.get_wallclock = xen_get_wallclock;
|
||
|
x86_platform.set_wallclock = xen_set_wallclock;
|
||
|
}
|
||
|
#endif
|