409 lines
9.4 KiB
C
409 lines
9.4 KiB
C
|
/* LRW: as defined by Cyril Guyot in
|
||
|
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
|
||
|
*
|
||
|
* Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
|
||
|
*
|
||
|
* Based on ecb.c
|
||
|
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the Free
|
||
|
* Software Foundation; either version 2 of the License, or (at your option)
|
||
|
* any later version.
|
||
|
*/
|
||
|
/* This implementation is checked against the test vectors in the above
|
||
|
* document and by a test vector provided by Ken Buchanan at
|
||
|
* http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
|
||
|
*
|
||
|
* The test vectors are included in the testing module tcrypt.[ch] */
|
||
|
|
||
|
#include <crypto/algapi.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <crypto/b128ops.h>
|
||
|
#include <crypto/gf128mul.h>
|
||
|
#include <crypto/lrw.h>
|
||
|
|
||
|
struct priv {
|
||
|
struct crypto_cipher *child;
|
||
|
struct lrw_table_ctx table;
|
||
|
};
|
||
|
|
||
|
static inline void setbit128_bbe(void *b, int bit)
|
||
|
{
|
||
|
__set_bit(bit ^ (0x80 -
|
||
|
#ifdef __BIG_ENDIAN
|
||
|
BITS_PER_LONG
|
||
|
#else
|
||
|
BITS_PER_BYTE
|
||
|
#endif
|
||
|
), b);
|
||
|
}
|
||
|
|
||
|
int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
|
||
|
{
|
||
|
be128 tmp = { 0 };
|
||
|
int i;
|
||
|
|
||
|
if (ctx->table)
|
||
|
gf128mul_free_64k(ctx->table);
|
||
|
|
||
|
/* initialize multiplication table for Key2 */
|
||
|
ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
|
||
|
if (!ctx->table)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* initialize optimization table */
|
||
|
for (i = 0; i < 128; i++) {
|
||
|
setbit128_bbe(&tmp, i);
|
||
|
ctx->mulinc[i] = tmp;
|
||
|
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(lrw_init_table);
|
||
|
|
||
|
void lrw_free_table(struct lrw_table_ctx *ctx)
|
||
|
{
|
||
|
if (ctx->table)
|
||
|
gf128mul_free_64k(ctx->table);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(lrw_free_table);
|
||
|
|
||
|
static int setkey(struct crypto_tfm *parent, const u8 *key,
|
||
|
unsigned int keylen)
|
||
|
{
|
||
|
struct priv *ctx = crypto_tfm_ctx(parent);
|
||
|
struct crypto_cipher *child = ctx->child;
|
||
|
int err, bsize = LRW_BLOCK_SIZE;
|
||
|
const u8 *tweak = key + keylen - bsize;
|
||
|
|
||
|
crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
||
|
crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
|
||
|
CRYPTO_TFM_REQ_MASK);
|
||
|
err = crypto_cipher_setkey(child, key, keylen - bsize);
|
||
|
if (err)
|
||
|
return err;
|
||
|
crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
|
||
|
CRYPTO_TFM_RES_MASK);
|
||
|
|
||
|
return lrw_init_table(&ctx->table, tweak);
|
||
|
}
|
||
|
|
||
|
struct sinfo {
|
||
|
be128 t;
|
||
|
struct crypto_tfm *tfm;
|
||
|
void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
|
||
|
};
|
||
|
|
||
|
static inline void inc(be128 *iv)
|
||
|
{
|
||
|
be64_add_cpu(&iv->b, 1);
|
||
|
if (!iv->b)
|
||
|
be64_add_cpu(&iv->a, 1);
|
||
|
}
|
||
|
|
||
|
static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
|
||
|
{
|
||
|
be128_xor(dst, &s->t, src); /* PP <- T xor P */
|
||
|
s->fn(s->tfm, dst, dst); /* CC <- E(Key2,PP) */
|
||
|
be128_xor(dst, dst, &s->t); /* C <- T xor CC */
|
||
|
}
|
||
|
|
||
|
/* this returns the number of consequative 1 bits starting
|
||
|
* from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
|
||
|
static inline int get_index128(be128 *block)
|
||
|
{
|
||
|
int x;
|
||
|
__be32 *p = (__be32 *) block;
|
||
|
|
||
|
for (p += 3, x = 0; x < 128; p--, x += 32) {
|
||
|
u32 val = be32_to_cpup(p);
|
||
|
|
||
|
if (!~val)
|
||
|
continue;
|
||
|
|
||
|
return x + ffz(val);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we get here, then x == 128 and we are incrementing the counter
|
||
|
* from all ones to all zeros. This means we must return index 127, i.e.
|
||
|
* the one corresponding to key2*{ 1,...,1 }.
|
||
|
*/
|
||
|
return 127;
|
||
|
}
|
||
|
|
||
|
static int crypt(struct blkcipher_desc *d,
|
||
|
struct blkcipher_walk *w, struct priv *ctx,
|
||
|
void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
|
||
|
{
|
||
|
int err;
|
||
|
unsigned int avail;
|
||
|
const int bs = LRW_BLOCK_SIZE;
|
||
|
struct sinfo s = {
|
||
|
.tfm = crypto_cipher_tfm(ctx->child),
|
||
|
.fn = fn
|
||
|
};
|
||
|
be128 *iv;
|
||
|
u8 *wsrc;
|
||
|
u8 *wdst;
|
||
|
|
||
|
err = blkcipher_walk_virt(d, w);
|
||
|
if (!(avail = w->nbytes))
|
||
|
return err;
|
||
|
|
||
|
wsrc = w->src.virt.addr;
|
||
|
wdst = w->dst.virt.addr;
|
||
|
|
||
|
/* calculate first value of T */
|
||
|
iv = (be128 *)w->iv;
|
||
|
s.t = *iv;
|
||
|
|
||
|
/* T <- I*Key2 */
|
||
|
gf128mul_64k_bbe(&s.t, ctx->table.table);
|
||
|
|
||
|
goto first;
|
||
|
|
||
|
for (;;) {
|
||
|
do {
|
||
|
/* T <- I*Key2, using the optimization
|
||
|
* discussed in the specification */
|
||
|
be128_xor(&s.t, &s.t,
|
||
|
&ctx->table.mulinc[get_index128(iv)]);
|
||
|
inc(iv);
|
||
|
|
||
|
first:
|
||
|
lrw_round(&s, wdst, wsrc);
|
||
|
|
||
|
wsrc += bs;
|
||
|
wdst += bs;
|
||
|
} while ((avail -= bs) >= bs);
|
||
|
|
||
|
err = blkcipher_walk_done(d, w, avail);
|
||
|
if (!(avail = w->nbytes))
|
||
|
break;
|
||
|
|
||
|
wsrc = w->src.virt.addr;
|
||
|
wdst = w->dst.virt.addr;
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||
|
struct scatterlist *src, unsigned int nbytes)
|
||
|
{
|
||
|
struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||
|
struct blkcipher_walk w;
|
||
|
|
||
|
blkcipher_walk_init(&w, dst, src, nbytes);
|
||
|
return crypt(desc, &w, ctx,
|
||
|
crypto_cipher_alg(ctx->child)->cia_encrypt);
|
||
|
}
|
||
|
|
||
|
static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
||
|
struct scatterlist *src, unsigned int nbytes)
|
||
|
{
|
||
|
struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
|
||
|
struct blkcipher_walk w;
|
||
|
|
||
|
blkcipher_walk_init(&w, dst, src, nbytes);
|
||
|
return crypt(desc, &w, ctx,
|
||
|
crypto_cipher_alg(ctx->child)->cia_decrypt);
|
||
|
}
|
||
|
|
||
|
int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
|
||
|
struct scatterlist *ssrc, unsigned int nbytes,
|
||
|
struct lrw_crypt_req *req)
|
||
|
{
|
||
|
const unsigned int bsize = LRW_BLOCK_SIZE;
|
||
|
const unsigned int max_blks = req->tbuflen / bsize;
|
||
|
struct lrw_table_ctx *ctx = req->table_ctx;
|
||
|
struct blkcipher_walk walk;
|
||
|
unsigned int nblocks;
|
||
|
be128 *iv, *src, *dst, *t;
|
||
|
be128 *t_buf = req->tbuf;
|
||
|
int err, i;
|
||
|
|
||
|
BUG_ON(max_blks < 1);
|
||
|
|
||
|
blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
|
||
|
|
||
|
err = blkcipher_walk_virt(desc, &walk);
|
||
|
nbytes = walk.nbytes;
|
||
|
if (!nbytes)
|
||
|
return err;
|
||
|
|
||
|
nblocks = min(walk.nbytes / bsize, max_blks);
|
||
|
src = (be128 *)walk.src.virt.addr;
|
||
|
dst = (be128 *)walk.dst.virt.addr;
|
||
|
|
||
|
/* calculate first value of T */
|
||
|
iv = (be128 *)walk.iv;
|
||
|
t_buf[0] = *iv;
|
||
|
|
||
|
/* T <- I*Key2 */
|
||
|
gf128mul_64k_bbe(&t_buf[0], ctx->table);
|
||
|
|
||
|
i = 0;
|
||
|
goto first;
|
||
|
|
||
|
for (;;) {
|
||
|
do {
|
||
|
for (i = 0; i < nblocks; i++) {
|
||
|
/* T <- I*Key2, using the optimization
|
||
|
* discussed in the specification */
|
||
|
be128_xor(&t_buf[i], t,
|
||
|
&ctx->mulinc[get_index128(iv)]);
|
||
|
inc(iv);
|
||
|
first:
|
||
|
t = &t_buf[i];
|
||
|
|
||
|
/* PP <- T xor P */
|
||
|
be128_xor(dst + i, t, src + i);
|
||
|
}
|
||
|
|
||
|
/* CC <- E(Key2,PP) */
|
||
|
req->crypt_fn(req->crypt_ctx, (u8 *)dst,
|
||
|
nblocks * bsize);
|
||
|
|
||
|
/* C <- T xor CC */
|
||
|
for (i = 0; i < nblocks; i++)
|
||
|
be128_xor(dst + i, dst + i, &t_buf[i]);
|
||
|
|
||
|
src += nblocks;
|
||
|
dst += nblocks;
|
||
|
nbytes -= nblocks * bsize;
|
||
|
nblocks = min(nbytes / bsize, max_blks);
|
||
|
} while (nblocks > 0);
|
||
|
|
||
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||
|
nbytes = walk.nbytes;
|
||
|
if (!nbytes)
|
||
|
break;
|
||
|
|
||
|
nblocks = min(nbytes / bsize, max_blks);
|
||
|
src = (be128 *)walk.src.virt.addr;
|
||
|
dst = (be128 *)walk.dst.virt.addr;
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(lrw_crypt);
|
||
|
|
||
|
static int init_tfm(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct crypto_cipher *cipher;
|
||
|
struct crypto_instance *inst = (void *)tfm->__crt_alg;
|
||
|
struct crypto_spawn *spawn = crypto_instance_ctx(inst);
|
||
|
struct priv *ctx = crypto_tfm_ctx(tfm);
|
||
|
u32 *flags = &tfm->crt_flags;
|
||
|
|
||
|
cipher = crypto_spawn_cipher(spawn);
|
||
|
if (IS_ERR(cipher))
|
||
|
return PTR_ERR(cipher);
|
||
|
|
||
|
if (crypto_cipher_blocksize(cipher) != LRW_BLOCK_SIZE) {
|
||
|
*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
|
||
|
crypto_free_cipher(cipher);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
ctx->child = cipher;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void exit_tfm(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
struct priv *ctx = crypto_tfm_ctx(tfm);
|
||
|
|
||
|
lrw_free_table(&ctx->table);
|
||
|
crypto_free_cipher(ctx->child);
|
||
|
}
|
||
|
|
||
|
static struct crypto_instance *alloc(struct rtattr **tb)
|
||
|
{
|
||
|
struct crypto_instance *inst;
|
||
|
struct crypto_alg *alg;
|
||
|
int err;
|
||
|
|
||
|
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
|
||
|
if (err)
|
||
|
return ERR_PTR(err);
|
||
|
|
||
|
alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
|
||
|
CRYPTO_ALG_TYPE_MASK);
|
||
|
if (IS_ERR(alg))
|
||
|
return ERR_CAST(alg);
|
||
|
|
||
|
inst = crypto_alloc_instance("lrw", alg);
|
||
|
if (IS_ERR(inst))
|
||
|
goto out_put_alg;
|
||
|
|
||
|
inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
|
||
|
inst->alg.cra_priority = alg->cra_priority;
|
||
|
inst->alg.cra_blocksize = alg->cra_blocksize;
|
||
|
|
||
|
if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
|
||
|
else inst->alg.cra_alignmask = alg->cra_alignmask;
|
||
|
inst->alg.cra_type = &crypto_blkcipher_type;
|
||
|
|
||
|
if (!(alg->cra_blocksize % 4))
|
||
|
inst->alg.cra_alignmask |= 3;
|
||
|
inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
|
||
|
inst->alg.cra_blkcipher.min_keysize =
|
||
|
alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
|
||
|
inst->alg.cra_blkcipher.max_keysize =
|
||
|
alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
|
||
|
|
||
|
inst->alg.cra_ctxsize = sizeof(struct priv);
|
||
|
|
||
|
inst->alg.cra_init = init_tfm;
|
||
|
inst->alg.cra_exit = exit_tfm;
|
||
|
|
||
|
inst->alg.cra_blkcipher.setkey = setkey;
|
||
|
inst->alg.cra_blkcipher.encrypt = encrypt;
|
||
|
inst->alg.cra_blkcipher.decrypt = decrypt;
|
||
|
|
||
|
out_put_alg:
|
||
|
crypto_mod_put(alg);
|
||
|
return inst;
|
||
|
}
|
||
|
|
||
|
static void free_inst(struct crypto_instance *inst)
|
||
|
{
|
||
|
crypto_drop_spawn(crypto_instance_ctx(inst));
|
||
|
kfree(inst);
|
||
|
}
|
||
|
|
||
|
static struct crypto_template crypto_tmpl = {
|
||
|
.name = "lrw",
|
||
|
.alloc = alloc,
|
||
|
.free = free_inst,
|
||
|
.module = THIS_MODULE,
|
||
|
};
|
||
|
|
||
|
static int __init crypto_module_init(void)
|
||
|
{
|
||
|
return crypto_register_template(&crypto_tmpl);
|
||
|
}
|
||
|
|
||
|
static void __exit crypto_module_exit(void)
|
||
|
{
|
||
|
crypto_unregister_template(&crypto_tmpl);
|
||
|
}
|
||
|
|
||
|
module_init(crypto_module_init);
|
||
|
module_exit(crypto_module_exit);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_DESCRIPTION("LRW block cipher mode");
|
||
|
MODULE_ALIAS_CRYPTO("lrw");
|