859 lines
26 KiB
C
859 lines
26 KiB
C
|
/******************************************************************************
|
||
|
*
|
||
|
* Module Name: dsmethod - Parser/Interpreter interface - control method parsing
|
||
|
*
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* Copyright (C) 2000 - 2016, Intel Corp.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions, and the following disclaimer,
|
||
|
* without modification.
|
||
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
||
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
||
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
||
|
* including a substantially similar Disclaimer requirement for further
|
||
|
* binary redistribution.
|
||
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
||
|
* of any contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* Alternatively, this software may be distributed under the terms of the
|
||
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
||
|
* Software Foundation.
|
||
|
*
|
||
|
* NO WARRANTY
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
||
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGES.
|
||
|
*/
|
||
|
|
||
|
#include <acpi/acpi.h>
|
||
|
#include "accommon.h"
|
||
|
#include "acdispat.h"
|
||
|
#include "acinterp.h"
|
||
|
#include "acnamesp.h"
|
||
|
#include "acparser.h"
|
||
|
#include "amlcode.h"
|
||
|
#include "acdebug.h"
|
||
|
|
||
|
#define _COMPONENT ACPI_DISPATCHER
|
||
|
ACPI_MODULE_NAME("dsmethod")
|
||
|
|
||
|
/* Local prototypes */
|
||
|
static acpi_status
|
||
|
acpi_ds_detect_named_opcodes(struct acpi_walk_state *walk_state,
|
||
|
union acpi_parse_object **out_op);
|
||
|
|
||
|
static acpi_status
|
||
|
acpi_ds_create_method_mutex(union acpi_operand_object *method_desc);
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_auto_serialize_method
|
||
|
*
|
||
|
* PARAMETERS: node - Namespace Node of the method
|
||
|
* obj_desc - Method object attached to node
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Parse a control method AML to scan for control methods that
|
||
|
* need serialization due to the creation of named objects.
|
||
|
*
|
||
|
* NOTE: It is a bit of overkill to mark all such methods serialized, since
|
||
|
* there is only a problem if the method actually blocks during execution.
|
||
|
* A blocking operation is, for example, a Sleep() operation, or any access
|
||
|
* to an operation region. However, it is probably not possible to easily
|
||
|
* detect whether a method will block or not, so we simply mark all suspicious
|
||
|
* methods as serialized.
|
||
|
*
|
||
|
* NOTE2: This code is essentially a generic routine for parsing a single
|
||
|
* control method.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ds_auto_serialize_method(struct acpi_namespace_node *node,
|
||
|
union acpi_operand_object *obj_desc)
|
||
|
{
|
||
|
acpi_status status;
|
||
|
union acpi_parse_object *op = NULL;
|
||
|
struct acpi_walk_state *walk_state;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE_PTR(ds_auto_serialize_method, node);
|
||
|
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_PARSE,
|
||
|
"Method auto-serialization parse [%4.4s] %p\n",
|
||
|
acpi_ut_get_node_name(node), node));
|
||
|
|
||
|
/* Create/Init a root op for the method parse tree */
|
||
|
|
||
|
op = acpi_ps_alloc_op(AML_METHOD_OP, obj_desc->method.aml_start);
|
||
|
if (!op) {
|
||
|
return_ACPI_STATUS(AE_NO_MEMORY);
|
||
|
}
|
||
|
|
||
|
acpi_ps_set_name(op, node->name.integer);
|
||
|
op->common.node = node;
|
||
|
|
||
|
/* Create and initialize a new walk state */
|
||
|
|
||
|
walk_state =
|
||
|
acpi_ds_create_walk_state(node->owner_id, NULL, NULL, NULL);
|
||
|
if (!walk_state) {
|
||
|
acpi_ps_free_op(op);
|
||
|
return_ACPI_STATUS(AE_NO_MEMORY);
|
||
|
}
|
||
|
|
||
|
status = acpi_ds_init_aml_walk(walk_state, op, node,
|
||
|
obj_desc->method.aml_start,
|
||
|
obj_desc->method.aml_length, NULL, 0);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
acpi_ds_delete_walk_state(walk_state);
|
||
|
acpi_ps_free_op(op);
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
walk_state->descending_callback = acpi_ds_detect_named_opcodes;
|
||
|
|
||
|
/* Parse the method, scan for creation of named objects */
|
||
|
|
||
|
status = acpi_ps_parse_aml(walk_state);
|
||
|
|
||
|
acpi_ps_delete_parse_tree(op);
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_detect_named_opcodes
|
||
|
*
|
||
|
* PARAMETERS: walk_state - Current state of the parse tree walk
|
||
|
* out_op - Unused, required for parser interface
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Descending callback used during the loading of ACPI tables.
|
||
|
* Currently used to detect methods that must be marked serialized
|
||
|
* in order to avoid problems with the creation of named objects.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
static acpi_status
|
||
|
acpi_ds_detect_named_opcodes(struct acpi_walk_state *walk_state,
|
||
|
union acpi_parse_object **out_op)
|
||
|
{
|
||
|
|
||
|
ACPI_FUNCTION_NAME(acpi_ds_detect_named_opcodes);
|
||
|
|
||
|
/* We are only interested in opcodes that create a new name */
|
||
|
|
||
|
if (!
|
||
|
(walk_state->op_info->
|
||
|
flags & (AML_NAMED | AML_CREATE | AML_FIELD))) {
|
||
|
return (AE_OK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point, we know we have a Named object opcode.
|
||
|
* Mark the method as serialized. Later code will create a mutex for
|
||
|
* this method to enforce serialization.
|
||
|
*
|
||
|
* Note, ACPI_METHOD_IGNORE_SYNC_LEVEL flag means that we will ignore the
|
||
|
* Sync Level mechanism for this method, even though it is now serialized.
|
||
|
* Otherwise, there can be conflicts with existing ASL code that actually
|
||
|
* uses sync levels.
|
||
|
*/
|
||
|
walk_state->method_desc->method.sync_level = 0;
|
||
|
walk_state->method_desc->method.info_flags |=
|
||
|
(ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL);
|
||
|
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
|
||
|
"Method serialized [%4.4s] %p - [%s] (%4.4X)\n",
|
||
|
walk_state->method_node->name.ascii,
|
||
|
walk_state->method_node, walk_state->op_info->name,
|
||
|
walk_state->opcode));
|
||
|
|
||
|
/* Abort the parse, no need to examine this method any further */
|
||
|
|
||
|
return (AE_CTRL_TERMINATE);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_method_error
|
||
|
*
|
||
|
* PARAMETERS: status - Execution status
|
||
|
* walk_state - Current state
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Called on method error. Invoke the global exception handler if
|
||
|
* present, dump the method data if the debugger is configured
|
||
|
*
|
||
|
* Note: Allows the exception handler to change the status code
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ds_method_error(acpi_status status, struct acpi_walk_state *walk_state)
|
||
|
{
|
||
|
u32 aml_offset;
|
||
|
|
||
|
ACPI_FUNCTION_ENTRY();
|
||
|
|
||
|
/* Ignore AE_OK and control exception codes */
|
||
|
|
||
|
if (ACPI_SUCCESS(status) || (status & AE_CODE_CONTROL)) {
|
||
|
return (status);
|
||
|
}
|
||
|
|
||
|
/* Invoke the global exception handler */
|
||
|
|
||
|
if (acpi_gbl_exception_handler) {
|
||
|
|
||
|
/* Exit the interpreter, allow handler to execute methods */
|
||
|
|
||
|
acpi_ex_exit_interpreter();
|
||
|
|
||
|
/*
|
||
|
* Handler can map the exception code to anything it wants, including
|
||
|
* AE_OK, in which case the executing method will not be aborted.
|
||
|
*/
|
||
|
aml_offset = (u32)ACPI_PTR_DIFF(walk_state->aml,
|
||
|
walk_state->parser_state.
|
||
|
aml_start);
|
||
|
|
||
|
status = acpi_gbl_exception_handler(status,
|
||
|
walk_state->method_node ?
|
||
|
walk_state->method_node->
|
||
|
name.integer : 0,
|
||
|
walk_state->opcode,
|
||
|
aml_offset, NULL);
|
||
|
acpi_ex_enter_interpreter();
|
||
|
}
|
||
|
|
||
|
acpi_ds_clear_implicit_return(walk_state);
|
||
|
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
acpi_ds_dump_method_stack(status, walk_state, walk_state->op);
|
||
|
|
||
|
/* Display method locals/args if debugger is present */
|
||
|
|
||
|
#ifdef ACPI_DEBUGGER
|
||
|
acpi_db_dump_method_info(status, walk_state);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
return (status);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_create_method_mutex
|
||
|
*
|
||
|
* PARAMETERS: obj_desc - The method object
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Create a mutex object for a serialized control method
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
static acpi_status
|
||
|
acpi_ds_create_method_mutex(union acpi_operand_object *method_desc)
|
||
|
{
|
||
|
union acpi_operand_object *mutex_desc;
|
||
|
acpi_status status;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE(ds_create_method_mutex);
|
||
|
|
||
|
/* Create the new mutex object */
|
||
|
|
||
|
mutex_desc = acpi_ut_create_internal_object(ACPI_TYPE_MUTEX);
|
||
|
if (!mutex_desc) {
|
||
|
return_ACPI_STATUS(AE_NO_MEMORY);
|
||
|
}
|
||
|
|
||
|
/* Create the actual OS Mutex */
|
||
|
|
||
|
status = acpi_os_create_mutex(&mutex_desc->mutex.os_mutex);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
acpi_ut_delete_object_desc(mutex_desc);
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
mutex_desc->mutex.sync_level = method_desc->method.sync_level;
|
||
|
method_desc->method.mutex = mutex_desc;
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_begin_method_execution
|
||
|
*
|
||
|
* PARAMETERS: method_node - Node of the method
|
||
|
* obj_desc - The method object
|
||
|
* walk_state - current state, NULL if not yet executing
|
||
|
* a method.
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Prepare a method for execution. Parses the method if necessary,
|
||
|
* increments the thread count, and waits at the method semaphore
|
||
|
* for clearance to execute.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ds_begin_method_execution(struct acpi_namespace_node *method_node,
|
||
|
union acpi_operand_object *obj_desc,
|
||
|
struct acpi_walk_state *walk_state)
|
||
|
{
|
||
|
acpi_status status = AE_OK;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE_PTR(ds_begin_method_execution, method_node);
|
||
|
|
||
|
if (!method_node) {
|
||
|
return_ACPI_STATUS(AE_NULL_ENTRY);
|
||
|
}
|
||
|
|
||
|
acpi_ex_start_trace_method(method_node, obj_desc, walk_state);
|
||
|
|
||
|
/* Prevent wraparound of thread count */
|
||
|
|
||
|
if (obj_desc->method.thread_count == ACPI_UINT8_MAX) {
|
||
|
ACPI_ERROR((AE_INFO,
|
||
|
"Method reached maximum reentrancy limit (255)"));
|
||
|
return_ACPI_STATUS(AE_AML_METHOD_LIMIT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If this method is serialized, we need to acquire the method mutex.
|
||
|
*/
|
||
|
if (obj_desc->method.info_flags & ACPI_METHOD_SERIALIZED) {
|
||
|
/*
|
||
|
* Create a mutex for the method if it is defined to be Serialized
|
||
|
* and a mutex has not already been created. We defer the mutex creation
|
||
|
* until a method is actually executed, to minimize the object count
|
||
|
*/
|
||
|
if (!obj_desc->method.mutex) {
|
||
|
status = acpi_ds_create_method_mutex(obj_desc);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The current_sync_level (per-thread) must be less than or equal to
|
||
|
* the sync level of the method. This mechanism provides some
|
||
|
* deadlock prevention.
|
||
|
*
|
||
|
* If the method was auto-serialized, we just ignore the sync level
|
||
|
* mechanism, because auto-serialization of methods can interfere
|
||
|
* with ASL code that actually uses sync levels.
|
||
|
*
|
||
|
* Top-level method invocation has no walk state at this point
|
||
|
*/
|
||
|
if (walk_state &&
|
||
|
(!(obj_desc->method.
|
||
|
info_flags & ACPI_METHOD_IGNORE_SYNC_LEVEL))
|
||
|
&& (walk_state->thread->current_sync_level >
|
||
|
obj_desc->method.mutex->mutex.sync_level)) {
|
||
|
ACPI_ERROR((AE_INFO,
|
||
|
"Cannot acquire Mutex for method [%4.4s]"
|
||
|
", current SyncLevel is too large (%u)",
|
||
|
acpi_ut_get_node_name(method_node),
|
||
|
walk_state->thread->current_sync_level));
|
||
|
|
||
|
return_ACPI_STATUS(AE_AML_MUTEX_ORDER);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Obtain the method mutex if necessary. Do not acquire mutex for a
|
||
|
* recursive call.
|
||
|
*/
|
||
|
if (!walk_state ||
|
||
|
!obj_desc->method.mutex->mutex.thread_id ||
|
||
|
(walk_state->thread->thread_id !=
|
||
|
obj_desc->method.mutex->mutex.thread_id)) {
|
||
|
/*
|
||
|
* Acquire the method mutex. This releases the interpreter if we
|
||
|
* block (and reacquires it before it returns)
|
||
|
*/
|
||
|
status =
|
||
|
acpi_ex_system_wait_mutex(obj_desc->method.mutex->
|
||
|
mutex.os_mutex,
|
||
|
ACPI_WAIT_FOREVER);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
/* Update the mutex and walk info and save the original sync_level */
|
||
|
|
||
|
if (walk_state) {
|
||
|
obj_desc->method.mutex->mutex.
|
||
|
original_sync_level =
|
||
|
walk_state->thread->current_sync_level;
|
||
|
|
||
|
obj_desc->method.mutex->mutex.thread_id =
|
||
|
walk_state->thread->thread_id;
|
||
|
|
||
|
/*
|
||
|
* Update the current sync_level only if this is not an auto-
|
||
|
* serialized method. In the auto case, we have to ignore
|
||
|
* the sync level for the method mutex (created for the
|
||
|
* auto-serialization) because we have no idea of what the
|
||
|
* sync level should be. Therefore, just ignore it.
|
||
|
*/
|
||
|
if (!(obj_desc->method.info_flags &
|
||
|
ACPI_METHOD_IGNORE_SYNC_LEVEL)) {
|
||
|
walk_state->thread->current_sync_level =
|
||
|
obj_desc->method.sync_level;
|
||
|
}
|
||
|
} else {
|
||
|
obj_desc->method.mutex->mutex.
|
||
|
original_sync_level =
|
||
|
obj_desc->method.mutex->mutex.sync_level;
|
||
|
|
||
|
obj_desc->method.mutex->mutex.thread_id =
|
||
|
acpi_os_get_thread_id();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Always increase acquisition depth */
|
||
|
|
||
|
obj_desc->method.mutex->mutex.acquisition_depth++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate an Owner ID for this method, only if this is the first thread
|
||
|
* to begin concurrent execution. We only need one owner_id, even if the
|
||
|
* method is invoked recursively.
|
||
|
*/
|
||
|
if (!obj_desc->method.owner_id) {
|
||
|
status = acpi_ut_allocate_owner_id(&obj_desc->method.owner_id);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
goto cleanup;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Increment the method parse tree thread count since it has been
|
||
|
* reentered one more time (even if it is the same thread)
|
||
|
*/
|
||
|
obj_desc->method.thread_count++;
|
||
|
acpi_method_count++;
|
||
|
return_ACPI_STATUS(status);
|
||
|
|
||
|
cleanup:
|
||
|
/* On error, must release the method mutex (if present) */
|
||
|
|
||
|
if (obj_desc->method.mutex) {
|
||
|
acpi_os_release_mutex(obj_desc->method.mutex->mutex.os_mutex);
|
||
|
}
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_call_control_method
|
||
|
*
|
||
|
* PARAMETERS: thread - Info for this thread
|
||
|
* this_walk_state - Current walk state
|
||
|
* op - Current Op to be walked
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Transfer execution to a called control method
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ds_call_control_method(struct acpi_thread_state *thread,
|
||
|
struct acpi_walk_state *this_walk_state,
|
||
|
union acpi_parse_object *op)
|
||
|
{
|
||
|
acpi_status status;
|
||
|
struct acpi_namespace_node *method_node;
|
||
|
struct acpi_walk_state *next_walk_state = NULL;
|
||
|
union acpi_operand_object *obj_desc;
|
||
|
struct acpi_evaluate_info *info;
|
||
|
u32 i;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE_PTR(ds_call_control_method, this_walk_state);
|
||
|
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH,
|
||
|
"Calling method %p, currentstate=%p\n",
|
||
|
this_walk_state->prev_op, this_walk_state));
|
||
|
|
||
|
/*
|
||
|
* Get the namespace entry for the control method we are about to call
|
||
|
*/
|
||
|
method_node = this_walk_state->method_call_node;
|
||
|
if (!method_node) {
|
||
|
return_ACPI_STATUS(AE_NULL_ENTRY);
|
||
|
}
|
||
|
|
||
|
obj_desc = acpi_ns_get_attached_object(method_node);
|
||
|
if (!obj_desc) {
|
||
|
return_ACPI_STATUS(AE_NULL_OBJECT);
|
||
|
}
|
||
|
|
||
|
/* Init for new method, possibly wait on method mutex */
|
||
|
|
||
|
status =
|
||
|
acpi_ds_begin_method_execution(method_node, obj_desc,
|
||
|
this_walk_state);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
/* Begin method parse/execution. Create a new walk state */
|
||
|
|
||
|
next_walk_state =
|
||
|
acpi_ds_create_walk_state(obj_desc->method.owner_id, NULL, obj_desc,
|
||
|
thread);
|
||
|
if (!next_walk_state) {
|
||
|
status = AE_NO_MEMORY;
|
||
|
goto cleanup;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The resolved arguments were put on the previous walk state's operand
|
||
|
* stack. Operands on the previous walk state stack always
|
||
|
* start at index 0. Also, null terminate the list of arguments
|
||
|
*/
|
||
|
this_walk_state->operands[this_walk_state->num_operands] = NULL;
|
||
|
|
||
|
/*
|
||
|
* Allocate and initialize the evaluation information block
|
||
|
* TBD: this is somewhat inefficient, should change interface to
|
||
|
* ds_init_aml_walk. For now, keeps this struct off the CPU stack
|
||
|
*/
|
||
|
info = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_evaluate_info));
|
||
|
if (!info) {
|
||
|
status = AE_NO_MEMORY;
|
||
|
goto cleanup;
|
||
|
}
|
||
|
|
||
|
info->parameters = &this_walk_state->operands[0];
|
||
|
|
||
|
status = acpi_ds_init_aml_walk(next_walk_state, NULL, method_node,
|
||
|
obj_desc->method.aml_start,
|
||
|
obj_desc->method.aml_length, info,
|
||
|
ACPI_IMODE_EXECUTE);
|
||
|
|
||
|
ACPI_FREE(info);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
goto cleanup;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Delete the operands on the previous walkstate operand stack
|
||
|
* (they were copied to new objects)
|
||
|
*/
|
||
|
for (i = 0; i < obj_desc->method.param_count; i++) {
|
||
|
acpi_ut_remove_reference(this_walk_state->operands[i]);
|
||
|
this_walk_state->operands[i] = NULL;
|
||
|
}
|
||
|
|
||
|
/* Clear the operand stack */
|
||
|
|
||
|
this_walk_state->num_operands = 0;
|
||
|
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH,
|
||
|
"**** Begin nested execution of [%4.4s] **** WalkState=%p\n",
|
||
|
method_node->name.ascii, next_walk_state));
|
||
|
|
||
|
/* Invoke an internal method if necessary */
|
||
|
|
||
|
if (obj_desc->method.info_flags & ACPI_METHOD_INTERNAL_ONLY) {
|
||
|
status =
|
||
|
obj_desc->method.dispatch.implementation(next_walk_state);
|
||
|
if (status == AE_OK) {
|
||
|
status = AE_CTRL_TERMINATE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(status);
|
||
|
|
||
|
cleanup:
|
||
|
|
||
|
/* On error, we must terminate the method properly */
|
||
|
|
||
|
acpi_ds_terminate_control_method(obj_desc, next_walk_state);
|
||
|
acpi_ds_delete_walk_state(next_walk_state);
|
||
|
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_restart_control_method
|
||
|
*
|
||
|
* PARAMETERS: walk_state - State for preempted method (caller)
|
||
|
* return_desc - Return value from the called method
|
||
|
*
|
||
|
* RETURN: Status
|
||
|
*
|
||
|
* DESCRIPTION: Restart a method that was preempted by another (nested) method
|
||
|
* invocation. Handle the return value (if any) from the callee.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
acpi_status
|
||
|
acpi_ds_restart_control_method(struct acpi_walk_state *walk_state,
|
||
|
union acpi_operand_object *return_desc)
|
||
|
{
|
||
|
acpi_status status;
|
||
|
int same_as_implicit_return;
|
||
|
|
||
|
ACPI_FUNCTION_TRACE_PTR(ds_restart_control_method, walk_state);
|
||
|
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH,
|
||
|
"****Restart [%4.4s] Op %p ReturnValueFromCallee %p\n",
|
||
|
acpi_ut_get_node_name(walk_state->method_node),
|
||
|
walk_state->method_call_op, return_desc));
|
||
|
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH,
|
||
|
" ReturnFromThisMethodUsed?=%X ResStack %p Walk %p\n",
|
||
|
walk_state->return_used,
|
||
|
walk_state->results, walk_state));
|
||
|
|
||
|
/* Did the called method return a value? */
|
||
|
|
||
|
if (return_desc) {
|
||
|
|
||
|
/* Is the implicit return object the same as the return desc? */
|
||
|
|
||
|
same_as_implicit_return =
|
||
|
(walk_state->implicit_return_obj == return_desc);
|
||
|
|
||
|
/* Are we actually going to use the return value? */
|
||
|
|
||
|
if (walk_state->return_used) {
|
||
|
|
||
|
/* Save the return value from the previous method */
|
||
|
|
||
|
status = acpi_ds_result_push(return_desc, walk_state);
|
||
|
if (ACPI_FAILURE(status)) {
|
||
|
acpi_ut_remove_reference(return_desc);
|
||
|
return_ACPI_STATUS(status);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Save as THIS method's return value in case it is returned
|
||
|
* immediately to yet another method
|
||
|
*/
|
||
|
walk_state->return_desc = return_desc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The following code is the optional support for the so-called
|
||
|
* "implicit return". Some AML code assumes that the last value of the
|
||
|
* method is "implicitly" returned to the caller, in the absence of an
|
||
|
* explicit return value.
|
||
|
*
|
||
|
* Just save the last result of the method as the return value.
|
||
|
*
|
||
|
* NOTE: this is optional because the ASL language does not actually
|
||
|
* support this behavior.
|
||
|
*/
|
||
|
else if (!acpi_ds_do_implicit_return
|
||
|
(return_desc, walk_state, FALSE)
|
||
|
|| same_as_implicit_return) {
|
||
|
/*
|
||
|
* Delete the return value if it will not be used by the
|
||
|
* calling method or remove one reference if the explicit return
|
||
|
* is the same as the implicit return value.
|
||
|
*/
|
||
|
acpi_ut_remove_reference(return_desc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return_ACPI_STATUS(AE_OK);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
*
|
||
|
* FUNCTION: acpi_ds_terminate_control_method
|
||
|
*
|
||
|
* PARAMETERS: method_desc - Method object
|
||
|
* walk_state - State associated with the method
|
||
|
*
|
||
|
* RETURN: None
|
||
|
*
|
||
|
* DESCRIPTION: Terminate a control method. Delete everything that the method
|
||
|
* created, delete all locals and arguments, and delete the parse
|
||
|
* tree if requested.
|
||
|
*
|
||
|
* MUTEX: Interpreter is locked
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
void
|
||
|
acpi_ds_terminate_control_method(union acpi_operand_object *method_desc,
|
||
|
struct acpi_walk_state *walk_state)
|
||
|
{
|
||
|
|
||
|
ACPI_FUNCTION_TRACE_PTR(ds_terminate_control_method, walk_state);
|
||
|
|
||
|
/* method_desc is required, walk_state is optional */
|
||
|
|
||
|
if (!method_desc) {
|
||
|
return_VOID;
|
||
|
}
|
||
|
|
||
|
if (walk_state) {
|
||
|
|
||
|
/* Delete all arguments and locals */
|
||
|
|
||
|
acpi_ds_method_data_delete_all(walk_state);
|
||
|
|
||
|
/*
|
||
|
* Delete any namespace objects created anywhere within the
|
||
|
* namespace by the execution of this method. Unless:
|
||
|
* 1) This method is a module-level executable code method, in which
|
||
|
* case we want make the objects permanent.
|
||
|
* 2) There are other threads executing the method, in which case we
|
||
|
* will wait until the last thread has completed.
|
||
|
*/
|
||
|
if (!(method_desc->method.info_flags & ACPI_METHOD_MODULE_LEVEL)
|
||
|
&& (method_desc->method.thread_count == 1)) {
|
||
|
|
||
|
/* Delete any direct children of (created by) this method */
|
||
|
|
||
|
(void)acpi_ex_exit_interpreter();
|
||
|
acpi_ns_delete_namespace_subtree(walk_state->
|
||
|
method_node);
|
||
|
(void)acpi_ex_enter_interpreter();
|
||
|
|
||
|
/*
|
||
|
* Delete any objects that were created by this method
|
||
|
* elsewhere in the namespace (if any were created).
|
||
|
* Use of the ACPI_METHOD_MODIFIED_NAMESPACE optimizes the
|
||
|
* deletion such that we don't have to perform an entire
|
||
|
* namespace walk for every control method execution.
|
||
|
*/
|
||
|
if (method_desc->method.
|
||
|
info_flags & ACPI_METHOD_MODIFIED_NAMESPACE) {
|
||
|
(void)acpi_ex_exit_interpreter();
|
||
|
acpi_ns_delete_namespace_by_owner(method_desc->
|
||
|
method.
|
||
|
owner_id);
|
||
|
(void)acpi_ex_enter_interpreter();
|
||
|
method_desc->method.info_flags &=
|
||
|
~ACPI_METHOD_MODIFIED_NAMESPACE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If method is serialized, release the mutex and restore the
|
||
|
* current sync level for this thread
|
||
|
*/
|
||
|
if (method_desc->method.mutex) {
|
||
|
|
||
|
/* Acquisition Depth handles recursive calls */
|
||
|
|
||
|
method_desc->method.mutex->mutex.acquisition_depth--;
|
||
|
if (!method_desc->method.mutex->mutex.acquisition_depth) {
|
||
|
walk_state->thread->current_sync_level =
|
||
|
method_desc->method.mutex->mutex.
|
||
|
original_sync_level;
|
||
|
|
||
|
acpi_os_release_mutex(method_desc->method.
|
||
|
mutex->mutex.os_mutex);
|
||
|
method_desc->method.mutex->mutex.thread_id = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Decrement the thread count on the method */
|
||
|
|
||
|
if (method_desc->method.thread_count) {
|
||
|
method_desc->method.thread_count--;
|
||
|
} else {
|
||
|
ACPI_ERROR((AE_INFO, "Invalid zero thread count in method"));
|
||
|
}
|
||
|
|
||
|
/* Are there any other threads currently executing this method? */
|
||
|
|
||
|
if (method_desc->method.thread_count) {
|
||
|
/*
|
||
|
* Additional threads. Do not release the owner_id in this case,
|
||
|
* we immediately reuse it for the next thread executing this method
|
||
|
*/
|
||
|
ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH,
|
||
|
"*** Completed execution of one thread, %u threads remaining\n",
|
||
|
method_desc->method.thread_count));
|
||
|
} else {
|
||
|
/* This is the only executing thread for this method */
|
||
|
|
||
|
/*
|
||
|
* Support to dynamically change a method from not_serialized to
|
||
|
* Serialized if it appears that the method is incorrectly written and
|
||
|
* does not support multiple thread execution. The best example of this
|
||
|
* is if such a method creates namespace objects and blocks. A second
|
||
|
* thread will fail with an AE_ALREADY_EXISTS exception.
|
||
|
*
|
||
|
* This code is here because we must wait until the last thread exits
|
||
|
* before marking the method as serialized.
|
||
|
*/
|
||
|
if (method_desc->method.
|
||
|
info_flags & ACPI_METHOD_SERIALIZED_PENDING) {
|
||
|
if (walk_state) {
|
||
|
ACPI_INFO(("Marking method %4.4s as Serialized "
|
||
|
"because of AE_ALREADY_EXISTS error",
|
||
|
walk_state->method_node->name.
|
||
|
ascii));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Method tried to create an object twice and was marked as
|
||
|
* "pending serialized". The probable cause is that the method
|
||
|
* cannot handle reentrancy.
|
||
|
*
|
||
|
* The method was created as not_serialized, but it tried to create
|
||
|
* a named object and then blocked, causing the second thread
|
||
|
* entrance to begin and then fail. Workaround this problem by
|
||
|
* marking the method permanently as Serialized when the last
|
||
|
* thread exits here.
|
||
|
*/
|
||
|
method_desc->method.info_flags &=
|
||
|
~ACPI_METHOD_SERIALIZED_PENDING;
|
||
|
|
||
|
method_desc->method.info_flags |=
|
||
|
(ACPI_METHOD_SERIALIZED |
|
||
|
ACPI_METHOD_IGNORE_SYNC_LEVEL);
|
||
|
method_desc->method.sync_level = 0;
|
||
|
}
|
||
|
|
||
|
/* No more threads, we can free the owner_id */
|
||
|
|
||
|
if (!
|
||
|
(method_desc->method.
|
||
|
info_flags & ACPI_METHOD_MODULE_LEVEL)) {
|
||
|
acpi_ut_release_owner_id(&method_desc->method.owner_id);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
acpi_ex_stop_trace_method((struct acpi_namespace_node *)method_desc->
|
||
|
method.node, method_desc, walk_state);
|
||
|
|
||
|
return_VOID;
|
||
|
}
|