859 lines
21 KiB
C
859 lines
21 KiB
C
|
/*
|
||
|
* Timer device implementation for SGI SN platforms.
|
||
|
*
|
||
|
* This file is subject to the terms and conditions of the GNU General Public
|
||
|
* License. See the file "COPYING" in the main directory of this archive
|
||
|
* for more details.
|
||
|
*
|
||
|
* Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
|
||
|
*
|
||
|
* This driver exports an API that should be supportable by any HPET or IA-PC
|
||
|
* multimedia timer. The code below is currently specific to the SGI Altix
|
||
|
* SHub RTC, however.
|
||
|
*
|
||
|
* 11/01/01 - jbarnes - initial revision
|
||
|
* 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
|
||
|
* 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
|
||
|
* 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
|
||
|
* support via the posix timer interface
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/ioctl.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/mmtimer.h>
|
||
|
#include <linux/miscdevice.h>
|
||
|
#include <linux/posix-timers.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/math64.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/sn/addrs.h>
|
||
|
#include <asm/sn/intr.h>
|
||
|
#include <asm/sn/shub_mmr.h>
|
||
|
#include <asm/sn/nodepda.h>
|
||
|
#include <asm/sn/shubio.h>
|
||
|
|
||
|
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
|
||
|
MODULE_DESCRIPTION("SGI Altix RTC Timer");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
/* name of the device, usually in /dev */
|
||
|
#define MMTIMER_NAME "mmtimer"
|
||
|
#define MMTIMER_DESC "SGI Altix RTC Timer"
|
||
|
#define MMTIMER_VERSION "2.1"
|
||
|
|
||
|
#define RTC_BITS 55 /* 55 bits for this implementation */
|
||
|
|
||
|
static struct k_clock sgi_clock;
|
||
|
|
||
|
extern unsigned long sn_rtc_cycles_per_second;
|
||
|
|
||
|
#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
|
||
|
|
||
|
#define rtc_time() (*RTC_COUNTER_ADDR)
|
||
|
|
||
|
static DEFINE_MUTEX(mmtimer_mutex);
|
||
|
static long mmtimer_ioctl(struct file *file, unsigned int cmd,
|
||
|
unsigned long arg);
|
||
|
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
|
||
|
|
||
|
/*
|
||
|
* Period in femtoseconds (10^-15 s)
|
||
|
*/
|
||
|
static unsigned long mmtimer_femtoperiod = 0;
|
||
|
|
||
|
static const struct file_operations mmtimer_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.mmap = mmtimer_mmap,
|
||
|
.unlocked_ioctl = mmtimer_ioctl,
|
||
|
.llseek = noop_llseek,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* We only have comparison registers RTC1-4 currently available per
|
||
|
* node. RTC0 is used by SAL.
|
||
|
*/
|
||
|
/* Check for an RTC interrupt pending */
|
||
|
static int mmtimer_int_pending(int comparator)
|
||
|
{
|
||
|
if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
|
||
|
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
|
||
|
return 1;
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Clear the RTC interrupt pending bit */
|
||
|
static void mmtimer_clr_int_pending(int comparator)
|
||
|
{
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
|
||
|
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
|
||
|
}
|
||
|
|
||
|
/* Setup timer on comparator RTC1 */
|
||
|
static void mmtimer_setup_int_0(int cpu, u64 expires)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
/* Disable interrupt */
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
|
||
|
|
||
|
/* Initialize comparator value */
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
|
||
|
|
||
|
/* Clear pending bit */
|
||
|
mmtimer_clr_int_pending(0);
|
||
|
|
||
|
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
|
||
|
((u64)cpu_physical_id(cpu) <<
|
||
|
SH_RTC1_INT_CONFIG_PID_SHFT);
|
||
|
|
||
|
/* Set configuration */
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
|
||
|
|
||
|
/* Enable RTC interrupts */
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
|
||
|
|
||
|
/* Initialize comparator value */
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Setup timer on comparator RTC2 */
|
||
|
static void mmtimer_setup_int_1(int cpu, u64 expires)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
|
||
|
|
||
|
mmtimer_clr_int_pending(1);
|
||
|
|
||
|
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
|
||
|
((u64)cpu_physical_id(cpu) <<
|
||
|
SH_RTC2_INT_CONFIG_PID_SHFT);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
|
||
|
}
|
||
|
|
||
|
/* Setup timer on comparator RTC3 */
|
||
|
static void mmtimer_setup_int_2(int cpu, u64 expires)
|
||
|
{
|
||
|
u64 val;
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
|
||
|
|
||
|
mmtimer_clr_int_pending(2);
|
||
|
|
||
|
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
|
||
|
((u64)cpu_physical_id(cpu) <<
|
||
|
SH_RTC3_INT_CONFIG_PID_SHFT);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
|
||
|
|
||
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function must be called with interrupts disabled and preemption off
|
||
|
* in order to insure that the setup succeeds in a deterministic time frame.
|
||
|
* It will check if the interrupt setup succeeded.
|
||
|
*/
|
||
|
static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
|
||
|
u64 *set_completion_time)
|
||
|
{
|
||
|
switch (comparator) {
|
||
|
case 0:
|
||
|
mmtimer_setup_int_0(cpu, expires);
|
||
|
break;
|
||
|
case 1:
|
||
|
mmtimer_setup_int_1(cpu, expires);
|
||
|
break;
|
||
|
case 2:
|
||
|
mmtimer_setup_int_2(cpu, expires);
|
||
|
break;
|
||
|
}
|
||
|
/* We might've missed our expiration time */
|
||
|
*set_completion_time = rtc_time();
|
||
|
if (*set_completion_time <= expires)
|
||
|
return 1;
|
||
|
|
||
|
/*
|
||
|
* If an interrupt is already pending then its okay
|
||
|
* if not then we failed
|
||
|
*/
|
||
|
return mmtimer_int_pending(comparator);
|
||
|
}
|
||
|
|
||
|
static int mmtimer_disable_int(long nasid, int comparator)
|
||
|
{
|
||
|
switch (comparator) {
|
||
|
case 0:
|
||
|
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
|
||
|
0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
|
||
|
break;
|
||
|
case 1:
|
||
|
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
|
||
|
0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
|
||
|
break;
|
||
|
case 2:
|
||
|
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
|
||
|
0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
|
||
|
break;
|
||
|
default:
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define COMPARATOR 1 /* The comparator to use */
|
||
|
|
||
|
#define TIMER_OFF 0xbadcabLL /* Timer is not setup */
|
||
|
#define TIMER_SET 0 /* Comparator is set for this timer */
|
||
|
|
||
|
#define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
|
||
|
|
||
|
/* There is one of these for each timer */
|
||
|
struct mmtimer {
|
||
|
struct rb_node list;
|
||
|
struct k_itimer *timer;
|
||
|
int cpu;
|
||
|
};
|
||
|
|
||
|
struct mmtimer_node {
|
||
|
spinlock_t lock ____cacheline_aligned;
|
||
|
struct rb_root timer_head;
|
||
|
struct rb_node *next;
|
||
|
struct tasklet_struct tasklet;
|
||
|
};
|
||
|
static struct mmtimer_node *timers;
|
||
|
|
||
|
static unsigned mmtimer_interval_retry_increment =
|
||
|
MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
|
||
|
module_param(mmtimer_interval_retry_increment, uint, 0644);
|
||
|
MODULE_PARM_DESC(mmtimer_interval_retry_increment,
|
||
|
"RTC ticks to add to expiration on interval retry (default 40)");
|
||
|
|
||
|
/*
|
||
|
* Add a new mmtimer struct to the node's mmtimer list.
|
||
|
* This function assumes the struct mmtimer_node is locked.
|
||
|
*/
|
||
|
static void mmtimer_add_list(struct mmtimer *n)
|
||
|
{
|
||
|
int nodeid = n->timer->it.mmtimer.node;
|
||
|
unsigned long expires = n->timer->it.mmtimer.expires;
|
||
|
struct rb_node **link = &timers[nodeid].timer_head.rb_node;
|
||
|
struct rb_node *parent = NULL;
|
||
|
struct mmtimer *x;
|
||
|
|
||
|
/*
|
||
|
* Find the right place in the rbtree:
|
||
|
*/
|
||
|
while (*link) {
|
||
|
parent = *link;
|
||
|
x = rb_entry(parent, struct mmtimer, list);
|
||
|
|
||
|
if (expires < x->timer->it.mmtimer.expires)
|
||
|
link = &(*link)->rb_left;
|
||
|
else
|
||
|
link = &(*link)->rb_right;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Insert the timer to the rbtree and check whether it
|
||
|
* replaces the first pending timer
|
||
|
*/
|
||
|
rb_link_node(&n->list, parent, link);
|
||
|
rb_insert_color(&n->list, &timers[nodeid].timer_head);
|
||
|
|
||
|
if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
|
||
|
struct mmtimer, list)->timer->it.mmtimer.expires)
|
||
|
timers[nodeid].next = &n->list;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the comparator for the next timer.
|
||
|
* This function assumes the struct mmtimer_node is locked.
|
||
|
*/
|
||
|
static void mmtimer_set_next_timer(int nodeid)
|
||
|
{
|
||
|
struct mmtimer_node *n = &timers[nodeid];
|
||
|
struct mmtimer *x;
|
||
|
struct k_itimer *t;
|
||
|
u64 expires, exp, set_completion_time;
|
||
|
int i;
|
||
|
|
||
|
restart:
|
||
|
if (n->next == NULL)
|
||
|
return;
|
||
|
|
||
|
x = rb_entry(n->next, struct mmtimer, list);
|
||
|
t = x->timer;
|
||
|
if (!t->it.mmtimer.incr) {
|
||
|
/* Not an interval timer */
|
||
|
if (!mmtimer_setup(x->cpu, COMPARATOR,
|
||
|
t->it.mmtimer.expires,
|
||
|
&set_completion_time)) {
|
||
|
/* Late setup, fire now */
|
||
|
tasklet_schedule(&n->tasklet);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Interval timer */
|
||
|
i = 0;
|
||
|
expires = exp = t->it.mmtimer.expires;
|
||
|
while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
|
||
|
&set_completion_time)) {
|
||
|
int to;
|
||
|
|
||
|
i++;
|
||
|
expires = set_completion_time +
|
||
|
mmtimer_interval_retry_increment + (1 << i);
|
||
|
/* Calculate overruns as we go. */
|
||
|
to = ((u64)(expires - exp) / t->it.mmtimer.incr);
|
||
|
if (to) {
|
||
|
t->it_overrun += to;
|
||
|
t->it.mmtimer.expires += t->it.mmtimer.incr * to;
|
||
|
exp = t->it.mmtimer.expires;
|
||
|
}
|
||
|
if (i > 20) {
|
||
|
printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
|
||
|
t->it.mmtimer.clock = TIMER_OFF;
|
||
|
n->next = rb_next(&x->list);
|
||
|
rb_erase(&x->list, &n->timer_head);
|
||
|
kfree(x);
|
||
|
goto restart;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmtimer_ioctl - ioctl interface for /dev/mmtimer
|
||
|
* @file: file structure for the device
|
||
|
* @cmd: command to execute
|
||
|
* @arg: optional argument to command
|
||
|
*
|
||
|
* Executes the command specified by @cmd. Returns 0 for success, < 0 for
|
||
|
* failure.
|
||
|
*
|
||
|
* Valid commands:
|
||
|
*
|
||
|
* %MMTIMER_GETOFFSET - Should return the offset (relative to the start
|
||
|
* of the page where the registers are mapped) for the counter in question.
|
||
|
*
|
||
|
* %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
|
||
|
* seconds
|
||
|
*
|
||
|
* %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
|
||
|
* specified by @arg
|
||
|
*
|
||
|
* %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
|
||
|
*
|
||
|
* %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
|
||
|
*
|
||
|
* %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
|
||
|
* in the address specified by @arg.
|
||
|
*/
|
||
|
static long mmtimer_ioctl(struct file *file, unsigned int cmd,
|
||
|
unsigned long arg)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
mutex_lock(&mmtimer_mutex);
|
||
|
|
||
|
switch (cmd) {
|
||
|
case MMTIMER_GETOFFSET: /* offset of the counter */
|
||
|
/*
|
||
|
* SN RTC registers are on their own 64k page
|
||
|
*/
|
||
|
if(PAGE_SIZE <= (1 << 16))
|
||
|
ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
|
||
|
else
|
||
|
ret = -ENOSYS;
|
||
|
break;
|
||
|
|
||
|
case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
|
||
|
if(copy_to_user((unsigned long __user *)arg,
|
||
|
&mmtimer_femtoperiod, sizeof(unsigned long)))
|
||
|
ret = -EFAULT;
|
||
|
break;
|
||
|
|
||
|
case MMTIMER_GETFREQ: /* frequency in Hz */
|
||
|
if(copy_to_user((unsigned long __user *)arg,
|
||
|
&sn_rtc_cycles_per_second,
|
||
|
sizeof(unsigned long)))
|
||
|
ret = -EFAULT;
|
||
|
break;
|
||
|
|
||
|
case MMTIMER_GETBITS: /* number of bits in the clock */
|
||
|
ret = RTC_BITS;
|
||
|
break;
|
||
|
|
||
|
case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
|
||
|
ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
|
||
|
break;
|
||
|
|
||
|
case MMTIMER_GETCOUNTER:
|
||
|
if(copy_to_user((unsigned long __user *)arg,
|
||
|
RTC_COUNTER_ADDR, sizeof(unsigned long)))
|
||
|
ret = -EFAULT;
|
||
|
break;
|
||
|
default:
|
||
|
ret = -ENOTTY;
|
||
|
break;
|
||
|
}
|
||
|
mutex_unlock(&mmtimer_mutex);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmtimer_mmap - maps the clock's registers into userspace
|
||
|
* @file: file structure for the device
|
||
|
* @vma: VMA to map the registers into
|
||
|
*
|
||
|
* Calls remap_pfn_range() to map the clock's registers into
|
||
|
* the calling process' address space.
|
||
|
*/
|
||
|
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
|
||
|
{
|
||
|
unsigned long mmtimer_addr;
|
||
|
|
||
|
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (vma->vm_flags & VM_WRITE)
|
||
|
return -EPERM;
|
||
|
|
||
|
if (PAGE_SIZE > (1 << 16))
|
||
|
return -ENOSYS;
|
||
|
|
||
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||
|
|
||
|
mmtimer_addr = __pa(RTC_COUNTER_ADDR);
|
||
|
mmtimer_addr &= ~(PAGE_SIZE - 1);
|
||
|
mmtimer_addr &= 0xfffffffffffffffUL;
|
||
|
|
||
|
if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
|
||
|
PAGE_SIZE, vma->vm_page_prot)) {
|
||
|
printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct miscdevice mmtimer_miscdev = {
|
||
|
SGI_MMTIMER,
|
||
|
MMTIMER_NAME,
|
||
|
&mmtimer_fops
|
||
|
};
|
||
|
|
||
|
static struct timespec sgi_clock_offset;
|
||
|
static int sgi_clock_period;
|
||
|
|
||
|
/*
|
||
|
* Posix Timer Interface
|
||
|
*/
|
||
|
|
||
|
static struct timespec sgi_clock_offset;
|
||
|
static int sgi_clock_period;
|
||
|
|
||
|
static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
|
||
|
{
|
||
|
u64 nsec;
|
||
|
|
||
|
nsec = rtc_time() * sgi_clock_period
|
||
|
+ sgi_clock_offset.tv_nsec;
|
||
|
*tp = ns_to_timespec(nsec);
|
||
|
tp->tv_sec += sgi_clock_offset.tv_sec;
|
||
|
return 0;
|
||
|
};
|
||
|
|
||
|
static int sgi_clock_set(const clockid_t clockid, const struct timespec *tp)
|
||
|
{
|
||
|
|
||
|
u64 nsec;
|
||
|
u32 rem;
|
||
|
|
||
|
nsec = rtc_time() * sgi_clock_period;
|
||
|
|
||
|
sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
|
||
|
|
||
|
if (rem <= tp->tv_nsec)
|
||
|
sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
|
||
|
else {
|
||
|
sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
|
||
|
sgi_clock_offset.tv_sec--;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* mmtimer_interrupt - timer interrupt handler
|
||
|
* @irq: irq received
|
||
|
* @dev_id: device the irq came from
|
||
|
*
|
||
|
* Called when one of the comarators matches the counter, This
|
||
|
* routine will send signals to processes that have requested
|
||
|
* them.
|
||
|
*
|
||
|
* This interrupt is run in an interrupt context
|
||
|
* by the SHUB. It is therefore safe to locally access SHub
|
||
|
* registers.
|
||
|
*/
|
||
|
static irqreturn_t
|
||
|
mmtimer_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
unsigned long expires = 0;
|
||
|
int result = IRQ_NONE;
|
||
|
unsigned indx = cpu_to_node(smp_processor_id());
|
||
|
struct mmtimer *base;
|
||
|
|
||
|
spin_lock(&timers[indx].lock);
|
||
|
base = rb_entry(timers[indx].next, struct mmtimer, list);
|
||
|
if (base == NULL) {
|
||
|
spin_unlock(&timers[indx].lock);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if (base->cpu == smp_processor_id()) {
|
||
|
if (base->timer)
|
||
|
expires = base->timer->it.mmtimer.expires;
|
||
|
/* expires test won't work with shared irqs */
|
||
|
if ((mmtimer_int_pending(COMPARATOR) > 0) ||
|
||
|
(expires && (expires <= rtc_time()))) {
|
||
|
mmtimer_clr_int_pending(COMPARATOR);
|
||
|
tasklet_schedule(&timers[indx].tasklet);
|
||
|
result = IRQ_HANDLED;
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(&timers[indx].lock);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void mmtimer_tasklet(unsigned long data)
|
||
|
{
|
||
|
int nodeid = data;
|
||
|
struct mmtimer_node *mn = &timers[nodeid];
|
||
|
struct mmtimer *x;
|
||
|
struct k_itimer *t;
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* Send signal and deal with periodic signals */
|
||
|
spin_lock_irqsave(&mn->lock, flags);
|
||
|
if (!mn->next)
|
||
|
goto out;
|
||
|
|
||
|
x = rb_entry(mn->next, struct mmtimer, list);
|
||
|
t = x->timer;
|
||
|
|
||
|
if (t->it.mmtimer.clock == TIMER_OFF)
|
||
|
goto out;
|
||
|
|
||
|
t->it_overrun = 0;
|
||
|
|
||
|
mn->next = rb_next(&x->list);
|
||
|
rb_erase(&x->list, &mn->timer_head);
|
||
|
|
||
|
if (posix_timer_event(t, 0) != 0)
|
||
|
t->it_overrun++;
|
||
|
|
||
|
if(t->it.mmtimer.incr) {
|
||
|
t->it.mmtimer.expires += t->it.mmtimer.incr;
|
||
|
mmtimer_add_list(x);
|
||
|
} else {
|
||
|
/* Ensure we don't false trigger in mmtimer_interrupt */
|
||
|
t->it.mmtimer.clock = TIMER_OFF;
|
||
|
t->it.mmtimer.expires = 0;
|
||
|
kfree(x);
|
||
|
}
|
||
|
/* Set comparator for next timer, if there is one */
|
||
|
mmtimer_set_next_timer(nodeid);
|
||
|
|
||
|
t->it_overrun_last = t->it_overrun;
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&mn->lock, flags);
|
||
|
}
|
||
|
|
||
|
static int sgi_timer_create(struct k_itimer *timer)
|
||
|
{
|
||
|
/* Insure that a newly created timer is off */
|
||
|
timer->it.mmtimer.clock = TIMER_OFF;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* This does not really delete a timer. It just insures
|
||
|
* that the timer is not active
|
||
|
*
|
||
|
* Assumption: it_lock is already held with irq's disabled
|
||
|
*/
|
||
|
static int sgi_timer_del(struct k_itimer *timr)
|
||
|
{
|
||
|
cnodeid_t nodeid = timr->it.mmtimer.node;
|
||
|
unsigned long irqflags;
|
||
|
|
||
|
spin_lock_irqsave(&timers[nodeid].lock, irqflags);
|
||
|
if (timr->it.mmtimer.clock != TIMER_OFF) {
|
||
|
unsigned long expires = timr->it.mmtimer.expires;
|
||
|
struct rb_node *n = timers[nodeid].timer_head.rb_node;
|
||
|
struct mmtimer *uninitialized_var(t);
|
||
|
int r = 0;
|
||
|
|
||
|
timr->it.mmtimer.clock = TIMER_OFF;
|
||
|
timr->it.mmtimer.expires = 0;
|
||
|
|
||
|
while (n) {
|
||
|
t = rb_entry(n, struct mmtimer, list);
|
||
|
if (t->timer == timr)
|
||
|
break;
|
||
|
|
||
|
if (expires < t->timer->it.mmtimer.expires)
|
||
|
n = n->rb_left;
|
||
|
else
|
||
|
n = n->rb_right;
|
||
|
}
|
||
|
|
||
|
if (!n) {
|
||
|
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (timers[nodeid].next == n) {
|
||
|
timers[nodeid].next = rb_next(n);
|
||
|
r = 1;
|
||
|
}
|
||
|
|
||
|
rb_erase(n, &timers[nodeid].timer_head);
|
||
|
kfree(t);
|
||
|
|
||
|
if (r) {
|
||
|
mmtimer_disable_int(cnodeid_to_nasid(nodeid),
|
||
|
COMPARATOR);
|
||
|
mmtimer_set_next_timer(nodeid);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Assumption: it_lock is already held with irq's disabled */
|
||
|
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
|
||
|
{
|
||
|
|
||
|
if (timr->it.mmtimer.clock == TIMER_OFF) {
|
||
|
cur_setting->it_interval.tv_nsec = 0;
|
||
|
cur_setting->it_interval.tv_sec = 0;
|
||
|
cur_setting->it_value.tv_nsec = 0;
|
||
|
cur_setting->it_value.tv_sec =0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
|
||
|
cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int sgi_timer_set(struct k_itimer *timr, int flags,
|
||
|
struct itimerspec * new_setting,
|
||
|
struct itimerspec * old_setting)
|
||
|
{
|
||
|
unsigned long when, period, irqflags;
|
||
|
int err = 0;
|
||
|
cnodeid_t nodeid;
|
||
|
struct mmtimer *base;
|
||
|
struct rb_node *n;
|
||
|
|
||
|
if (old_setting)
|
||
|
sgi_timer_get(timr, old_setting);
|
||
|
|
||
|
sgi_timer_del(timr);
|
||
|
when = timespec_to_ns(&new_setting->it_value);
|
||
|
period = timespec_to_ns(&new_setting->it_interval);
|
||
|
|
||
|
if (when == 0)
|
||
|
/* Clear timer */
|
||
|
return 0;
|
||
|
|
||
|
base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
|
||
|
if (base == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (flags & TIMER_ABSTIME) {
|
||
|
struct timespec n;
|
||
|
unsigned long now;
|
||
|
|
||
|
getnstimeofday(&n);
|
||
|
now = timespec_to_ns(&n);
|
||
|
if (when > now)
|
||
|
when -= now;
|
||
|
else
|
||
|
/* Fire the timer immediately */
|
||
|
when = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert to sgi clock period. Need to keep rtc_time() as near as possible
|
||
|
* to getnstimeofday() in order to be as faithful as possible to the time
|
||
|
* specified.
|
||
|
*/
|
||
|
when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
|
||
|
period = (period + sgi_clock_period - 1) / sgi_clock_period;
|
||
|
|
||
|
/*
|
||
|
* We are allocating a local SHub comparator. If we would be moved to another
|
||
|
* cpu then another SHub may be local to us. Prohibit that by switching off
|
||
|
* preemption.
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
|
||
|
nodeid = cpu_to_node(smp_processor_id());
|
||
|
|
||
|
/* Lock the node timer structure */
|
||
|
spin_lock_irqsave(&timers[nodeid].lock, irqflags);
|
||
|
|
||
|
base->timer = timr;
|
||
|
base->cpu = smp_processor_id();
|
||
|
|
||
|
timr->it.mmtimer.clock = TIMER_SET;
|
||
|
timr->it.mmtimer.node = nodeid;
|
||
|
timr->it.mmtimer.incr = period;
|
||
|
timr->it.mmtimer.expires = when;
|
||
|
|
||
|
n = timers[nodeid].next;
|
||
|
|
||
|
/* Add the new struct mmtimer to node's timer list */
|
||
|
mmtimer_add_list(base);
|
||
|
|
||
|
if (timers[nodeid].next == n) {
|
||
|
/* No need to reprogram comparator for now */
|
||
|
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||
|
preempt_enable();
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* We need to reprogram the comparator */
|
||
|
if (n)
|
||
|
mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
|
||
|
|
||
|
mmtimer_set_next_timer(nodeid);
|
||
|
|
||
|
/* Unlock the node timer structure */
|
||
|
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||
|
|
||
|
preempt_enable();
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int sgi_clock_getres(const clockid_t which_clock, struct timespec *tp)
|
||
|
{
|
||
|
tp->tv_sec = 0;
|
||
|
tp->tv_nsec = sgi_clock_period;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct k_clock sgi_clock = {
|
||
|
.clock_set = sgi_clock_set,
|
||
|
.clock_get = sgi_clock_get,
|
||
|
.clock_getres = sgi_clock_getres,
|
||
|
.timer_create = sgi_timer_create,
|
||
|
.timer_set = sgi_timer_set,
|
||
|
.timer_del = sgi_timer_del,
|
||
|
.timer_get = sgi_timer_get
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* mmtimer_init - device initialization routine
|
||
|
*
|
||
|
* Does initial setup for the mmtimer device.
|
||
|
*/
|
||
|
static int __init mmtimer_init(void)
|
||
|
{
|
||
|
cnodeid_t node, maxn = -1;
|
||
|
|
||
|
if (!ia64_platform_is("sn2"))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Sanity check the cycles/sec variable
|
||
|
*/
|
||
|
if (sn_rtc_cycles_per_second < 100000) {
|
||
|
printk(KERN_ERR "%s: unable to determine clock frequency\n",
|
||
|
MMTIMER_NAME);
|
||
|
goto out1;
|
||
|
}
|
||
|
|
||
|
mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
|
||
|
2) / sn_rtc_cycles_per_second;
|
||
|
|
||
|
if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
|
||
|
printk(KERN_WARNING "%s: unable to allocate interrupt.",
|
||
|
MMTIMER_NAME);
|
||
|
goto out1;
|
||
|
}
|
||
|
|
||
|
if (misc_register(&mmtimer_miscdev)) {
|
||
|
printk(KERN_ERR "%s: failed to register device\n",
|
||
|
MMTIMER_NAME);
|
||
|
goto out2;
|
||
|
}
|
||
|
|
||
|
/* Get max numbered node, calculate slots needed */
|
||
|
for_each_online_node(node) {
|
||
|
maxn = node;
|
||
|
}
|
||
|
maxn++;
|
||
|
|
||
|
/* Allocate list of node ptrs to mmtimer_t's */
|
||
|
timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
|
||
|
if (!timers) {
|
||
|
printk(KERN_ERR "%s: failed to allocate memory for device\n",
|
||
|
MMTIMER_NAME);
|
||
|
goto out3;
|
||
|
}
|
||
|
|
||
|
/* Initialize struct mmtimer's for each online node */
|
||
|
for_each_online_node(node) {
|
||
|
spin_lock_init(&timers[node].lock);
|
||
|
tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
|
||
|
(unsigned long) node);
|
||
|
}
|
||
|
|
||
|
sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second;
|
||
|
posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock);
|
||
|
|
||
|
printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
|
||
|
sn_rtc_cycles_per_second/(unsigned long)1E6);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out3:
|
||
|
misc_deregister(&mmtimer_miscdev);
|
||
|
out2:
|
||
|
free_irq(SGI_MMTIMER_VECTOR, NULL);
|
||
|
out1:
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
module_init(mmtimer_init);
|