tegrakernel/kernel/kernel-4.9/drivers/clk/tegra/clk.c

823 lines
19 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Copyright (c) 2012-2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clkdev.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/clk/tegra.h>
#include <linux/reset-controller.h>
#include <linux/seq_file.h>
#include <asm/uaccess.h>
#include <soc/tegra/fuse.h>
#include "clk.h"
#define CLK_OUT_ENB_L 0x010
#define CLK_OUT_ENB_H 0x014
#define CLK_OUT_ENB_U 0x018
#define CLK_OUT_ENB_V 0x360
#define CLK_OUT_ENB_W 0x364
#define CLK_OUT_ENB_X 0x280
#define CLK_OUT_ENB_Y 0x298
#define CLK_OUT_ENB_SET_L 0x320
#define CLK_OUT_ENB_CLR_L 0x324
#define CLK_OUT_ENB_SET_H 0x328
#define CLK_OUT_ENB_CLR_H 0x32c
#define CLK_OUT_ENB_SET_U 0x330
#define CLK_OUT_ENB_CLR_U 0x334
#define CLK_OUT_ENB_SET_V 0x440
#define CLK_OUT_ENB_CLR_V 0x444
#define CLK_OUT_ENB_SET_W 0x448
#define CLK_OUT_ENB_CLR_W 0x44c
#define CLK_OUT_ENB_SET_X 0x284
#define CLK_OUT_ENB_CLR_X 0x288
#define CLK_OUT_ENB_SET_Y 0x29c
#define CLK_OUT_ENB_CLR_Y 0x2a0
#define RST_DEVICES_L 0x004
#define RST_DEVICES_H 0x008
#define RST_DEVICES_U 0x00C
#define RST_DEVICES_V 0x358
#define RST_DEVICES_W 0x35C
#define RST_DEVICES_X 0x28C
#define RST_DEVICES_Y 0x2a4
#define RST_DEVICES_SET_L 0x300
#define RST_DEVICES_CLR_L 0x304
#define RST_DEVICES_SET_H 0x308
#define RST_DEVICES_CLR_H 0x30c
#define RST_DEVICES_SET_U 0x310
#define RST_DEVICES_CLR_U 0x314
#define RST_DEVICES_SET_V 0x430
#define RST_DEVICES_CLR_V 0x434
#define RST_DEVICES_SET_W 0x438
#define RST_DEVICES_CLR_W 0x43c
#define RST_DEVICES_SET_X 0x290
#define RST_DEVICES_CLR_X 0x294
#define RST_DEVICES_SET_Y 0x2a8
#define RST_DEVICES_CLR_Y 0x2ac
#define SUPER_CCLKG_DIVIDER 0x36c
/* Global data of Tegra CPU CAR ops */
static struct tegra_cpu_car_ops dummy_car_ops;
struct tegra_cpu_car_ops *tegra_cpu_car_ops = &dummy_car_ops;
int *periph_clk_enb_refcnt;
bool has_ccplex_therm_control;
bool div1_5_not_allowed;
static int periph_banks;
static struct clk **clks;
static int clk_num;
static struct clk_onecell_data clk_data;
static uint32_t *skipped_clkids;
static int skipped_len;
#ifdef CONFIG_PM_SLEEP
static u32 *periph_ctx;
#endif
/* Handlers for SoC-specific reset lines */
static int (*special_reset_assert)(unsigned long);
static int (*special_reset_deassert)(unsigned long);
static unsigned int num_special_reset;
static const struct tegra_clk_periph_regs periph_regs[] = {
[0] = {
.enb_reg = CLK_OUT_ENB_L,
.enb_set_reg = CLK_OUT_ENB_SET_L,
.enb_clr_reg = CLK_OUT_ENB_CLR_L,
.rst_reg = RST_DEVICES_L,
.rst_set_reg = RST_DEVICES_SET_L,
.rst_clr_reg = RST_DEVICES_CLR_L,
},
[1] = {
.enb_reg = CLK_OUT_ENB_H,
.enb_set_reg = CLK_OUT_ENB_SET_H,
.enb_clr_reg = CLK_OUT_ENB_CLR_H,
.rst_reg = RST_DEVICES_H,
.rst_set_reg = RST_DEVICES_SET_H,
.rst_clr_reg = RST_DEVICES_CLR_H,
},
[2] = {
.enb_reg = CLK_OUT_ENB_U,
.enb_set_reg = CLK_OUT_ENB_SET_U,
.enb_clr_reg = CLK_OUT_ENB_CLR_U,
.rst_reg = RST_DEVICES_U,
.rst_set_reg = RST_DEVICES_SET_U,
.rst_clr_reg = RST_DEVICES_CLR_U,
},
[3] = {
.enb_reg = CLK_OUT_ENB_V,
.enb_set_reg = CLK_OUT_ENB_SET_V,
.enb_clr_reg = CLK_OUT_ENB_CLR_V,
.rst_reg = RST_DEVICES_V,
.rst_set_reg = RST_DEVICES_SET_V,
.rst_clr_reg = RST_DEVICES_CLR_V,
},
[4] = {
.enb_reg = CLK_OUT_ENB_W,
.enb_set_reg = CLK_OUT_ENB_SET_W,
.enb_clr_reg = CLK_OUT_ENB_CLR_W,
.rst_reg = RST_DEVICES_W,
.rst_set_reg = RST_DEVICES_SET_W,
.rst_clr_reg = RST_DEVICES_CLR_W,
},
[5] = {
.enb_reg = CLK_OUT_ENB_X,
.enb_set_reg = CLK_OUT_ENB_SET_X,
.enb_clr_reg = CLK_OUT_ENB_CLR_X,
.rst_reg = RST_DEVICES_X,
.rst_set_reg = RST_DEVICES_SET_X,
.rst_clr_reg = RST_DEVICES_CLR_X,
},
[6] = {
.enb_reg = CLK_OUT_ENB_Y,
.enb_set_reg = CLK_OUT_ENB_SET_Y,
.enb_clr_reg = CLK_OUT_ENB_CLR_Y,
.rst_reg = RST_DEVICES_Y,
.rst_set_reg = RST_DEVICES_SET_Y,
.rst_clr_reg = RST_DEVICES_CLR_Y,
},
};
static void __iomem *clk_base;
static DEFINE_MUTEX(pto_lock);
static DEFINE_SPINLOCK(pto_rmw_lock);
static int tegra_clk_rst_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
/*
* If peripheral is on the APB bus then we must read the APB bus to
* flush the write operation in apb bus. This will avoid peripheral
* access after disabling clock. Since the reset driver has no
* knowledge of which reset IDs represent which devices, simply do
* this all the time.
*/
tegra_read_chipid();
if (id < periph_banks * 32) {
writel_relaxed(BIT(id % 32),
clk_base + periph_regs[id / 32].rst_set_reg);
fence_udelay(2, clk_base);
return 0;
} else if (id < periph_banks * 32 + num_special_reset) {
return special_reset_assert(id);
}
return -EINVAL;
}
static int tegra_clk_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
if (id < periph_banks * 32) {
writel_relaxed(BIT(id % 32),
clk_base + periph_regs[id / 32].rst_clr_reg);
fence_udelay(2, clk_base);
return 0;
} else if (id < periph_banks * 32 + num_special_reset) {
return special_reset_deassert(id);
}
return -EINVAL;
}
static int tegra_clk_rst_reset(struct reset_controller_dev *rcdev,
unsigned long id)
{
int err;
err = tegra_clk_rst_assert(rcdev, id);
if (err)
return err;
udelay(5);
return tegra_clk_rst_deassert(rcdev, id);
}
const struct tegra_clk_periph_regs *get_reg_bank(int clkid)
{
int reg_bank = clkid / 32;
if (reg_bank < periph_banks)
return &periph_regs[reg_bank];
else {
WARN_ON(1);
return NULL;
}
}
int tegra_super_cdiv_use_therm_controls(bool enable)
{
u32 val;
if (!has_ccplex_therm_control)
return -EINVAL;
val = readl(clk_base + SUPER_CCLKG_DIVIDER);
if (enable)
val |= BIT(30);
else
val &= ~BIT(30);
writel(val, clk_base + SUPER_CCLKG_DIVIDER);
return 0;
}
EXPORT_SYMBOL_GPL(tegra_super_cdiv_use_therm_controls);
#ifdef CONFIG_PM_SLEEP
void tegra_clk_periph_suspend(void __iomem *clk_base)
{
int i, idx;
idx = 0;
for (i = 0; i < periph_banks; i++, idx++)
periph_ctx[idx] =
readl_relaxed(clk_base + periph_regs[i].rst_reg);
for (i = 0; i < periph_banks; i++, idx++)
periph_ctx[idx] =
readl_relaxed(clk_base + periph_regs[i].enb_reg);
}
void tegra_clk_periph_force_on(u32 *clks_on, int count, void __iomem *clk_base)
{
int i;
WARN_ON(count != periph_banks);
for (i = 0; i < count; i++)
writel_relaxed(clks_on[i], clk_base + periph_regs[i].enb_reg);
}
void tegra_clk_periph_resume(void __iomem *clk_base)
{
int i, idx;
idx = 0;
for (i = 0; i < periph_banks; i++, idx++)
writel_relaxed(periph_ctx[idx],
clk_base + periph_regs[i].rst_reg);
/* ensure all resets have propagated */
fence_udelay(2, clk_base);
tegra_read_chipid();
for (i = 0; i < periph_banks; i++, idx++)
writel_relaxed(periph_ctx[idx],
clk_base + periph_regs[i].enb_reg);
/* ensure all enables have propagated */
fence_udelay(2, clk_base);
tegra_read_chipid();
}
static int tegra_clk_suspend_ctx_init(int banks)
{
int err = 0;
periph_ctx = kzalloc(2 * banks * sizeof(*periph_ctx), GFP_KERNEL);
if (!periph_ctx)
err = -ENOMEM;
return err;
}
#endif
struct clk ** __init tegra_clk_init(void __iomem *regs, int num, int banks)
{
clk_base = regs;
if (WARN_ON(banks > ARRAY_SIZE(periph_regs)))
return NULL;
periph_clk_enb_refcnt = kzalloc(32 * banks *
sizeof(*periph_clk_enb_refcnt), GFP_KERNEL);
if (!periph_clk_enb_refcnt)
return NULL;
periph_banks = banks;
clks = kzalloc(num * sizeof(struct clk *), GFP_KERNEL);
if (!clks) {
kfree(periph_clk_enb_refcnt);
return NULL;
}
clk_num = num;
#ifdef CONFIG_PM_SLEEP
if (tegra_clk_suspend_ctx_init(banks)) {
kfree(periph_clk_enb_refcnt);
kfree(clks);
return NULL;
}
#endif
return clks;
}
void __init tegra_init_dup_clks(struct tegra_clk_duplicate *dup_list,
struct clk *clks[], int clk_max)
{
struct clk *clk;
for (; dup_list->clk_id < clk_max; dup_list++) {
clk = clks[dup_list->clk_id];
dup_list->lookup.clk = clk;
clkdev_add(&dup_list->lookup);
}
}
static void tegra_handle_skipped_clks(struct device_node *np)
{
struct property *prop;
int err, i;
prop = of_find_property(np, "nvidia,tegra-ignore-clks", &skipped_len);
if (!prop)
return;
if (skipped_len % sizeof(*skipped_clkids)) {
pr_err("clk: invalid nvidia,tegra-ignore-clks property len: %d\n",
skipped_len);
skipped_len = 0;
return;
}
skipped_len /= sizeof(*skipped_clkids);
skipped_clkids = kmalloc_array(skipped_len, sizeof(*skipped_clkids),
GFP_KERNEL);
err = of_property_read_u32_array(np, "nvidia,tegra-ignore-clks",
skipped_clkids, skipped_len);
if (err < 0) {
pr_err("clk: error %d reading nvidia,tegra-ignore-clks property",
err);
kfree(skipped_clkids);
skipped_len = 0;
skipped_clkids = NULL;
return;
}
for (i = 0; i < skipped_len; i++) {
uint32_t skipid = skipped_clkids[i];
struct clk *skipclk;
if (skipid < clk_num)
skipclk = clks[skipid];
else {
pr_err("clk: ignoring invalid ignored clk id: %d\n",
skipid);
continue;
}
if (!IS_ERR_OR_NULL(skipclk)) {
clk_unregister(skipclk);
clks[skipid] = NULL;
} else {
pr_err("clk: ignoring unregistered ignored clk id: %d\n",
skipid);
}
}
}
static bool clk_is_skipped(uint32_t clk_id)
{
int i;
if (!skipped_clkids)
return false;
for (i = 0; i < skipped_len; i++) {
if (skipped_clkids[i] == clk_id)
return true;
}
return false;
}
void __init tegra_init_from_table(struct tegra_clk_init_table *tbl,
struct clk *clks[], int clk_max)
{
struct clk *clk;
for (; tbl->clk_id < clk_max; tbl++) {
if (clk_is_skipped(tbl->clk_id)) {
pr_info("clk: clk %d removed. Skipping init entry\n",
tbl->clk_id);
continue;
}
clk = clks[tbl->clk_id];
if (IS_ERR_OR_NULL(clk)) {
pr_err("%s: invalid entry %ld in clks array for id %d\n",
__func__, PTR_ERR(clk), tbl->clk_id);
WARN_ON(1);
continue;
}
if (tbl->parent_id < clk_max) {
struct clk *parent = clks[tbl->parent_id];
if (clk_set_parent(clk, parent)) {
pr_err("%s: Failed to set parent %s of %s\n",
__func__, __clk_get_name(parent),
__clk_get_name(clk));
WARN_ON(1);
}
}
if (tbl->rate) {
bool can_set_rate = true;
if ((tbl->flags & TEGRA_TABLE_RATE_CHANGE_OVERCLOCK) &&
__clk_is_enabled(clk)) {
if (tbl->rate != clk_get_rate(clk)) {
pr_err("%s: Can't set rate %lu of %s\n",
__func__, tbl->rate,
__clk_get_name(clk));
WARN_ON(1);
}
can_set_rate = false;
}
if (can_set_rate && clk_set_rate(clk, tbl->rate)) {
pr_err("%s: Failed to set rate %lu of %s\n",
__func__, tbl->rate,
__clk_get_name(clk));
WARN_ON(1);
}
}
if (tbl->state)
if (clk_prepare_enable(clk)) {
pr_err("%s: Failed to enable %s\n", __func__,
__clk_get_name(clk));
WARN_ON(1);
}
}
}
static const struct reset_control_ops rst_ops = {
.assert = tegra_clk_rst_assert,
.deassert = tegra_clk_rst_deassert,
.reset = tegra_clk_rst_reset,
};
static struct reset_controller_dev rst_ctlr = {
.ops = &rst_ops,
.owner = THIS_MODULE,
.of_reset_n_cells = 1,
};
void tegra_rst_assertv(unsigned long *id, int num)
{
int i;
for (i = 0; i < num; i++, id++)
tegra_clk_rst_assert(&rst_ctlr, *id);
}
void tegra_rst_deassertv(unsigned long *id, int num)
{
int i;
for (i = 0; i < num; i++, id++)
tegra_clk_rst_deassert(&rst_ctlr, *id);
}
#ifdef CONFIG_TEGRA_CLK_DEBUG
static int rate_write_op(void *data, u64 rate)
{
struct clk *clk = data;
return clk_set_rate(clk, rate);
}
static int state_write_op(void *data, u64 state)
{
struct clk *clk = data;
if (state)
return clk_prepare_enable(clk);
else
clk_disable_unprepare(clk);
return 0;
}
static int state_read_op(void *data, u64 *state)
{
struct clk *clk = data;
*state = __clk_is_enabled(clk);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(rate_fops, state_read_op, rate_write_op, "%llu\n");
DEFINE_SIMPLE_ATTRIBUTE(state_fops, state_read_op, state_write_op, "%llu\n");
static int show_parent(struct seq_file *s, void *data)
{
struct clk *clk, *parent;
clk = (struct clk *)s->private;
parent = clk_get_parent(clk);
if (parent)
seq_printf(s, "%s\n", __clk_get_name(clk_get_parent(clk)));
return 0;
}
ssize_t parent_fops_write(struct file *file, const char __user *buf,
size_t len, loff_t *ppos)
{
char *parent_name;
struct clk *parent;
ssize_t ret = len;
struct clk *clk;
struct seq_file *s;
int err;
s = (struct seq_file *)file->private_data;
clk = (struct clk *)s->private;
parent_name = kmalloc(len, GFP_KERNEL);
if (!parent_name)
return -ENOMEM;
if (copy_from_user(parent_name, buf, len)) {
ret = -EFAULT;
goto out;
}
/* strip trailing '\n' */
while (len > 0 && parent_name[len-1] == '\n')
parent_name[--len] = 0;
parent = clk_get_sys("tegra-clk-debug", parent_name);
if (IS_ERR_OR_NULL(parent)) {
ret = -EINVAL;
goto out;
}
err = clk_set_parent(clk, parent);
if (err < 0)
ret = err;
out:
kfree(parent_name);
return ret;
}
static int parent_fops_open(struct inode *inode, struct file *file)
{
return single_open(file, show_parent, inode->i_private);
}
static const struct file_operations parent_fops = {
.owner = THIS_MODULE,
.open = parent_fops_open,
.release = single_release,
.read = seq_read,
.llseek = seq_lseek,
.write = parent_fops_write,
};
#endif
void tegra_clk_debugfs_add(struct clk *clk)
{
#ifdef CONFIG_TEGRA_CLK_DEBUG
const char *name;
struct clk_hw *hw;
struct dentry *d;
name = __clk_get_name(clk);
hw = __clk_get_hw(clk);
d = clk_debugfs_add_file(hw, "clk_update_rate", 0200, clk,
&rate_fops);
if ((IS_ERR(d) && PTR_ERR(d) != -EAGAIN) || !d)
pr_err("debugfs clk_update_rate failed %s\n", name);
d = clk_debugfs_add_file(hw, "clk_state", 0644, clk,
&state_fops);
if ((IS_ERR(d) && PTR_ERR(d) != -EAGAIN) || !d)
pr_err("debugfs clk_state failed %s\n", name);
d = clk_debugfs_add_file(hw, "clk_parent", 0644, clk,
&parent_fops);
if ((IS_ERR(d) && PTR_ERR(d) != -EAGAIN) || !d)
pr_err("debugfs clk_parent failed %s\n", name);
#endif
}
void __init tegra_add_of_provider(struct device_node *np)
{
int i;
tegra_handle_skipped_clks(np);
for (i = 0; i < clk_num; i++) {
if (IS_ERR(clks[i])) {
pr_err
("Tegra clk %d: register failed with %ld\n",
i, PTR_ERR(clks[i]));
} else if (!clks[i]) {
clks[i] = ERR_PTR(-EINVAL);
} else
tegra_clk_debugfs_add(clks[i]);
}
clk_data.clks = clks;
clk_data.clk_num = clk_num;
of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
rst_ctlr.of_node = np;
rst_ctlr.nr_resets = periph_banks * 32 + num_special_reset;
reset_controller_register(&rst_ctlr);
}
static int pto_get(void *data, u64 *output)
{
struct tegra_pto_table *ptodef = (struct tegra_pto_table *)data;
unsigned long flags = 0;
u64 rate;
u32 val, presel_val = 0;
u8 cycle_count;
if (ptodef->presel_reg) {
spin_lock_irqsave(&pto_rmw_lock, flags);
val = readl(clk_base + ptodef->presel_reg);
presel_val = val & ptodef->presel_mask;
val &= ~ptodef->presel_mask;
val |= ptodef->presel_value;
writel(val, clk_base + ptodef->presel_reg);
spin_unlock_irqrestore(&pto_rmw_lock, flags);
}
mutex_lock(&pto_lock);
cycle_count = ptodef->cycle_count;
if (!cycle_count)
cycle_count = 16;
val = BIT(23) | BIT(13) | (cycle_count - 1);
val |= ptodef->pto_id << 14;
writel(val, clk_base + 0x60);
writel(val | BIT(10), clk_base + 0x60);
writel(val, clk_base + 0x60);
writel(val | BIT(9), clk_base + 0x60);
udelay(500);
while(readl(clk_base + 0x64) & BIT(31))
;
val = readl(clk_base + 0x64);
val &= GENMASK(23, 0);
val *= ptodef->divider;
mutex_unlock(&pto_lock);
rate = (u64)val * 32768 / cycle_count;
rate = DIV_ROUND_CLOSEST(rate, 1000) * 1000;
*output = rate;
if (ptodef->presel_reg) {
spin_lock_irqsave(&pto_rmw_lock, flags);
val = readl(clk_base + ptodef->presel_reg);
val &= ~ptodef->presel_mask;
val |= presel_val;
writel(val, clk_base + ptodef->presel_reg);
spin_unlock_irqrestore(&pto_rmw_lock, flags);
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(pto_fops, pto_get, NULL, "%llu\n");
static int cycles_get(void *data, u64 *val)
{
u8 *cycles = data;
*val = *cycles;
return 0;
}
static int cycles_set(void *data, u64 val)
{
u8 *cycles = data;
if (!val)
val = 16;
*cycles = min(val, 16LLU);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(cycles_fops, cycles_get, cycles_set, "%llu\n");
void tegra_register_pto(struct clk *clk, struct tegra_pto_table *ptodef)
{
struct dentry *d;
d = __clk_debugfs_add_file(clk, "pto_rate", 0400,
ptodef, &pto_fops);
if ((IS_ERR(d) && PTR_ERR(d) != -EAGAIN) || !d)
pr_err("debugfs pto_rate failed %s\n",
__clk_get_name(clk));
if (!ptodef->cycle_count)
ptodef->cycle_count = 16;
d = __clk_debugfs_add_file(clk, "pto_cycles", 0600,
&ptodef->cycle_count, &cycles_fops);
if ((IS_ERR(d) && PTR_ERR(d) != -EAGAIN) || !d)
pr_err("debugfs pto_cycles failed %s\n",
__clk_get_name(clk));
}
void tegra_register_ptos(struct tegra_pto_table *ptodefs, int num_pto_defs)
{
int i;
struct clk *clk;
for (i = 0; i < num_pto_defs; i++) {
clk = clks[ptodefs[i].clk_id];
if (IS_ERR(clk))
continue;
tegra_register_pto(clk, &ptodefs[i]);
}
}
void __init tegra_init_special_resets(unsigned int num,
int (*assert)(unsigned long),
int (*deassert)(unsigned long))
{
num_special_reset = num;
special_reset_assert = assert;
special_reset_deassert = deassert;
}
void __init tegra_register_devclks(struct tegra_devclk *dev_clks, int num)
{
int i;
for (i = 0; i < num; i++, dev_clks++)
clk_register_clkdev(clks[dev_clks->dt_id], dev_clks->con_id,
dev_clks->dev_id);
for (i = 0; i < clk_num; i++) {
if (!IS_ERR_OR_NULL(clks[i]))
clk_register_clkdev(clks[i], __clk_get_name(clks[i]),
"tegra-clk-debug");
}
}
struct clk ** __init tegra_lookup_dt_id(int clk_id,
struct tegra_clk *tegra_clk)
{
if (tegra_clk[clk_id].present)
return &clks[tegra_clk[clk_id].dt_id];
else
return NULL;
}
tegra_clk_apply_init_table_func tegra_clk_apply_init_table;
static int __init tegra_clocks_apply_init_table(void)
{
if (!tegra_clk_apply_init_table)
return 0;
tegra_clk_apply_init_table();
return 0;
}
arch_initcall_sync(tegra_clocks_apply_init_table);