1024 lines
27 KiB
C
1024 lines
27 KiB
C
|
/*
|
||
|
* POWERNV cpufreq driver for the IBM POWER processors
|
||
|
*
|
||
|
* (C) Copyright IBM 2014
|
||
|
*
|
||
|
* Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2, or (at your option)
|
||
|
* any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "powernv-cpufreq: " fmt
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/sysfs.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/reboot.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <trace/events/power.h>
|
||
|
|
||
|
#include <asm/cputhreads.h>
|
||
|
#include <asm/firmware.h>
|
||
|
#include <asm/reg.h>
|
||
|
#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
|
||
|
#include <asm/opal.h>
|
||
|
#include <linux/timer.h>
|
||
|
|
||
|
#define POWERNV_MAX_PSTATES 256
|
||
|
#define PMSR_PSAFE_ENABLE (1UL << 30)
|
||
|
#define PMSR_SPR_EM_DISABLE (1UL << 31)
|
||
|
#define PMSR_MAX(x) ((x >> 32) & 0xFF)
|
||
|
|
||
|
#define MAX_RAMP_DOWN_TIME 5120
|
||
|
/*
|
||
|
* On an idle system we want the global pstate to ramp-down from max value to
|
||
|
* min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
|
||
|
* then ramp-down rapidly later on.
|
||
|
*
|
||
|
* This gives a percentage rampdown for time elapsed in milliseconds.
|
||
|
* ramp_down_percentage = ((ms * ms) >> 18)
|
||
|
* ~= 3.8 * (sec * sec)
|
||
|
*
|
||
|
* At 0 ms ramp_down_percent = 0
|
||
|
* At 5120 ms ramp_down_percent = 100
|
||
|
*/
|
||
|
#define ramp_down_percent(time) ((time * time) >> 18)
|
||
|
|
||
|
/* Interval after which the timer is queued to bring down global pstate */
|
||
|
#define GPSTATE_TIMER_INTERVAL 2000
|
||
|
|
||
|
/**
|
||
|
* struct global_pstate_info - Per policy data structure to maintain history of
|
||
|
* global pstates
|
||
|
* @highest_lpstate_idx: The local pstate index from which we are
|
||
|
* ramping down
|
||
|
* @elapsed_time: Time in ms spent in ramping down from
|
||
|
* highest_lpstate_idx
|
||
|
* @last_sampled_time: Time from boot in ms when global pstates were
|
||
|
* last set
|
||
|
* @last_lpstate_idx, Last set value of local pstate and global
|
||
|
* last_gpstate_idx pstate in terms of cpufreq table index
|
||
|
* @timer: Is used for ramping down if cpu goes idle for
|
||
|
* a long time with global pstate held high
|
||
|
* @gpstate_lock: A spinlock to maintain synchronization between
|
||
|
* routines called by the timer handler and
|
||
|
* governer's target_index calls
|
||
|
*/
|
||
|
struct global_pstate_info {
|
||
|
int highest_lpstate_idx;
|
||
|
unsigned int elapsed_time;
|
||
|
unsigned int last_sampled_time;
|
||
|
int last_lpstate_idx;
|
||
|
int last_gpstate_idx;
|
||
|
spinlock_t gpstate_lock;
|
||
|
struct timer_list timer;
|
||
|
};
|
||
|
|
||
|
static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
|
||
|
static bool rebooting, throttled, occ_reset;
|
||
|
|
||
|
static const char * const throttle_reason[] = {
|
||
|
"No throttling",
|
||
|
"Power Cap",
|
||
|
"Processor Over Temperature",
|
||
|
"Power Supply Failure",
|
||
|
"Over Current",
|
||
|
"OCC Reset"
|
||
|
};
|
||
|
|
||
|
enum throttle_reason_type {
|
||
|
NO_THROTTLE = 0,
|
||
|
POWERCAP,
|
||
|
CPU_OVERTEMP,
|
||
|
POWER_SUPPLY_FAILURE,
|
||
|
OVERCURRENT,
|
||
|
OCC_RESET_THROTTLE,
|
||
|
OCC_MAX_REASON
|
||
|
};
|
||
|
|
||
|
static struct chip {
|
||
|
unsigned int id;
|
||
|
bool throttled;
|
||
|
bool restore;
|
||
|
u8 throttle_reason;
|
||
|
cpumask_t mask;
|
||
|
struct work_struct throttle;
|
||
|
int throttle_turbo;
|
||
|
int throttle_sub_turbo;
|
||
|
int reason[OCC_MAX_REASON];
|
||
|
} *chips;
|
||
|
|
||
|
static int nr_chips;
|
||
|
static DEFINE_PER_CPU(struct chip *, chip_info);
|
||
|
|
||
|
/*
|
||
|
* Note:
|
||
|
* The set of pstates consists of contiguous integers.
|
||
|
* powernv_pstate_info stores the index of the frequency table for
|
||
|
* max, min and nominal frequencies. It also stores number of
|
||
|
* available frequencies.
|
||
|
*
|
||
|
* powernv_pstate_info.nominal indicates the index to the highest
|
||
|
* non-turbo frequency.
|
||
|
*/
|
||
|
static struct powernv_pstate_info {
|
||
|
unsigned int min;
|
||
|
unsigned int max;
|
||
|
unsigned int nominal;
|
||
|
unsigned int nr_pstates;
|
||
|
} powernv_pstate_info;
|
||
|
|
||
|
/* Use following macros for conversions between pstate_id and index */
|
||
|
static inline int idx_to_pstate(unsigned int i)
|
||
|
{
|
||
|
if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
|
||
|
pr_warn_once("index %u is out of bound\n", i);
|
||
|
return powernv_freqs[powernv_pstate_info.nominal].driver_data;
|
||
|
}
|
||
|
|
||
|
return powernv_freqs[i].driver_data;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int pstate_to_idx(int pstate)
|
||
|
{
|
||
|
int min = powernv_freqs[powernv_pstate_info.min].driver_data;
|
||
|
int max = powernv_freqs[powernv_pstate_info.max].driver_data;
|
||
|
|
||
|
if (min > 0) {
|
||
|
if (unlikely((pstate < max) || (pstate > min))) {
|
||
|
pr_warn_once("pstate %d is out of bound\n", pstate);
|
||
|
return powernv_pstate_info.nominal;
|
||
|
}
|
||
|
} else {
|
||
|
if (unlikely((pstate > max) || (pstate < min))) {
|
||
|
pr_warn_once("pstate %d is out of bound\n", pstate);
|
||
|
return powernv_pstate_info.nominal;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* abs() is deliberately used so that is works with
|
||
|
* both monotonically increasing and decreasing
|
||
|
* pstate values
|
||
|
*/
|
||
|
return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
|
||
|
}
|
||
|
|
||
|
static inline void reset_gpstates(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
struct global_pstate_info *gpstates = policy->driver_data;
|
||
|
|
||
|
gpstates->highest_lpstate_idx = 0;
|
||
|
gpstates->elapsed_time = 0;
|
||
|
gpstates->last_sampled_time = 0;
|
||
|
gpstates->last_lpstate_idx = 0;
|
||
|
gpstates->last_gpstate_idx = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize the freq table based on data obtained
|
||
|
* from the firmware passed via device-tree
|
||
|
*/
|
||
|
static int init_powernv_pstates(void)
|
||
|
{
|
||
|
struct device_node *power_mgt;
|
||
|
int i, nr_pstates = 0;
|
||
|
const __be32 *pstate_ids, *pstate_freqs;
|
||
|
u32 len_ids, len_freqs;
|
||
|
u32 pstate_min, pstate_max, pstate_nominal;
|
||
|
|
||
|
power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
|
||
|
if (!power_mgt) {
|
||
|
pr_warn("power-mgt node not found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
|
||
|
pr_warn("ibm,pstate-min node not found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
|
||
|
pr_warn("ibm,pstate-max node not found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
|
||
|
&pstate_nominal)) {
|
||
|
pr_warn("ibm,pstate-nominal not found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
|
||
|
pstate_nominal, pstate_max);
|
||
|
|
||
|
pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
|
||
|
if (!pstate_ids) {
|
||
|
pr_warn("ibm,pstate-ids not found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
|
||
|
&len_freqs);
|
||
|
if (!pstate_freqs) {
|
||
|
pr_warn("ibm,pstate-frequencies-mhz not found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if (len_ids != len_freqs) {
|
||
|
pr_warn("Entries in ibm,pstate-ids and "
|
||
|
"ibm,pstate-frequencies-mhz does not match\n");
|
||
|
}
|
||
|
|
||
|
nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
|
||
|
if (!nr_pstates) {
|
||
|
pr_warn("No PStates found\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
powernv_pstate_info.nr_pstates = nr_pstates;
|
||
|
pr_debug("NR PStates %d\n", nr_pstates);
|
||
|
for (i = 0; i < nr_pstates; i++) {
|
||
|
u32 id = be32_to_cpu(pstate_ids[i]);
|
||
|
u32 freq = be32_to_cpu(pstate_freqs[i]);
|
||
|
|
||
|
pr_debug("PState id %d freq %d MHz\n", id, freq);
|
||
|
powernv_freqs[i].frequency = freq * 1000; /* kHz */
|
||
|
powernv_freqs[i].driver_data = id;
|
||
|
|
||
|
if (id == pstate_max)
|
||
|
powernv_pstate_info.max = i;
|
||
|
if (id == pstate_nominal)
|
||
|
powernv_pstate_info.nominal = i;
|
||
|
if (id == pstate_min)
|
||
|
powernv_pstate_info.min = i;
|
||
|
}
|
||
|
|
||
|
/* End of list marker entry */
|
||
|
powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Returns the CPU frequency corresponding to the pstate_id. */
|
||
|
static unsigned int pstate_id_to_freq(int pstate_id)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
i = pstate_to_idx(pstate_id);
|
||
|
if (i >= powernv_pstate_info.nr_pstates || i < 0) {
|
||
|
pr_warn("PState id %d outside of PState table, "
|
||
|
"reporting nominal id %d instead\n",
|
||
|
pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
|
||
|
i = powernv_pstate_info.nominal;
|
||
|
}
|
||
|
|
||
|
return powernv_freqs[i].frequency;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
|
||
|
* the firmware
|
||
|
*/
|
||
|
static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
|
||
|
char *buf)
|
||
|
{
|
||
|
return sprintf(buf, "%u\n",
|
||
|
powernv_freqs[powernv_pstate_info.nominal].frequency);
|
||
|
}
|
||
|
|
||
|
struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
|
||
|
__ATTR_RO(cpuinfo_nominal_freq);
|
||
|
|
||
|
static struct freq_attr *powernv_cpu_freq_attr[] = {
|
||
|
&cpufreq_freq_attr_scaling_available_freqs,
|
||
|
&cpufreq_freq_attr_cpuinfo_nominal_freq,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
#define throttle_attr(name, member) \
|
||
|
static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
|
||
|
{ \
|
||
|
struct chip *chip = per_cpu(chip_info, policy->cpu); \
|
||
|
\
|
||
|
return sprintf(buf, "%u\n", chip->member); \
|
||
|
} \
|
||
|
\
|
||
|
static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
|
||
|
|
||
|
throttle_attr(unthrottle, reason[NO_THROTTLE]);
|
||
|
throttle_attr(powercap, reason[POWERCAP]);
|
||
|
throttle_attr(overtemp, reason[CPU_OVERTEMP]);
|
||
|
throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
|
||
|
throttle_attr(overcurrent, reason[OVERCURRENT]);
|
||
|
throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
|
||
|
throttle_attr(turbo_stat, throttle_turbo);
|
||
|
throttle_attr(sub_turbo_stat, throttle_sub_turbo);
|
||
|
|
||
|
static struct attribute *throttle_attrs[] = {
|
||
|
&throttle_attr_unthrottle.attr,
|
||
|
&throttle_attr_powercap.attr,
|
||
|
&throttle_attr_overtemp.attr,
|
||
|
&throttle_attr_supply_fault.attr,
|
||
|
&throttle_attr_overcurrent.attr,
|
||
|
&throttle_attr_occ_reset.attr,
|
||
|
&throttle_attr_turbo_stat.attr,
|
||
|
&throttle_attr_sub_turbo_stat.attr,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group throttle_attr_grp = {
|
||
|
.name = "throttle_stats",
|
||
|
.attrs = throttle_attrs,
|
||
|
};
|
||
|
|
||
|
/* Helper routines */
|
||
|
|
||
|
/* Access helpers to power mgt SPR */
|
||
|
|
||
|
static inline unsigned long get_pmspr(unsigned long sprn)
|
||
|
{
|
||
|
switch (sprn) {
|
||
|
case SPRN_PMCR:
|
||
|
return mfspr(SPRN_PMCR);
|
||
|
|
||
|
case SPRN_PMICR:
|
||
|
return mfspr(SPRN_PMICR);
|
||
|
|
||
|
case SPRN_PMSR:
|
||
|
return mfspr(SPRN_PMSR);
|
||
|
}
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
static inline void set_pmspr(unsigned long sprn, unsigned long val)
|
||
|
{
|
||
|
switch (sprn) {
|
||
|
case SPRN_PMCR:
|
||
|
mtspr(SPRN_PMCR, val);
|
||
|
return;
|
||
|
|
||
|
case SPRN_PMICR:
|
||
|
mtspr(SPRN_PMICR, val);
|
||
|
return;
|
||
|
}
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Use objects of this type to query/update
|
||
|
* pstates on a remote CPU via smp_call_function.
|
||
|
*/
|
||
|
struct powernv_smp_call_data {
|
||
|
unsigned int freq;
|
||
|
int pstate_id;
|
||
|
int gpstate_id;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* powernv_read_cpu_freq: Reads the current frequency on this CPU.
|
||
|
*
|
||
|
* Called via smp_call_function.
|
||
|
*
|
||
|
* Note: The caller of the smp_call_function should pass an argument of
|
||
|
* the type 'struct powernv_smp_call_data *' along with this function.
|
||
|
*
|
||
|
* The current frequency on this CPU will be returned via
|
||
|
* ((struct powernv_smp_call_data *)arg)->freq;
|
||
|
*/
|
||
|
static void powernv_read_cpu_freq(void *arg)
|
||
|
{
|
||
|
unsigned long pmspr_val;
|
||
|
s8 local_pstate_id;
|
||
|
struct powernv_smp_call_data *freq_data = arg;
|
||
|
|
||
|
pmspr_val = get_pmspr(SPRN_PMSR);
|
||
|
|
||
|
/*
|
||
|
* The local pstate id corresponds bits 48..55 in the PMSR.
|
||
|
* Note: Watch out for the sign!
|
||
|
*/
|
||
|
local_pstate_id = (pmspr_val >> 48) & 0xFF;
|
||
|
freq_data->pstate_id = local_pstate_id;
|
||
|
freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
|
||
|
|
||
|
pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
|
||
|
raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
|
||
|
freq_data->freq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* powernv_cpufreq_get: Returns the CPU frequency as reported by the
|
||
|
* firmware for CPU 'cpu'. This value is reported through the sysfs
|
||
|
* file cpuinfo_cur_freq.
|
||
|
*/
|
||
|
static unsigned int powernv_cpufreq_get(unsigned int cpu)
|
||
|
{
|
||
|
struct powernv_smp_call_data freq_data;
|
||
|
|
||
|
smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
|
||
|
&freq_data, 1);
|
||
|
|
||
|
return freq_data.freq;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* set_pstate: Sets the pstate on this CPU.
|
||
|
*
|
||
|
* This is called via an smp_call_function.
|
||
|
*
|
||
|
* The caller must ensure that freq_data is of the type
|
||
|
* (struct powernv_smp_call_data *) and the pstate_id which needs to be set
|
||
|
* on this CPU should be present in freq_data->pstate_id.
|
||
|
*/
|
||
|
static void set_pstate(void *data)
|
||
|
{
|
||
|
unsigned long val;
|
||
|
struct powernv_smp_call_data *freq_data = data;
|
||
|
unsigned long pstate_ul = freq_data->pstate_id;
|
||
|
unsigned long gpstate_ul = freq_data->gpstate_id;
|
||
|
|
||
|
val = get_pmspr(SPRN_PMCR);
|
||
|
val = val & 0x0000FFFFFFFFFFFFULL;
|
||
|
|
||
|
pstate_ul = pstate_ul & 0xFF;
|
||
|
gpstate_ul = gpstate_ul & 0xFF;
|
||
|
|
||
|
/* Set both global(bits 56..63) and local(bits 48..55) PStates */
|
||
|
val = val | (gpstate_ul << 56) | (pstate_ul << 48);
|
||
|
|
||
|
pr_debug("Setting cpu %d pmcr to %016lX\n",
|
||
|
raw_smp_processor_id(), val);
|
||
|
set_pmspr(SPRN_PMCR, val);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* get_nominal_index: Returns the index corresponding to the nominal
|
||
|
* pstate in the cpufreq table
|
||
|
*/
|
||
|
static inline unsigned int get_nominal_index(void)
|
||
|
{
|
||
|
return powernv_pstate_info.nominal;
|
||
|
}
|
||
|
|
||
|
static void powernv_cpufreq_throttle_check(void *data)
|
||
|
{
|
||
|
struct chip *chip;
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
unsigned long pmsr;
|
||
|
int pmsr_pmax;
|
||
|
unsigned int pmsr_pmax_idx;
|
||
|
|
||
|
pmsr = get_pmspr(SPRN_PMSR);
|
||
|
chip = this_cpu_read(chip_info);
|
||
|
|
||
|
/* Check for Pmax Capping */
|
||
|
pmsr_pmax = (s8)PMSR_MAX(pmsr);
|
||
|
pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
|
||
|
if (pmsr_pmax_idx != powernv_pstate_info.max) {
|
||
|
if (chip->throttled)
|
||
|
goto next;
|
||
|
chip->throttled = true;
|
||
|
if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
|
||
|
pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
|
||
|
cpu, chip->id, pmsr_pmax,
|
||
|
idx_to_pstate(powernv_pstate_info.nominal));
|
||
|
chip->throttle_sub_turbo++;
|
||
|
} else {
|
||
|
chip->throttle_turbo++;
|
||
|
}
|
||
|
trace_powernv_throttle(chip->id,
|
||
|
throttle_reason[chip->throttle_reason],
|
||
|
pmsr_pmax);
|
||
|
} else if (chip->throttled) {
|
||
|
chip->throttled = false;
|
||
|
trace_powernv_throttle(chip->id,
|
||
|
throttle_reason[chip->throttle_reason],
|
||
|
pmsr_pmax);
|
||
|
}
|
||
|
|
||
|
/* Check if Psafe_mode_active is set in PMSR. */
|
||
|
next:
|
||
|
if (pmsr & PMSR_PSAFE_ENABLE) {
|
||
|
throttled = true;
|
||
|
pr_info("Pstate set to safe frequency\n");
|
||
|
}
|
||
|
|
||
|
/* Check if SPR_EM_DISABLE is set in PMSR */
|
||
|
if (pmsr & PMSR_SPR_EM_DISABLE) {
|
||
|
throttled = true;
|
||
|
pr_info("Frequency Control disabled from OS\n");
|
||
|
}
|
||
|
|
||
|
if (throttled) {
|
||
|
pr_info("PMSR = %16lx\n", pmsr);
|
||
|
pr_warn("CPU Frequency could be throttled\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* calc_global_pstate - Calculate global pstate
|
||
|
* @elapsed_time: Elapsed time in milliseconds
|
||
|
* @local_pstate_idx: New local pstate
|
||
|
* @highest_lpstate_idx: pstate from which its ramping down
|
||
|
*
|
||
|
* Finds the appropriate global pstate based on the pstate from which its
|
||
|
* ramping down and the time elapsed in ramping down. It follows a quadratic
|
||
|
* equation which ensures that it reaches ramping down to pmin in 5sec.
|
||
|
*/
|
||
|
static inline int calc_global_pstate(unsigned int elapsed_time,
|
||
|
int highest_lpstate_idx,
|
||
|
int local_pstate_idx)
|
||
|
{
|
||
|
int index_diff;
|
||
|
|
||
|
/*
|
||
|
* Using ramp_down_percent we get the percentage of rampdown
|
||
|
* that we are expecting to be dropping. Difference between
|
||
|
* highest_lpstate_idx and powernv_pstate_info.min will give a absolute
|
||
|
* number of how many pstates we will drop eventually by the end of
|
||
|
* 5 seconds, then just scale it get the number pstates to be dropped.
|
||
|
*/
|
||
|
index_diff = ((int)ramp_down_percent(elapsed_time) *
|
||
|
(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
|
||
|
|
||
|
/* Ensure that global pstate is >= to local pstate */
|
||
|
if (highest_lpstate_idx + index_diff >= local_pstate_idx)
|
||
|
return local_pstate_idx;
|
||
|
else
|
||
|
return highest_lpstate_idx + index_diff;
|
||
|
}
|
||
|
|
||
|
static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
|
||
|
{
|
||
|
unsigned int timer_interval;
|
||
|
|
||
|
/*
|
||
|
* Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
|
||
|
* if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
|
||
|
* Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
|
||
|
* seconds of ramp down time.
|
||
|
*/
|
||
|
if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
|
||
|
> MAX_RAMP_DOWN_TIME)
|
||
|
timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
|
||
|
else
|
||
|
timer_interval = GPSTATE_TIMER_INTERVAL;
|
||
|
|
||
|
mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* gpstate_timer_handler
|
||
|
*
|
||
|
* @data: pointer to cpufreq_policy on which timer was queued
|
||
|
*
|
||
|
* This handler brings down the global pstate closer to the local pstate
|
||
|
* according quadratic equation. Queues a new timer if it is still not equal
|
||
|
* to local pstate
|
||
|
*/
|
||
|
void gpstate_timer_handler(unsigned long data)
|
||
|
{
|
||
|
struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
|
||
|
struct global_pstate_info *gpstates = policy->driver_data;
|
||
|
int gpstate_idx;
|
||
|
unsigned int time_diff = jiffies_to_msecs(jiffies)
|
||
|
- gpstates->last_sampled_time;
|
||
|
struct powernv_smp_call_data freq_data;
|
||
|
|
||
|
if (!spin_trylock(&gpstates->gpstate_lock))
|
||
|
return;
|
||
|
/*
|
||
|
* If the timer has migrated to the different cpu then bring
|
||
|
* it back to one of the policy->cpus
|
||
|
*/
|
||
|
if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
|
||
|
gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
|
||
|
add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
|
||
|
spin_unlock(&gpstates->gpstate_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gpstates->last_sampled_time += time_diff;
|
||
|
gpstates->elapsed_time += time_diff;
|
||
|
freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
|
||
|
|
||
|
if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
|
||
|
(gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
|
||
|
gpstate_idx = pstate_to_idx(freq_data.pstate_id);
|
||
|
reset_gpstates(policy);
|
||
|
gpstates->highest_lpstate_idx = gpstate_idx;
|
||
|
} else {
|
||
|
gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
|
||
|
gpstates->highest_lpstate_idx,
|
||
|
gpstates->last_lpstate_idx);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If local pstate is equal to global pstate, rampdown is over
|
||
|
* So timer is not required to be queued.
|
||
|
*/
|
||
|
if (gpstate_idx != gpstates->last_lpstate_idx)
|
||
|
queue_gpstate_timer(gpstates);
|
||
|
|
||
|
freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
|
||
|
gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
|
||
|
gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
|
||
|
|
||
|
set_pstate(&freq_data);
|
||
|
spin_unlock(&gpstates->gpstate_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* powernv_cpufreq_target_index: Sets the frequency corresponding to
|
||
|
* the cpufreq table entry indexed by new_index on the cpus in the
|
||
|
* mask policy->cpus
|
||
|
*/
|
||
|
static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
|
||
|
unsigned int new_index)
|
||
|
{
|
||
|
struct powernv_smp_call_data freq_data;
|
||
|
unsigned int cur_msec, gpstate_idx;
|
||
|
struct global_pstate_info *gpstates = policy->driver_data;
|
||
|
|
||
|
if (unlikely(rebooting) && new_index != get_nominal_index())
|
||
|
return 0;
|
||
|
|
||
|
if (!throttled) {
|
||
|
/* we don't want to be preempted while
|
||
|
* checking if the CPU frequency has been throttled
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
powernv_cpufreq_throttle_check(NULL);
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
cur_msec = jiffies_to_msecs(get_jiffies_64());
|
||
|
|
||
|
spin_lock(&gpstates->gpstate_lock);
|
||
|
freq_data.pstate_id = idx_to_pstate(new_index);
|
||
|
|
||
|
if (!gpstates->last_sampled_time) {
|
||
|
gpstate_idx = new_index;
|
||
|
gpstates->highest_lpstate_idx = new_index;
|
||
|
goto gpstates_done;
|
||
|
}
|
||
|
|
||
|
if (gpstates->last_gpstate_idx < new_index) {
|
||
|
gpstates->elapsed_time += cur_msec -
|
||
|
gpstates->last_sampled_time;
|
||
|
|
||
|
/*
|
||
|
* If its has been ramping down for more than MAX_RAMP_DOWN_TIME
|
||
|
* we should be resetting all global pstate related data. Set it
|
||
|
* equal to local pstate to start fresh.
|
||
|
*/
|
||
|
if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
|
||
|
reset_gpstates(policy);
|
||
|
gpstates->highest_lpstate_idx = new_index;
|
||
|
gpstate_idx = new_index;
|
||
|
} else {
|
||
|
/* Elaspsed_time is less than 5 seconds, continue to rampdown */
|
||
|
gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
|
||
|
gpstates->highest_lpstate_idx,
|
||
|
new_index);
|
||
|
}
|
||
|
} else {
|
||
|
reset_gpstates(policy);
|
||
|
gpstates->highest_lpstate_idx = new_index;
|
||
|
gpstate_idx = new_index;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If local pstate is equal to global pstate, rampdown is over
|
||
|
* So timer is not required to be queued.
|
||
|
*/
|
||
|
if (gpstate_idx != new_index)
|
||
|
queue_gpstate_timer(gpstates);
|
||
|
else
|
||
|
del_timer_sync(&gpstates->timer);
|
||
|
|
||
|
gpstates_done:
|
||
|
freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
|
||
|
gpstates->last_sampled_time = cur_msec;
|
||
|
gpstates->last_gpstate_idx = gpstate_idx;
|
||
|
gpstates->last_lpstate_idx = new_index;
|
||
|
|
||
|
spin_unlock(&gpstates->gpstate_lock);
|
||
|
|
||
|
/*
|
||
|
* Use smp_call_function to send IPI and execute the
|
||
|
* mtspr on target CPU. We could do that without IPI
|
||
|
* if current CPU is within policy->cpus (core)
|
||
|
*/
|
||
|
smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
int base, i, ret;
|
||
|
struct kernfs_node *kn;
|
||
|
struct global_pstate_info *gpstates;
|
||
|
|
||
|
base = cpu_first_thread_sibling(policy->cpu);
|
||
|
|
||
|
for (i = 0; i < threads_per_core; i++)
|
||
|
cpumask_set_cpu(base + i, policy->cpus);
|
||
|
|
||
|
kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
|
||
|
if (!kn) {
|
||
|
int ret;
|
||
|
|
||
|
ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
|
||
|
if (ret) {
|
||
|
pr_info("Failed to create throttle stats directory for cpu %d\n",
|
||
|
policy->cpu);
|
||
|
return ret;
|
||
|
}
|
||
|
} else {
|
||
|
kernfs_put(kn);
|
||
|
}
|
||
|
|
||
|
gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
|
||
|
if (!gpstates)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
policy->driver_data = gpstates;
|
||
|
|
||
|
/* initialize timer */
|
||
|
init_timer_pinned_deferrable(&gpstates->timer);
|
||
|
gpstates->timer.data = (unsigned long)policy;
|
||
|
gpstates->timer.function = gpstate_timer_handler;
|
||
|
gpstates->timer.expires = jiffies +
|
||
|
msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
|
||
|
spin_lock_init(&gpstates->gpstate_lock);
|
||
|
ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
|
||
|
|
||
|
if (ret < 0)
|
||
|
kfree(policy->driver_data);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
/* timer is deleted in cpufreq_cpu_stop() */
|
||
|
kfree(policy->driver_data);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
|
||
|
unsigned long action, void *unused)
|
||
|
{
|
||
|
int cpu;
|
||
|
struct cpufreq_policy *cpu_policy;
|
||
|
|
||
|
rebooting = true;
|
||
|
for_each_online_cpu(cpu) {
|
||
|
cpu_policy = cpufreq_cpu_get(cpu);
|
||
|
if (!cpu_policy)
|
||
|
continue;
|
||
|
powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
|
||
|
cpufreq_cpu_put(cpu_policy);
|
||
|
}
|
||
|
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block powernv_cpufreq_reboot_nb = {
|
||
|
.notifier_call = powernv_cpufreq_reboot_notifier,
|
||
|
};
|
||
|
|
||
|
void powernv_cpufreq_work_fn(struct work_struct *work)
|
||
|
{
|
||
|
struct chip *chip = container_of(work, struct chip, throttle);
|
||
|
struct cpufreq_policy *policy;
|
||
|
unsigned int cpu;
|
||
|
cpumask_t mask;
|
||
|
|
||
|
get_online_cpus();
|
||
|
cpumask_and(&mask, &chip->mask, cpu_online_mask);
|
||
|
smp_call_function_any(&mask,
|
||
|
powernv_cpufreq_throttle_check, NULL, 0);
|
||
|
|
||
|
if (!chip->restore)
|
||
|
goto out;
|
||
|
|
||
|
chip->restore = false;
|
||
|
for_each_cpu(cpu, &mask) {
|
||
|
int index;
|
||
|
|
||
|
policy = cpufreq_cpu_get(cpu);
|
||
|
if (!policy)
|
||
|
continue;
|
||
|
index = cpufreq_table_find_index_c(policy, policy->cur);
|
||
|
powernv_cpufreq_target_index(policy, index);
|
||
|
cpumask_andnot(&mask, &mask, policy->cpus);
|
||
|
cpufreq_cpu_put(policy);
|
||
|
}
|
||
|
out:
|
||
|
put_online_cpus();
|
||
|
}
|
||
|
|
||
|
static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
|
||
|
unsigned long msg_type, void *_msg)
|
||
|
{
|
||
|
struct opal_msg *msg = _msg;
|
||
|
struct opal_occ_msg omsg;
|
||
|
int i;
|
||
|
|
||
|
if (msg_type != OPAL_MSG_OCC)
|
||
|
return 0;
|
||
|
|
||
|
omsg.type = be64_to_cpu(msg->params[0]);
|
||
|
|
||
|
switch (omsg.type) {
|
||
|
case OCC_RESET:
|
||
|
occ_reset = true;
|
||
|
pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
|
||
|
/*
|
||
|
* powernv_cpufreq_throttle_check() is called in
|
||
|
* target() callback which can detect the throttle state
|
||
|
* for governors like ondemand.
|
||
|
* But static governors will not call target() often thus
|
||
|
* report throttling here.
|
||
|
*/
|
||
|
if (!throttled) {
|
||
|
throttled = true;
|
||
|
pr_warn("CPU frequency is throttled for duration\n");
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
case OCC_LOAD:
|
||
|
pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
|
||
|
break;
|
||
|
case OCC_THROTTLE:
|
||
|
omsg.chip = be64_to_cpu(msg->params[1]);
|
||
|
omsg.throttle_status = be64_to_cpu(msg->params[2]);
|
||
|
|
||
|
if (occ_reset) {
|
||
|
occ_reset = false;
|
||
|
throttled = false;
|
||
|
pr_info("OCC Active, CPU frequency is no longer throttled\n");
|
||
|
|
||
|
for (i = 0; i < nr_chips; i++) {
|
||
|
chips[i].restore = true;
|
||
|
schedule_work(&chips[i].throttle);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nr_chips; i++)
|
||
|
if (chips[i].id == omsg.chip)
|
||
|
break;
|
||
|
|
||
|
if (omsg.throttle_status >= 0 &&
|
||
|
omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
|
||
|
chips[i].throttle_reason = omsg.throttle_status;
|
||
|
chips[i].reason[omsg.throttle_status]++;
|
||
|
}
|
||
|
|
||
|
if (!omsg.throttle_status)
|
||
|
chips[i].restore = true;
|
||
|
|
||
|
schedule_work(&chips[i].throttle);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block powernv_cpufreq_opal_nb = {
|
||
|
.notifier_call = powernv_cpufreq_occ_msg,
|
||
|
.next = NULL,
|
||
|
.priority = 0,
|
||
|
};
|
||
|
|
||
|
static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
struct powernv_smp_call_data freq_data;
|
||
|
struct global_pstate_info *gpstates = policy->driver_data;
|
||
|
|
||
|
freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
|
||
|
freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
|
||
|
smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
|
||
|
del_timer_sync(&gpstates->timer);
|
||
|
}
|
||
|
|
||
|
static struct cpufreq_driver powernv_cpufreq_driver = {
|
||
|
.name = "powernv-cpufreq",
|
||
|
.flags = CPUFREQ_CONST_LOOPS,
|
||
|
.init = powernv_cpufreq_cpu_init,
|
||
|
.exit = powernv_cpufreq_cpu_exit,
|
||
|
.verify = cpufreq_generic_frequency_table_verify,
|
||
|
.target_index = powernv_cpufreq_target_index,
|
||
|
.get = powernv_cpufreq_get,
|
||
|
.stop_cpu = powernv_cpufreq_stop_cpu,
|
||
|
.attr = powernv_cpu_freq_attr,
|
||
|
};
|
||
|
|
||
|
static int init_chip_info(void)
|
||
|
{
|
||
|
unsigned int chip[256];
|
||
|
unsigned int cpu, i;
|
||
|
unsigned int prev_chip_id = UINT_MAX;
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
unsigned int id = cpu_to_chip_id(cpu);
|
||
|
|
||
|
if (prev_chip_id != id) {
|
||
|
prev_chip_id = id;
|
||
|
chip[nr_chips++] = id;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
|
||
|
if (!chips)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
for (i = 0; i < nr_chips; i++) {
|
||
|
chips[i].id = chip[i];
|
||
|
cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
|
||
|
INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
|
||
|
for_each_cpu(cpu, &chips[i].mask)
|
||
|
per_cpu(chip_info, cpu) = &chips[i];
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void clean_chip_info(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/* flush any pending work items */
|
||
|
if (chips)
|
||
|
for (i = 0; i < nr_chips; i++)
|
||
|
cancel_work_sync(&chips[i].throttle);
|
||
|
kfree(chips);
|
||
|
}
|
||
|
|
||
|
static inline void unregister_all_notifiers(void)
|
||
|
{
|
||
|
opal_message_notifier_unregister(OPAL_MSG_OCC,
|
||
|
&powernv_cpufreq_opal_nb);
|
||
|
unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
|
||
|
}
|
||
|
|
||
|
static int __init powernv_cpufreq_init(void)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
|
||
|
/* Don't probe on pseries (guest) platforms */
|
||
|
if (!firmware_has_feature(FW_FEATURE_OPAL))
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Discover pstates from device tree and init */
|
||
|
rc = init_powernv_pstates();
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
|
||
|
/* Populate chip info */
|
||
|
rc = init_chip_info();
|
||
|
if (rc)
|
||
|
goto out;
|
||
|
|
||
|
register_reboot_notifier(&powernv_cpufreq_reboot_nb);
|
||
|
opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
|
||
|
|
||
|
rc = cpufreq_register_driver(&powernv_cpufreq_driver);
|
||
|
if (!rc)
|
||
|
return 0;
|
||
|
|
||
|
pr_info("Failed to register the cpufreq driver (%d)\n", rc);
|
||
|
unregister_all_notifiers();
|
||
|
clean_chip_info();
|
||
|
out:
|
||
|
pr_info("Platform driver disabled. System does not support PState control\n");
|
||
|
return rc;
|
||
|
}
|
||
|
module_init(powernv_cpufreq_init);
|
||
|
|
||
|
static void __exit powernv_cpufreq_exit(void)
|
||
|
{
|
||
|
cpufreq_unregister_driver(&powernv_cpufreq_driver);
|
||
|
unregister_all_notifiers();
|
||
|
clean_chip_info();
|
||
|
}
|
||
|
module_exit(powernv_cpufreq_exit);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
|