571 lines
15 KiB
C
571 lines
15 KiB
C
|
/*
|
||
|
* Cryptographic API.
|
||
|
*
|
||
|
* Support for VIA PadLock hardware crypto engine.
|
||
|
*
|
||
|
* Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <crypto/algapi.h>
|
||
|
#include <crypto/aes.h>
|
||
|
#include <crypto/padlock.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <asm/cpu_device_id.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/fpu/api.h>
|
||
|
|
||
|
/*
|
||
|
* Number of data blocks actually fetched for each xcrypt insn.
|
||
|
* Processors with prefetch errata will fetch extra blocks.
|
||
|
*/
|
||
|
static unsigned int ecb_fetch_blocks = 2;
|
||
|
#define MAX_ECB_FETCH_BLOCKS (8)
|
||
|
#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
|
||
|
|
||
|
static unsigned int cbc_fetch_blocks = 1;
|
||
|
#define MAX_CBC_FETCH_BLOCKS (4)
|
||
|
#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
|
||
|
|
||
|
/* Control word. */
|
||
|
struct cword {
|
||
|
unsigned int __attribute__ ((__packed__))
|
||
|
rounds:4,
|
||
|
algo:3,
|
||
|
keygen:1,
|
||
|
interm:1,
|
||
|
encdec:1,
|
||
|
ksize:2;
|
||
|
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
||
|
|
||
|
/* Whenever making any changes to the following
|
||
|
* structure *make sure* you keep E, d_data
|
||
|
* and cword aligned on 16 Bytes boundaries and
|
||
|
* the Hardware can access 16 * 16 bytes of E and d_data
|
||
|
* (only the first 15 * 16 bytes matter but the HW reads
|
||
|
* more).
|
||
|
*/
|
||
|
struct aes_ctx {
|
||
|
u32 E[AES_MAX_KEYLENGTH_U32]
|
||
|
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
||
|
u32 d_data[AES_MAX_KEYLENGTH_U32]
|
||
|
__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
|
||
|
struct {
|
||
|
struct cword encrypt;
|
||
|
struct cword decrypt;
|
||
|
} cword;
|
||
|
u32 *D;
|
||
|
};
|
||
|
|
||
|
static DEFINE_PER_CPU(struct cword *, paes_last_cword);
|
||
|
|
||
|
/* Tells whether the ACE is capable to generate
|
||
|
the extended key for a given key_len. */
|
||
|
static inline int
|
||
|
aes_hw_extkey_available(uint8_t key_len)
|
||
|
{
|
||
|
/* TODO: We should check the actual CPU model/stepping
|
||
|
as it's possible that the capability will be
|
||
|
added in the next CPU revisions. */
|
||
|
if (key_len == 16)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline struct aes_ctx *aes_ctx_common(void *ctx)
|
||
|
{
|
||
|
unsigned long addr = (unsigned long)ctx;
|
||
|
unsigned long align = PADLOCK_ALIGNMENT;
|
||
|
|
||
|
if (align <= crypto_tfm_ctx_alignment())
|
||
|
align = 1;
|
||
|
return (struct aes_ctx *)ALIGN(addr, align);
|
||
|
}
|
||
|
|
||
|
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
|
||
|
{
|
||
|
return aes_ctx_common(crypto_tfm_ctx(tfm));
|
||
|
}
|
||
|
|
||
|
static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
|
||
|
{
|
||
|
return aes_ctx_common(crypto_blkcipher_ctx(tfm));
|
||
|
}
|
||
|
|
||
|
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
|
||
|
unsigned int key_len)
|
||
|
{
|
||
|
struct aes_ctx *ctx = aes_ctx(tfm);
|
||
|
const __le32 *key = (const __le32 *)in_key;
|
||
|
u32 *flags = &tfm->crt_flags;
|
||
|
struct crypto_aes_ctx gen_aes;
|
||
|
int cpu;
|
||
|
|
||
|
if (key_len % 8) {
|
||
|
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the hardware is capable of generating the extended key
|
||
|
* itself we must supply the plain key for both encryption
|
||
|
* and decryption.
|
||
|
*/
|
||
|
ctx->D = ctx->E;
|
||
|
|
||
|
ctx->E[0] = le32_to_cpu(key[0]);
|
||
|
ctx->E[1] = le32_to_cpu(key[1]);
|
||
|
ctx->E[2] = le32_to_cpu(key[2]);
|
||
|
ctx->E[3] = le32_to_cpu(key[3]);
|
||
|
|
||
|
/* Prepare control words. */
|
||
|
memset(&ctx->cword, 0, sizeof(ctx->cword));
|
||
|
|
||
|
ctx->cword.decrypt.encdec = 1;
|
||
|
ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
|
||
|
ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
|
||
|
ctx->cword.encrypt.ksize = (key_len - 16) / 8;
|
||
|
ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
|
||
|
|
||
|
/* Don't generate extended keys if the hardware can do it. */
|
||
|
if (aes_hw_extkey_available(key_len))
|
||
|
goto ok;
|
||
|
|
||
|
ctx->D = ctx->d_data;
|
||
|
ctx->cword.encrypt.keygen = 1;
|
||
|
ctx->cword.decrypt.keygen = 1;
|
||
|
|
||
|
if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
|
||
|
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
|
||
|
memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
|
||
|
|
||
|
ok:
|
||
|
for_each_online_cpu(cpu)
|
||
|
if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
|
||
|
&ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
|
||
|
per_cpu(paes_last_cword, cpu) = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* ====== Encryption/decryption routines ====== */
|
||
|
|
||
|
/* These are the real call to PadLock. */
|
||
|
static inline void padlock_reset_key(struct cword *cword)
|
||
|
{
|
||
|
int cpu = raw_smp_processor_id();
|
||
|
|
||
|
if (cword != per_cpu(paes_last_cword, cpu))
|
||
|
#ifndef CONFIG_X86_64
|
||
|
asm volatile ("pushfl; popfl");
|
||
|
#else
|
||
|
asm volatile ("pushfq; popfq");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline void padlock_store_cword(struct cword *cword)
|
||
|
{
|
||
|
per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* While the padlock instructions don't use FP/SSE registers, they
|
||
|
* generate a spurious DNA fault when cr0.ts is '1'. These instructions
|
||
|
* should be used only inside the irq_ts_save/restore() context
|
||
|
*/
|
||
|
|
||
|
static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
|
||
|
struct cword *control_word, int count)
|
||
|
{
|
||
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
||
|
: "+S"(input), "+D"(output)
|
||
|
: "d"(control_word), "b"(key), "c"(count));
|
||
|
}
|
||
|
|
||
|
static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
|
||
|
u8 *iv, struct cword *control_word, int count)
|
||
|
{
|
||
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
|
||
|
: "+S" (input), "+D" (output), "+a" (iv)
|
||
|
: "d" (control_word), "b" (key), "c" (count));
|
||
|
return iv;
|
||
|
}
|
||
|
|
||
|
static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
|
||
|
struct cword *cword, int count)
|
||
|
{
|
||
|
/*
|
||
|
* Padlock prefetches extra data so we must provide mapped input buffers.
|
||
|
* Assume there are at least 16 bytes of stack already in use.
|
||
|
*/
|
||
|
u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
|
||
|
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
||
|
|
||
|
memcpy(tmp, in, count * AES_BLOCK_SIZE);
|
||
|
rep_xcrypt_ecb(tmp, out, key, cword, count);
|
||
|
}
|
||
|
|
||
|
static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
|
||
|
u8 *iv, struct cword *cword, int count)
|
||
|
{
|
||
|
/*
|
||
|
* Padlock prefetches extra data so we must provide mapped input buffers.
|
||
|
* Assume there are at least 16 bytes of stack already in use.
|
||
|
*/
|
||
|
u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
|
||
|
u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
||
|
|
||
|
memcpy(tmp, in, count * AES_BLOCK_SIZE);
|
||
|
return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
|
||
|
}
|
||
|
|
||
|
static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
|
||
|
struct cword *cword, int count)
|
||
|
{
|
||
|
/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
|
||
|
* We could avoid some copying here but it's probably not worth it.
|
||
|
*/
|
||
|
if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
|
||
|
ecb_crypt_copy(in, out, key, cword, count);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rep_xcrypt_ecb(in, out, key, cword, count);
|
||
|
}
|
||
|
|
||
|
static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
|
||
|
u8 *iv, struct cword *cword, int count)
|
||
|
{
|
||
|
/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
|
||
|
if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
|
||
|
return cbc_crypt_copy(in, out, key, iv, cword, count);
|
||
|
|
||
|
return rep_xcrypt_cbc(in, out, key, iv, cword, count);
|
||
|
}
|
||
|
|
||
|
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
|
||
|
void *control_word, u32 count)
|
||
|
{
|
||
|
u32 initial = count & (ecb_fetch_blocks - 1);
|
||
|
|
||
|
if (count < ecb_fetch_blocks) {
|
||
|
ecb_crypt(input, output, key, control_word, count);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
count -= initial;
|
||
|
|
||
|
if (initial)
|
||
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
||
|
: "+S"(input), "+D"(output)
|
||
|
: "d"(control_word), "b"(key), "c"(initial));
|
||
|
|
||
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
|
||
|
: "+S"(input), "+D"(output)
|
||
|
: "d"(control_word), "b"(key), "c"(count));
|
||
|
}
|
||
|
|
||
|
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
|
||
|
u8 *iv, void *control_word, u32 count)
|
||
|
{
|
||
|
u32 initial = count & (cbc_fetch_blocks - 1);
|
||
|
|
||
|
if (count < cbc_fetch_blocks)
|
||
|
return cbc_crypt(input, output, key, iv, control_word, count);
|
||
|
|
||
|
count -= initial;
|
||
|
|
||
|
if (initial)
|
||
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
|
||
|
: "+S" (input), "+D" (output), "+a" (iv)
|
||
|
: "d" (control_word), "b" (key), "c" (initial));
|
||
|
|
||
|
asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
|
||
|
: "+S" (input), "+D" (output), "+a" (iv)
|
||
|
: "d" (control_word), "b" (key), "c" (count));
|
||
|
return iv;
|
||
|
}
|
||
|
|
||
|
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
||
|
{
|
||
|
struct aes_ctx *ctx = aes_ctx(tfm);
|
||
|
int ts_state;
|
||
|
|
||
|
padlock_reset_key(&ctx->cword.encrypt);
|
||
|
ts_state = irq_ts_save();
|
||
|
ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
|
||
|
irq_ts_restore(ts_state);
|
||
|
padlock_store_cword(&ctx->cword.encrypt);
|
||
|
}
|
||
|
|
||
|
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
||
|
{
|
||
|
struct aes_ctx *ctx = aes_ctx(tfm);
|
||
|
int ts_state;
|
||
|
|
||
|
padlock_reset_key(&ctx->cword.encrypt);
|
||
|
ts_state = irq_ts_save();
|
||
|
ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
|
||
|
irq_ts_restore(ts_state);
|
||
|
padlock_store_cword(&ctx->cword.encrypt);
|
||
|
}
|
||
|
|
||
|
static struct crypto_alg aes_alg = {
|
||
|
.cra_name = "aes",
|
||
|
.cra_driver_name = "aes-padlock",
|
||
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
||
|
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_u = {
|
||
|
.cipher = {
|
||
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.cia_setkey = aes_set_key,
|
||
|
.cia_encrypt = aes_encrypt,
|
||
|
.cia_decrypt = aes_decrypt,
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static int ecb_aes_encrypt(struct blkcipher_desc *desc,
|
||
|
struct scatterlist *dst, struct scatterlist *src,
|
||
|
unsigned int nbytes)
|
||
|
{
|
||
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
||
|
struct blkcipher_walk walk;
|
||
|
int err;
|
||
|
int ts_state;
|
||
|
|
||
|
padlock_reset_key(&ctx->cword.encrypt);
|
||
|
|
||
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||
|
err = blkcipher_walk_virt(desc, &walk);
|
||
|
|
||
|
ts_state = irq_ts_save();
|
||
|
while ((nbytes = walk.nbytes)) {
|
||
|
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
|
||
|
ctx->E, &ctx->cword.encrypt,
|
||
|
nbytes / AES_BLOCK_SIZE);
|
||
|
nbytes &= AES_BLOCK_SIZE - 1;
|
||
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||
|
}
|
||
|
irq_ts_restore(ts_state);
|
||
|
|
||
|
padlock_store_cword(&ctx->cword.encrypt);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int ecb_aes_decrypt(struct blkcipher_desc *desc,
|
||
|
struct scatterlist *dst, struct scatterlist *src,
|
||
|
unsigned int nbytes)
|
||
|
{
|
||
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
||
|
struct blkcipher_walk walk;
|
||
|
int err;
|
||
|
int ts_state;
|
||
|
|
||
|
padlock_reset_key(&ctx->cword.decrypt);
|
||
|
|
||
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||
|
err = blkcipher_walk_virt(desc, &walk);
|
||
|
|
||
|
ts_state = irq_ts_save();
|
||
|
while ((nbytes = walk.nbytes)) {
|
||
|
padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
|
||
|
ctx->D, &ctx->cword.decrypt,
|
||
|
nbytes / AES_BLOCK_SIZE);
|
||
|
nbytes &= AES_BLOCK_SIZE - 1;
|
||
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||
|
}
|
||
|
irq_ts_restore(ts_state);
|
||
|
|
||
|
padlock_store_cword(&ctx->cword.encrypt);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static struct crypto_alg ecb_aes_alg = {
|
||
|
.cra_name = "ecb(aes)",
|
||
|
.cra_driver_name = "ecb-aes-padlock",
|
||
|
.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
||
|
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
||
|
.cra_type = &crypto_blkcipher_type,
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_u = {
|
||
|
.blkcipher = {
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.setkey = aes_set_key,
|
||
|
.encrypt = ecb_aes_encrypt,
|
||
|
.decrypt = ecb_aes_decrypt,
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static int cbc_aes_encrypt(struct blkcipher_desc *desc,
|
||
|
struct scatterlist *dst, struct scatterlist *src,
|
||
|
unsigned int nbytes)
|
||
|
{
|
||
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
||
|
struct blkcipher_walk walk;
|
||
|
int err;
|
||
|
int ts_state;
|
||
|
|
||
|
padlock_reset_key(&ctx->cword.encrypt);
|
||
|
|
||
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||
|
err = blkcipher_walk_virt(desc, &walk);
|
||
|
|
||
|
ts_state = irq_ts_save();
|
||
|
while ((nbytes = walk.nbytes)) {
|
||
|
u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
|
||
|
walk.dst.virt.addr, ctx->E,
|
||
|
walk.iv, &ctx->cword.encrypt,
|
||
|
nbytes / AES_BLOCK_SIZE);
|
||
|
memcpy(walk.iv, iv, AES_BLOCK_SIZE);
|
||
|
nbytes &= AES_BLOCK_SIZE - 1;
|
||
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||
|
}
|
||
|
irq_ts_restore(ts_state);
|
||
|
|
||
|
padlock_store_cword(&ctx->cword.decrypt);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static int cbc_aes_decrypt(struct blkcipher_desc *desc,
|
||
|
struct scatterlist *dst, struct scatterlist *src,
|
||
|
unsigned int nbytes)
|
||
|
{
|
||
|
struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
|
||
|
struct blkcipher_walk walk;
|
||
|
int err;
|
||
|
int ts_state;
|
||
|
|
||
|
padlock_reset_key(&ctx->cword.encrypt);
|
||
|
|
||
|
blkcipher_walk_init(&walk, dst, src, nbytes);
|
||
|
err = blkcipher_walk_virt(desc, &walk);
|
||
|
|
||
|
ts_state = irq_ts_save();
|
||
|
while ((nbytes = walk.nbytes)) {
|
||
|
padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
|
||
|
ctx->D, walk.iv, &ctx->cword.decrypt,
|
||
|
nbytes / AES_BLOCK_SIZE);
|
||
|
nbytes &= AES_BLOCK_SIZE - 1;
|
||
|
err = blkcipher_walk_done(desc, &walk, nbytes);
|
||
|
}
|
||
|
|
||
|
irq_ts_restore(ts_state);
|
||
|
|
||
|
padlock_store_cword(&ctx->cword.encrypt);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static struct crypto_alg cbc_aes_alg = {
|
||
|
.cra_name = "cbc(aes)",
|
||
|
.cra_driver_name = "cbc-aes-padlock",
|
||
|
.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
|
||
|
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
|
||
|
.cra_blocksize = AES_BLOCK_SIZE,
|
||
|
.cra_ctxsize = sizeof(struct aes_ctx),
|
||
|
.cra_alignmask = PADLOCK_ALIGNMENT - 1,
|
||
|
.cra_type = &crypto_blkcipher_type,
|
||
|
.cra_module = THIS_MODULE,
|
||
|
.cra_u = {
|
||
|
.blkcipher = {
|
||
|
.min_keysize = AES_MIN_KEY_SIZE,
|
||
|
.max_keysize = AES_MAX_KEY_SIZE,
|
||
|
.ivsize = AES_BLOCK_SIZE,
|
||
|
.setkey = aes_set_key,
|
||
|
.encrypt = cbc_aes_encrypt,
|
||
|
.decrypt = cbc_aes_decrypt,
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static struct x86_cpu_id padlock_cpu_id[] = {
|
||
|
X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
|
||
|
{}
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
|
||
|
|
||
|
static int __init padlock_init(void)
|
||
|
{
|
||
|
int ret;
|
||
|
struct cpuinfo_x86 *c = &cpu_data(0);
|
||
|
|
||
|
if (!x86_match_cpu(padlock_cpu_id))
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
|
||
|
printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if ((ret = crypto_register_alg(&aes_alg)))
|
||
|
goto aes_err;
|
||
|
|
||
|
if ((ret = crypto_register_alg(&ecb_aes_alg)))
|
||
|
goto ecb_aes_err;
|
||
|
|
||
|
if ((ret = crypto_register_alg(&cbc_aes_alg)))
|
||
|
goto cbc_aes_err;
|
||
|
|
||
|
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
|
||
|
|
||
|
if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
|
||
|
ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
|
||
|
cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
|
||
|
printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return ret;
|
||
|
|
||
|
cbc_aes_err:
|
||
|
crypto_unregister_alg(&ecb_aes_alg);
|
||
|
ecb_aes_err:
|
||
|
crypto_unregister_alg(&aes_alg);
|
||
|
aes_err:
|
||
|
printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
static void __exit padlock_fini(void)
|
||
|
{
|
||
|
crypto_unregister_alg(&cbc_aes_alg);
|
||
|
crypto_unregister_alg(&ecb_aes_alg);
|
||
|
crypto_unregister_alg(&aes_alg);
|
||
|
}
|
||
|
|
||
|
module_init(padlock_init);
|
||
|
module_exit(padlock_fini);
|
||
|
|
||
|
MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_AUTHOR("Michal Ludvig");
|
||
|
|
||
|
MODULE_ALIAS_CRYPTO("aes");
|