tegrakernel/kernel/kernel-4.9/drivers/dma/tegra210-adma.c

1266 lines
34 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* ADMA driver for Nvidia's Tegra210 ADMA controller.
*
* Copyright (c) 2016-2020, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "virt-dma.h"
#define ADMA_CH_CMD 0x00
#define ADMA_CH_STATUS 0x0c
#define ADMA_CH_STATUS_XFER_EN BIT(0)
#define ADMA_CH_STATUS_XFER_PAUSED BIT(1)
#define ADMA_CH_INT_STATUS 0x10
#define ADMA_CH_INT_STATUS_XFER_DONE BIT(0)
#define ADMA_CH_INT_CLEAR 0x1c
#define ADMA_CH_CTRL 0x24
#define ADMA_CH_CTRL_DIR(val) (((val) & 0xf) << 12)
#define ADMA_CH_CTRL_DIR_AHUB2MEM 2
#define ADMA_CH_CTRL_DIR_MEM2AHUB 4
#define ADMA_CH_CTRL_MODE_CONTINUOUS (2 << 8)
#define ADMA_CH_CTRL_FLOWCTRL_EN BIT(1)
#define ADMA_CH_CONFIG 0x28
#define ADMA_CH_CONFIG_SRC_BUF(val) (((val) & 0x7) << 28)
#define ADMA_CH_CONFIG_TRG_BUF(val) (((val) & 0x7) << 24)
#define ADMA_CH_CONFIG_BURST_SIZE_SHIFT 20
#define ADMA_CH_CONFIG_MAX_BURST_SIZE 16
#define ADMA_CH_CONFIG_WEIGHT_FOR_WRR(val) ((val) & 0xf)
#define ADMA_CH_CONFIG_MAX_BUFS 8
#define ADMA_CH_FIFO_CTRL 0x2c
#define ADMA_CH_FIFO_CTRL_TX_FIFO_SIZE_SHIFT 8
#define ADMA_CH_FIFO_CTRL_RX_FIFO_SIZE_SHIFT 0
#define ADMA_CH_CTRL_XFER_PAUSE_SHIFT 0
#define ADMA_CH_CTRL_XFER_PAUSE_MASK \
(1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT)
#define TEGRA_ADMA_BURST_COMPLETE_TIME 20
#define ADMA_CH_TC_STATUS 0x30
#define ADMA_CH_LOWER_SRC_ADDR 0x34
#define ADMA_CH_LOWER_TRG_ADDR 0x3c
#define ADMA_CH_TC 0x44
#define ADMA_CH_TC_COUNT_MASK 0x3ffffffc
#define ADMA_CH_XFER_STATUS 0x54
#define ADMA_CH_XFER_STATUS_COUNT_MASK 0xffff
#define ADMA_GLOBAL_CMD 0x00
#define ADMA_GLOBAL_SOFT_RESET 0x04
#define ADMA_GLOBAL_CG 0x08
#define ADMA_CH_REG_FIELD_VAL(val, mask, shift) (((val) & mask) << shift)
#define ADMA_GLOBAL_CG_DISABLE 0x00
#define ADMA_GLOBAL_CG_ENABLE 0x07
/* T210 Shared Semaphore registers */
#define AMISC_SHRD_SMP_STA 0x1c
#define AMISC_SHRD_SMP_STA_SET 0x20
#define AMISC_SHRD_SMP_STA_CLR 0x24
#define T210_SHRD_SMP_STA AMISC_SHRD_SMP_STA
#define T210_SHRD_SMP_STA_SET AMISC_SHRD_SMP_STA_SET
#define T210_SHRD_SMP_STA_CLR AMISC_SHRD_SMP_STA_CLR
/* T186 HSP SS registers for ADMA WAR */
#define HSP_SHRD_SEM_0_SHRD_SMP_STA 0x00
#define HSP_SHRD_SEM_0_SHRD_SMP_STA_SET 0x04
#define HSP_SHRD_SEM_0_SHRD_SMP_STA_CLR 0x08
#define T186_SHRD_SMP_STA HSP_SHRD_SEM_0_SHRD_SMP_STA
#define T186_SHRD_SMP_STA_SET HSP_SHRD_SEM_0_SHRD_SMP_STA_SET
#define T186_SHRD_SMP_STA_CLR HSP_SHRD_SEM_0_SHRD_SMP_STA_CLR
/* Make sure ADSP using 2nd SMP bit */
#define ADMA_SHRD_SMP_CPU 0x1
#define ADMA_SHRD_SMP_ADSP 0x2
#define ADMA_SHRD_SMP_BITS (ADMA_SHRD_SMP_CPU | ADMA_SHRD_SMP_ADSP)
#define ADMA_SHRD_SEM_WAIT_COUNT 50
struct tegra_adma;
struct device *dma_device;
/*
* struct tegra_adma_war - Tegra chip specific sw war data
*/
struct tegra_adma_war {
bool is_adma_war;
unsigned int smp_sta_reg;
unsigned int smp_sta_set_reg;
unsigned int smp_sta_clear_reg;
};
/*
* struct tegra_adma_chip_data - Tegra chip specific data
*/
struct tegra_adma_chip_data {
unsigned int nr_channels;
unsigned int ch_reg_size;
unsigned int ch_base_offset;
unsigned int ch_page_size;
unsigned int global_int_clear;
unsigned int global_reg_offset;
unsigned int slave_id;
unsigned int outstanding_request;
unsigned int ch_fifo_size_mask;
unsigned int ch_req_tx_shift;
unsigned int ch_req_rx_shift;
unsigned int ch_req_mask;
unsigned int ch_req_max;
struct tegra_adma_war adma_war;
unsigned int (*adma_get_burst_config)(unsigned int burst_size);
};
/*
* struct tegra_adma_chan_regs - Tegra ADMA channel registers
*/
struct tegra_adma_chan_regs {
unsigned int cmd;
unsigned int ctrl;
unsigned int config;
unsigned int src_addr;
unsigned int trg_addr;
unsigned int fifo_ctrl;
unsigned int tc;
};
/*
* struct tegra_adma_desc - Tegra ADMA descriptor to manage transfer requests.
*/
struct tegra_adma_desc {
struct virt_dma_desc vd;
struct tegra_adma_chan_regs ch_regs;
size_t buf_len;
size_t period_len;
size_t num_periods;
};
/*
* struct tegra_adma_chan - Tegra ADMA channel information
*/
struct tegra_adma_chan {
struct virt_dma_chan vc;
struct tegra_adma_desc *desc;
struct tegra_adma *tdma;
int irq;
void __iomem *chan_addr;
/* Slave channel configuration info */
struct dma_slave_config sconfig;
enum dma_transfer_direction sreq_dir;
unsigned int sreq_index;
bool sreq_reserved;
struct tegra_adma_chan_regs ch_regs;
/* Transfer count and position info */
unsigned int tx_buf_count;
unsigned int tx_buf_pos;
};
/*
* struct tegra_adma - Tegra ADMA controller information
*/
struct tegra_adma {
struct dma_device dma_dev;
struct device *dev;
void __iomem *base_addr;
void __iomem *shrd_sem_addr;
struct clk *ahub_clk;
unsigned int nr_channels;
unsigned long rx_requests_reserved;
unsigned long tx_requests_reserved;
unsigned int ch_base_offset;
const struct tegra_adma_chip_data *chip_data;
/* Index of the first physical adma channel to be used.
* Index counting starts from zero
*/
unsigned int dma_start_index;
/* If "true", means running in hypervisor */
bool is_virt;
spinlock_t global_lock;
/* Used to store global command register state when suspending */
unsigned int global_cmd;
/* Last member of the structure */
struct tegra_adma_chan channels[0];
};
static inline void tdma_global_write(struct tegra_adma *tdma, u32 reg,
u32 val)
{
u32 global_reg_offset = tdma->chip_data->global_reg_offset;
writel(val, tdma->base_addr + global_reg_offset + reg);
}
static inline u32 tdma_global_read(struct tegra_adma *tdma, u32 reg)
{
u32 global_reg_offset = tdma->chip_data->global_reg_offset;
return readl(tdma->base_addr + global_reg_offset + reg);
}
static inline void tdma_global_ch_write(struct tegra_adma *tdma, u32 reg,
u32 val)
{
writel(val, tdma->base_addr + tdma->ch_base_offset + reg);
}
static inline void tdma_ch_write(struct tegra_adma_chan *tdc, u32 reg, u32 val)
{
writel(val, tdc->chan_addr + reg);
}
static inline u32 tdma_ch_read(struct tegra_adma_chan *tdc, u32 reg)
{
return readl(tdc->chan_addr + reg);
}
static inline struct tegra_adma_chan *to_tegra_adma_chan(struct dma_chan *dc)
{
return container_of(dc, struct tegra_adma_chan, vc.chan);
}
static inline struct tegra_adma_desc *to_tegra_adma_desc(
struct dma_async_tx_descriptor *td)
{
return container_of(td, struct tegra_adma_desc, vd.tx);
}
static inline struct device *tdc2dev(struct tegra_adma_chan *tdc)
{
return tdc->tdma->dev;
}
static void tegra_adma_desc_free(struct virt_dma_desc *vd)
{
kfree(container_of(vd, struct tegra_adma_desc, vd));
}
static int tegra_adma_slave_config(struct dma_chan *dc,
struct dma_slave_config *sconfig)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
memcpy(&tdc->sconfig, sconfig, sizeof(*sconfig));
return 0;
}
static int tegra_adma_init(struct tegra_adma *tdma)
{
const struct tegra_adma_chip_data *chip_data = tdma->chip_data;
u32 status;
int ret;
unsigned int global_reg_offset = tdma->chip_data->global_reg_offset;
unsigned int reg_soft_reset;
/* Clear any interrupts */
tdma_global_ch_write(tdma, chip_data->global_int_clear, 0x1);
if (tdma->is_virt == false) {
/* Assert soft reset */
tdma_global_write(tdma, ADMA_GLOBAL_SOFT_RESET, 0x1);
reg_soft_reset = global_reg_offset + ADMA_GLOBAL_SOFT_RESET;
/* Wait for reset to clear */
ret = readx_poll_timeout(readl,
tdma->base_addr + reg_soft_reset,
status, status == 0, 20, 10000);
if (ret)
return ret;
/* Enable global ADMA registers */
tdma_global_write(tdma, ADMA_GLOBAL_CMD, 0x1);
} else {
/* Audio Server owns ADMA GLOBAL and set registers */
tdma->global_cmd = 1;
}
return 0;
}
/* Add function to dump the register status during hung trigger */
void tegra_adma_dump_ch_reg(void)
{
struct tegra_adma *tdma = dev_get_drvdata(dma_device);
int i;
void __iomem *ch_addr;
/* Enable clock before accessing registers */
pm_runtime_get_sync(tdma->dev);
pr_info("======= ADMA Register Dump ========\n");
for (i = 0; i < tdma->chip_data->nr_channels; i++) {
ch_addr = tdma->base_addr + tdma->ch_base_offset +
(tdma->chip_data->ch_reg_size *
(i + tdma->dma_start_index));
pr_info("ADMA_PAGE1_CH%d_CMD_0 = %x\n",
i, readl(ch_addr + ADMA_CH_CMD));
pr_info("ADMA_PAGE1_CH%d_STATUS_0 = %x\n",
i, readl(ch_addr + ADMA_CH_STATUS));
pr_info("ADMA_PAGE1_CH%d_CTRL_0 = %x\n",
i, readl(ch_addr + ADMA_CH_CTRL));
pr_info("ADMA_PAGE1_CH%d_CONFIG_0 = %x\n",
i, readl(ch_addr + ADMA_CH_CONFIG));
pr_info("ADMA_PAGE1_CH%d_AHUB_FIFO_CTRL_0 = %x\n",
i, readl(ch_addr + ADMA_CH_FIFO_CTRL));
pr_info("ADMA_PAGE1_CH%d_TC_STATUS_0 = %x\n",
i, readl(ch_addr + ADMA_CH_TC_STATUS));
pr_info("ADMA_PAGE1_CH%d_LOWER_SOURCE_ADDR_0 = %x\n",
i, readl(ch_addr + ADMA_CH_LOWER_SRC_ADDR));
pr_info("ADMA_PAGE1_CH%d_LOWER_TARGET_ADDR_0 = %x\n",
i, readl(ch_addr + ADMA_CH_LOWER_TRG_ADDR));
pr_info("ADMA_PAGE1_CH%d_TRANSFER_STATUS_0 = %x\n",
i, readl(ch_addr + ADMA_CH_XFER_STATUS));
}
pm_runtime_put_sync(tdma->dev);
}
EXPORT_SYMBOL_GPL(tegra_adma_dump_ch_reg);
static int tegra_adma_request_alloc(struct tegra_adma_chan *tdc,
enum dma_transfer_direction direction)
{
struct tegra_adma *tdma = tdc->tdma;
const struct tegra_adma_chip_data *chip_data = tdma->chip_data;
unsigned int sreq_index = tdc->sreq_index;
if (tdc->sreq_reserved)
return tdc->sreq_dir == direction ? 0 : -EINVAL;
if (sreq_index > chip_data->ch_req_max) {
dev_err(tdma->dev, "invalid DMA request\n");
return -EINVAL;
}
switch (direction) {
case DMA_MEM_TO_DEV:
if (test_and_set_bit(sreq_index, &tdma->tx_requests_reserved)) {
dev_err(tdma->dev, "DMA request reserved\n");
return -EINVAL;
}
break;
case DMA_DEV_TO_MEM:
if (test_and_set_bit(sreq_index, &tdma->rx_requests_reserved)) {
dev_err(tdma->dev, "DMA request reserved\n");
return -EINVAL;
}
break;
default:
dev_WARN(tdma->dev, "channel %s has invalid transfer type\n",
dma_chan_name(&tdc->vc.chan));
return -EINVAL;
}
tdc->sreq_dir = direction;
tdc->sreq_reserved = true;
return 0;
}
static void tegra_adma_request_free(struct tegra_adma_chan *tdc)
{
struct tegra_adma *tdma = tdc->tdma;
if (!tdc->sreq_reserved)
return;
switch (tdc->sreq_dir) {
case DMA_MEM_TO_DEV:
clear_bit(tdc->sreq_index, &tdma->tx_requests_reserved);
break;
case DMA_DEV_TO_MEM:
clear_bit(tdc->sreq_index, &tdma->rx_requests_reserved);
break;
default:
dev_WARN(tdma->dev, "channel %s has invalid transfer type\n",
dma_chan_name(&tdc->vc.chan));
return;
}
tdc->sreq_reserved = false;
}
static u32 tegra_adma_irq_status(struct tegra_adma_chan *tdc)
{
u32 status = tdma_ch_read(tdc, ADMA_CH_INT_STATUS);
return status & ADMA_CH_INT_STATUS_XFER_DONE;
}
static u32 tegra_adma_irq_clear(struct tegra_adma_chan *tdc)
{
u32 status = tegra_adma_irq_status(tdc);
if (status)
tdma_ch_write(tdc, ADMA_CH_INT_CLEAR, status);
return status;
}
static void tegra_adma_stop(struct tegra_adma_chan *tdc)
{
unsigned int status;
/* Disable ADMA */
tdma_ch_write(tdc, ADMA_CH_CMD, 0);
/* Clear interrupt status */
tegra_adma_irq_clear(tdc);
if (readx_poll_timeout_atomic(readl, tdc->chan_addr + ADMA_CH_STATUS,
status, !(status & ADMA_CH_STATUS_XFER_EN),
20, 10000)) {
dev_err(tdc2dev(tdc), "unable to stop DMA channel\n");
return;
}
tegra_adma_irq_clear(tdc);
kfree(tdc->desc);
tdc->desc = NULL;
tdc->vc.cyclic = NULL;
}
static void adsp_shrd_sem_wait(struct tegra_adma_chan *tdc)
{
int val, count = ADMA_SHRD_SEM_WAIT_COUNT;
const struct tegra_adma_war *adma_war =
&tdc->tdma->chip_data->adma_war;
int smp_sta_set_reg = adma_war->smp_sta_set_reg;
int smp_sta_reg = adma_war->smp_sta_reg;
/* Acquire Semaphore */
writel(ADMA_SHRD_SMP_CPU, tdc->tdma->shrd_sem_addr +
smp_sta_set_reg);
do {
val = readl(tdc->tdma->shrd_sem_addr
+ smp_sta_reg);
val = val & ADMA_SHRD_SMP_BITS;
count--;
} while ((val != ADMA_SHRD_SMP_CPU) && count);
if (!count)
dev_warn(tdc2dev(tdc),
"ADSP Shared SMP waiting timeout, SMP = %x\n", val);
}
static void cpu_shrd_sem_release(struct tegra_adma_chan *tdc)
{
const struct tegra_adma_war *adma_war =
&tdc->tdma->chip_data->adma_war;
int smp_sta_clear_reg = adma_war->smp_sta_clear_reg;
writel(ADMA_SHRD_SMP_CPU, tdc->tdma->shrd_sem_addr +
smp_sta_clear_reg);
}
static void tegra_adma_start(struct tegra_adma_chan *tdc)
{
struct virt_dma_desc *vd = vchan_next_desc(&tdc->vc);
const struct tegra_adma_war *adma_war =
&tdc->tdma->chip_data->adma_war;
struct tegra_adma_chan_regs *ch_regs;
struct tegra_adma_desc *desc;
if (!vd)
return;
list_del(&vd->node);
desc = to_tegra_adma_desc(&vd->tx);
if (!desc) {
dev_warn(tdc2dev(tdc), "unable to start DMA, no descriptor\n");
return;
}
ch_regs = &desc->ch_regs;
tdc->tx_buf_pos = 0;
tdc->tx_buf_count = 0;
tdma_ch_write(tdc, ADMA_CH_TC, ch_regs->tc);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl);
tdma_ch_write(tdc, ADMA_CH_LOWER_SRC_ADDR, ch_regs->src_addr);
tdma_ch_write(tdc, ADMA_CH_LOWER_TRG_ADDR, ch_regs->trg_addr);
tdma_ch_write(tdc, ADMA_CH_FIFO_CTRL, ch_regs->fifo_ctrl);
tdma_ch_write(tdc, ADMA_CH_CONFIG, ch_regs->config);
if (adma_war->is_adma_war &&
tdc->tdma->is_virt == false) {
spin_lock(&tdc->tdma->global_lock);
/* Wait for the ADSP semaphore to be cleared */
adsp_shrd_sem_wait(tdc);
tdma_global_write(tdc->tdma, ADMA_GLOBAL_CG,
ADMA_GLOBAL_CG_DISABLE);
}
/* Start ADMA */
tdma_ch_write(tdc, ADMA_CH_CMD, 1);
if (adma_war->is_adma_war &&
tdc->tdma->is_virt == false) {
tdma_global_write(tdc->tdma, ADMA_GLOBAL_CG,
ADMA_GLOBAL_CG_ENABLE);
/* Clear CPU Semaphore */
cpu_shrd_sem_release(tdc);
spin_unlock(&tdc->tdma->global_lock);
}
tdc->desc = desc;
}
static unsigned int tegra_adma_get_residue(struct tegra_adma_chan *tdc)
{
struct tegra_adma_desc *desc = tdc->desc;
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
unsigned int max = ADMA_CH_XFER_STATUS_COUNT_MASK + 1;
unsigned int pos, pos_l;
unsigned int tc_remain, tc_remain_l;
unsigned int tc_transferred;
uint64_t tot_xfer;
pos = tdma_ch_read(tdc, ADMA_CH_XFER_STATUS) &
ADMA_CH_XFER_STATUS_COUNT_MASK;
/* read TC_STATUS register to get current transfer status. */
tc_remain = tdma_ch_read(tdc, ADMA_CH_TC_STATUS);
pos_l = tdma_ch_read(tdc, ADMA_CH_XFER_STATUS) &
ADMA_CH_XFER_STATUS_COUNT_MASK;
tc_remain_l = tdma_ch_read(tdc, ADMA_CH_TC_STATUS);
/* Transfer count status got reset between ADMA_CH_XFER_STATUS reads */
if (pos != pos_l) {
tc_remain = tc_remain_l;
pos = pos_l;
}
/*
* Handle wrap around of buffer count register
*/
if (pos < tdc->tx_buf_pos)
tdc->tx_buf_count += pos + (max - tdc->tx_buf_pos);
else
tdc->tx_buf_count += pos - tdc->tx_buf_pos;
tdc->tx_buf_pos = pos;
/* get transferred data count */
tc_transferred = ch_regs->tc - tc_remain;
tot_xfer = (uint64_t)((uint64_t)tdc->tx_buf_count *
(uint64_t)ch_regs->tc) + tc_transferred;
tot_xfer %= desc->buf_len;
return desc->buf_len - tot_xfer;
}
static irqreturn_t tegra_adma_isr(int irq, void *dev_id)
{
struct tegra_adma_chan *tdc = dev_id;
unsigned long status;
unsigned long flags;
raw_spin_lock_irqsave(&tdc->vc.lock, flags);
status = tegra_adma_irq_clear(tdc);
if (status == 0 || !tdc->desc) {
raw_spin_unlock_irqrestore(&tdc->vc.lock, flags);
return IRQ_NONE;
}
vchan_cyclic_callback(&tdc->desc->vd);
raw_spin_unlock_irqrestore(&tdc->vc.lock, flags);
return IRQ_HANDLED;
}
static void tegra_adma_issue_pending(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
unsigned long flags;
raw_spin_lock_irqsave(&tdc->vc.lock, flags);
if (vchan_issue_pending(&tdc->vc)) {
if (!tdc->desc)
tegra_adma_start(tdc);
}
raw_spin_unlock_irqrestore(&tdc->vc.lock, flags);
}
static bool tegra_adma_is_paused(struct tegra_adma_chan *tdc)
{
u32 csts;
csts = tdma_ch_read(tdc, ADMA_CH_STATUS);
csts &= ADMA_CH_STATUS_XFER_PAUSED;
return csts ? true : false;
}
static int tegra_adma_pause(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc = tdc->desc;
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
int dcnt = 10;
ch_regs->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL);
ch_regs->ctrl |= (1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl);
while (dcnt-- && !tegra_adma_is_paused(tdc))
udelay(TEGRA_ADMA_BURST_COMPLETE_TIME);
if (dcnt < 0) {
dev_err(tdc2dev(tdc), "unable to pause DMA channel\n");
return -EBUSY;
}
return 0;
}
static int tegra_adma_resume(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc = tdc->desc;
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
ch_regs->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL);
ch_regs->ctrl &= ~(1 << ADMA_CH_CTRL_XFER_PAUSE_SHIFT);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_regs->ctrl);
return 0;
}
static int tegra_adma_terminate_all(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
unsigned long flags;
LIST_HEAD(head);
raw_spin_lock_irqsave(&tdc->vc.lock, flags);
if (tdc->desc)
tegra_adma_stop(tdc);
tegra_adma_request_free(tdc);
vchan_get_all_descriptors(&tdc->vc, &head);
raw_spin_unlock_irqrestore(&tdc->vc.lock, flags);
vchan_dma_desc_free_list(&tdc->vc, &head);
return 0;
}
static enum dma_status tegra_adma_tx_status(struct dma_chan *dc,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc;
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
unsigned int residual;
ret = dma_cookie_status(dc, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
raw_spin_lock_irqsave(&tdc->vc.lock, flags);
vd = vchan_find_desc(&tdc->vc, cookie);
if (vd) {
desc = to_tegra_adma_desc(&vd->tx);
residual = desc->ch_regs.tc;
} else if (tdc->desc && tdc->desc->vd.tx.cookie == cookie) {
residual = tegra_adma_get_residue(tdc);
} else {
residual = 0;
}
raw_spin_unlock_irqrestore(&tdc->vc.lock, flags);
dma_set_residue(txstate, residual);
return ret;
}
static unsigned int tegra210_adma_get_burst_config(unsigned int burst_size)
{
if (!burst_size || burst_size > ADMA_CH_CONFIG_MAX_BURST_SIZE)
burst_size = ADMA_CH_CONFIG_MAX_BURST_SIZE;
return fls(burst_size) << ADMA_CH_CONFIG_BURST_SIZE_SHIFT;
}
static unsigned int tegra186_adma_get_burst_config(unsigned int burst_size)
{
if (!burst_size || burst_size > ADMA_CH_CONFIG_MAX_BURST_SIZE)
burst_size = ADMA_CH_CONFIG_MAX_BURST_SIZE;
return (burst_size - 1) << ADMA_CH_CONFIG_BURST_SIZE_SHIFT;
}
static int tegra_adma_set_xfer_params(struct tegra_adma_chan *tdc,
struct tegra_adma_desc *desc,
dma_addr_t buf_addr,
enum dma_transfer_direction direction)
{
struct tegra_adma_chan_regs *ch_regs = &desc->ch_regs;
const struct tegra_adma_chip_data *chip_data = tdc->tdma->chip_data;
unsigned int burst_size, adma_dir, fifo_size_shift, sid;
if (desc->num_periods > ADMA_CH_CONFIG_MAX_BUFS)
return -EINVAL;
switch (direction) {
case DMA_MEM_TO_DEV:
fifo_size_shift = ADMA_CH_FIFO_CTRL_TX_FIFO_SIZE_SHIFT;
adma_dir = ADMA_CH_CTRL_DIR_MEM2AHUB;
burst_size = tdc->sconfig.dst_maxburst;
ch_regs->config = ADMA_CH_CONFIG_SRC_BUF(desc->num_periods - 1);
ch_regs->ctrl = ADMA_CH_REG_FIELD_VAL(tdc->sreq_index,
chip_data->ch_req_mask,
chip_data->ch_req_tx_shift);
ch_regs->src_addr = buf_addr;
break;
case DMA_DEV_TO_MEM:
fifo_size_shift = ADMA_CH_FIFO_CTRL_RX_FIFO_SIZE_SHIFT;
adma_dir = ADMA_CH_CTRL_DIR_AHUB2MEM;
burst_size = tdc->sconfig.src_maxburst;
ch_regs->config = ADMA_CH_CONFIG_TRG_BUF(desc->num_periods - 1);
ch_regs->ctrl = ADMA_CH_REG_FIELD_VAL(tdc->sreq_index,
chip_data->ch_req_mask,
chip_data->ch_req_rx_shift);
ch_regs->trg_addr = buf_addr;
break;
default:
dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
return -EINVAL;
}
sid = tdc->sconfig.slave_id > chip_data->slave_id ? 2 : 3;
ch_regs->fifo_ctrl = ADMA_CH_REG_FIELD_VAL(sid,
chip_data->ch_fifo_size_mask,
fifo_size_shift);
ch_regs->ctrl |= ADMA_CH_CTRL_DIR(adma_dir) |
ADMA_CH_CTRL_MODE_CONTINUOUS |
ADMA_CH_CTRL_FLOWCTRL_EN;
ch_regs->config |= chip_data->adma_get_burst_config(burst_size);
ch_regs->config |= ADMA_CH_CONFIG_WEIGHT_FOR_WRR(1);
ch_regs->config |= chip_data->outstanding_request;
ch_regs->tc = desc->period_len & ADMA_CH_TC_COUNT_MASK;
return tegra_adma_request_alloc(tdc, direction);
}
static struct dma_async_tx_descriptor *tegra_adma_prep_dma_cyclic(
struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
struct tegra_adma_desc *desc = NULL;
if (!buf_len || !period_len || period_len > ADMA_CH_TC_COUNT_MASK) {
dev_err(tdc2dev(tdc), "invalid buffer/period len\n");
return NULL;
}
if (buf_len % period_len) {
dev_err(tdc2dev(tdc), "buf_len not a multiple of period_len\n");
return NULL;
}
if (!IS_ALIGNED(buf_addr, 4)) {
dev_err(tdc2dev(tdc), "invalid buffer alignment\n");
return NULL;
}
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
desc->buf_len = buf_len;
desc->period_len = period_len;
desc->num_periods = buf_len / period_len;
if (tegra_adma_set_xfer_params(tdc, desc, buf_addr, direction)) {
kfree(desc);
return NULL;
}
return vchan_tx_prep(&tdc->vc, &desc->vd, flags);
}
static int tegra_adma_alloc_chan_resources(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
int ret;
ret = request_irq(tdc->irq, tegra_adma_isr, IRQF_NO_THREAD,
dma_chan_name(dc), tdc);
if (ret) {
dev_err(tdc2dev(tdc), "failed to get interrupt for %s\n",
dma_chan_name(dc));
return ret;
}
ret = pm_runtime_get_sync(tdc2dev(tdc));
if (ret < 0) {
free_irq(tdc->irq, tdc);
return ret;
}
dma_cookie_init(&tdc->vc.chan);
return 0;
}
static void tegra_adma_free_chan_resources(struct dma_chan *dc)
{
struct tegra_adma_chan *tdc = to_tegra_adma_chan(dc);
tegra_adma_terminate_all(dc);
vchan_free_chan_resources(&tdc->vc);
tasklet_kill(&tdc->vc.task);
free_irq(tdc->irq, tdc);
pm_runtime_put(tdc2dev(tdc));
tdc->sreq_index = 0;
tdc->sreq_dir = DMA_TRANS_NONE;
}
static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct tegra_adma *tdma = ofdma->of_dma_data;
struct tegra_adma_chan *tdc;
struct dma_chan *chan;
unsigned int sreq_index;
if (dma_spec->args_count != 1)
return NULL;
sreq_index = dma_spec->args[0];
if (sreq_index == 0) {
dev_err(tdma->dev, "DMA request must not be 0\n");
return NULL;
}
chan = dma_get_any_slave_channel(&tdma->dma_dev);
if (!chan)
return NULL;
tdc = to_tegra_adma_chan(chan);
tdc->sreq_index = sreq_index;
return chan;
}
static int tegra_adma_runtime_suspend(struct device *dev)
{
struct tegra_adma *tdma = dev_get_drvdata(dev);
int i;
if (tdma->is_virt == false)
tdma->global_cmd = tdma_global_read(tdma, ADMA_GLOBAL_CMD);
if (tdma->global_cmd) {
for (i = 0; i < tdma->nr_channels; i++) {
struct tegra_adma_chan *tdc = &tdma->channels[i];
struct tegra_adma_chan_regs *ch_reg = &tdc->ch_regs;
ch_reg->cmd = tdma_ch_read(tdc, ADMA_CH_CMD);
/* skip if channel is not active */
if (!ch_reg->cmd)
continue;
ch_reg->tc = tdma_ch_read(tdc, ADMA_CH_TC);
ch_reg->src_addr =
tdma_ch_read(tdc, ADMA_CH_LOWER_SRC_ADDR);
ch_reg->trg_addr =
tdma_ch_read(tdc, ADMA_CH_LOWER_TRG_ADDR);
ch_reg->ctrl = tdma_ch_read(tdc, ADMA_CH_CTRL);
ch_reg->fifo_ctrl =
tdma_ch_read(tdc, ADMA_CH_FIFO_CTRL);
ch_reg->config = tdma_ch_read(tdc, ADMA_CH_CONFIG);
}
}
if (tdma->is_virt == false)
clk_disable_unprepare(tdma->ahub_clk);
return 0;
}
static int tegra_adma_runtime_resume(struct device *dev)
{
struct tegra_adma *tdma = dev_get_drvdata(dev);
int ret, i;
if (tdma->is_virt == false) {
ret = clk_prepare_enable(tdma->ahub_clk);
if (ret) {
dev_err(dev, "ahub clk_enable failed: %d\n", ret);
return ret;
}
}
if (tdma->is_virt == false)
tdma_global_write(tdma, ADMA_GLOBAL_CMD, tdma->global_cmd);
if (tdma->global_cmd) {
for (i = 0; i < tdma->nr_channels; i++) {
struct tegra_adma_chan *tdc = &tdma->channels[i];
struct tegra_adma_chan_regs *ch_reg = &tdc->ch_regs;
/* skip if channel was not active earlier */
if (!ch_reg->cmd)
continue;
tdma_ch_write(tdc, ADMA_CH_TC, ch_reg->tc);
tdma_ch_write(tdc, ADMA_CH_LOWER_SRC_ADDR,
ch_reg->src_addr);
tdma_ch_write(tdc, ADMA_CH_LOWER_TRG_ADDR,
ch_reg->trg_addr);
tdma_ch_write(tdc, ADMA_CH_CTRL, ch_reg->ctrl);
tdma_ch_write(tdc, ADMA_CH_FIFO_CTRL,
ch_reg->fifo_ctrl);
tdma_ch_write(tdc, ADMA_CH_CONFIG, ch_reg->config);
tdma_ch_write(tdc, ADMA_CH_CMD, ch_reg->cmd);
}
}
return 0;
}
static const struct tegra_adma_chip_data tegra210_chip_data = {
.nr_channels = 22,
.ch_reg_size = 0x80,
.ch_base_offset = 0,
.ch_page_size = 0xc00,
.global_int_clear = 0x20,
.global_reg_offset = 0xc00,
.slave_id = 2,
.outstanding_request = 0,
.adma_get_burst_config = tegra210_adma_get_burst_config,
.ch_fifo_size_mask = 0x1f,
.ch_req_tx_shift = 28,
.ch_req_rx_shift = 24,
.ch_req_mask = 0xf,
.ch_req_max = 10,
.adma_war = {
.smp_sta_reg = T210_SHRD_SMP_STA,
.smp_sta_set_reg = T210_SHRD_SMP_STA_SET,
.smp_sta_clear_reg = T210_SHRD_SMP_STA_CLR,
.is_adma_war = true,
},
};
static const struct tegra_adma_chip_data tegra186_chip_data = {
.nr_channels = 32,
.ch_reg_size = 0x100,
.ch_base_offset = 0x10000,
.ch_page_size = 0x10000,
.global_int_clear = 0x402c,
.global_reg_offset = 0,
.slave_id = 4,
.outstanding_request = (0x8 << 4),
.adma_get_burst_config = tegra186_adma_get_burst_config,
.ch_fifo_size_mask = 0x3f,
.ch_req_tx_shift = 27,
.ch_req_rx_shift = 22,
.ch_req_mask = 0x1f,
.ch_req_max = 20,
.adma_war = {
.smp_sta_reg = T186_SHRD_SMP_STA,
.smp_sta_set_reg = T186_SHRD_SMP_STA_SET,
.smp_sta_clear_reg = T186_SHRD_SMP_STA_CLR,
.is_adma_war = true,
},
};
static const struct tegra_adma_chip_data tegra194_chip_data = {
.nr_channels = 32,
.ch_reg_size = 0x100,
.ch_base_offset = 0x10000,
.ch_page_size = 0x10000,
.global_int_clear = 0x402c,
.global_reg_offset = 0,
.slave_id = 4,
.outstanding_request = (0x8 << 4),
.adma_get_burst_config = tegra186_adma_get_burst_config,
.ch_fifo_size_mask = 0x3f,
.ch_req_tx_shift = 27,
.ch_req_rx_shift = 22,
.ch_req_mask = 0x1f,
.ch_req_max = 20,
.adma_war = {
.smp_sta_reg = T186_SHRD_SMP_STA,
.smp_sta_set_reg = T186_SHRD_SMP_STA_SET,
.smp_sta_clear_reg = T186_SHRD_SMP_STA_CLR,
.is_adma_war = false,
},
};
static const struct of_device_id tegra_adma_of_match[] = {
{ .compatible = "nvidia,tegra210-adma", .data = &tegra210_chip_data},
{ .compatible = "nvidia,tegra210-adma-hv", .data = &tegra186_chip_data},
{ .compatible = "nvidia,tegra186-adma", .data = &tegra186_chip_data},
{ .compatible = "nvidia,tegra194-adma", .data = &tegra194_chip_data},
{ .compatible = "nvidia,tegra194-adma-hv", .data = &tegra194_chip_data},
{ },
};
MODULE_DEVICE_TABLE(of, tegra_adma_of_match);
static int tegra_adma_probe(struct platform_device *pdev)
{
const struct tegra_adma_chip_data *cdata;
struct tegra_adma *tdma;
struct resource *res;
struct device_node *node = pdev->dev.of_node;
unsigned int dma_start_index, adma_page;
int ret, i;
cdata = of_device_get_match_data(&pdev->dev);
if (!cdata) {
dev_err(&pdev->dev, "device match data not found\n");
return -ENODEV;
}
tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
sizeof(struct tegra_adma_chan), GFP_KERNEL);
if (!tdma)
return -ENOMEM;
if (of_property_read_u32(node, "dma-channels",
&tdma->nr_channels)) {
#if IS_ENABLED(CONFIG_SND_SOC_TEGRA210_ADSP_ALT)
tdma->nr_channels = cdata->nr_channels >> 1;
#else
tdma->nr_channels = cdata->nr_channels;
#endif
}
if (tdma->nr_channels > cdata->nr_channels)
tdma->nr_channels = cdata->nr_channels;
dma_start_index = 0;
adma_page = 1;
if (!of_device_is_compatible(node, "nvidia,tegra210-adma")) {
of_property_read_u32(node, "dma-start-index",
&dma_start_index);
if ((dma_start_index + tdma->nr_channels) > cdata->nr_channels)
dma_start_index = cdata->nr_channels -
tdma->nr_channels;
of_property_read_u32(node, "adma-page", &adma_page);
if (adma_page < 1 || adma_page > 4)
adma_page = 1;
}
if (of_device_is_compatible(node, "nvidia,tegra210-adma-hv") ||
of_device_is_compatible(node, "nvidia,tegra194-adma-hv"))
tdma->is_virt = true;
else
tdma->is_virt = false;
tdma->dev = &pdev->dev;
dma_device = &pdev->dev;
tdma->chip_data = cdata;
tdma->ch_base_offset = cdata->ch_base_offset +
(cdata->ch_page_size * (adma_page - 1));
tdma->dma_start_index = dma_start_index;
platform_set_drvdata(pdev, tdma);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tdma->base_addr))
return PTR_ERR(tdma->base_addr);
if (cdata->adma_war.is_adma_war) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
tdma->shrd_sem_addr = devm_ioremap_nocache(&pdev->dev,
res->start,
resource_size(res));
if (IS_ERR(tdma->shrd_sem_addr))
return PTR_ERR(tdma->shrd_sem_addr);
}
if (tdma->is_virt == false) {
tdma->ahub_clk = devm_clk_get(&pdev->dev, "d_audio");
if (IS_ERR(tdma->ahub_clk)) {
dev_err(&pdev->dev,
"Error: Missing ahub controller clock\n");
return PTR_ERR(tdma->ahub_clk);
}
}
spin_lock_init(&tdma->global_lock);
INIT_LIST_HEAD(&tdma->dma_dev.channels);
for (i = 0; i < tdma->nr_channels; i++) {
struct tegra_adma_chan *tdc = &tdma->channels[i];
tdc->chan_addr = tdma->base_addr + tdma->ch_base_offset +
(cdata->ch_reg_size * (i + tdma->dma_start_index));
tdc->irq = of_irq_get(node, i + tdma->dma_start_index);
if (tdc->irq < 0) {
ret = tdc->irq;
goto irq_dispose;
}
vchan_init(&tdc->vc, &tdma->dma_dev);
tdc->vc.desc_free = tegra_adma_desc_free;
tdc->tdma = tdma;
}
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto rpm_disable;
ret = tegra_adma_init(tdma);
if (ret)
goto rpm_put;
dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
tdma->dma_dev.dev = &pdev->dev;
tdma->dma_dev.device_alloc_chan_resources =
tegra_adma_alloc_chan_resources;
tdma->dma_dev.device_free_chan_resources =
tegra_adma_free_chan_resources;
tdma->dma_dev.device_issue_pending = tegra_adma_issue_pending;
tdma->dma_dev.device_prep_dma_cyclic = tegra_adma_prep_dma_cyclic;
tdma->dma_dev.device_config = tegra_adma_slave_config;
tdma->dma_dev.device_tx_status = tegra_adma_tx_status;
tdma->dma_dev.device_terminate_all = tegra_adma_terminate_all;
tdma->dma_dev.device_pause = tegra_adma_pause;
tdma->dma_dev.device_resume = tegra_adma_resume;
tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
ret = dma_async_device_register(&tdma->dma_dev);
if (ret < 0) {
dev_err(&pdev->dev, "ADMA registration failed: %d\n", ret);
goto irq_dispose;
}
ret = of_dma_controller_register(node, tegra_dma_of_xlate, tdma);
if (ret < 0) {
dev_err(&pdev->dev, "ADMA OF registration failed %d\n", ret);
goto dma_remove;
}
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "Tegra210 ADMA driver registered %d channels\n",
tdma->nr_channels);
return 0;
dma_remove:
dma_async_device_unregister(&tdma->dma_dev);
rpm_put:
pm_runtime_put_sync(&pdev->dev);
rpm_disable:
pm_runtime_disable(&pdev->dev);
irq_dispose:
while (--i >= 0)
irq_dispose_mapping(tdma->channels[i].irq);
return ret;
}
static int tegra_adma_remove(struct platform_device *pdev)
{
struct tegra_adma *tdma = platform_get_drvdata(pdev);
int i;
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&tdma->dma_dev);
for (i = 0; i < tdma->nr_channels; ++i)
irq_dispose_mapping(tdma->channels[i].irq);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct dev_pm_ops tegra_adma_dev_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_adma_runtime_suspend,
tegra_adma_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static struct platform_driver tegra_admac_driver = {
.driver = {
.name = "tegra-adma",
.pm = &tegra_adma_dev_pm_ops,
.of_match_table = tegra_adma_of_match,
},
.probe = tegra_adma_probe,
.remove = tegra_adma_remove,
};
module_platform_driver(tegra_admac_driver);
MODULE_ALIAS("platform:tegra210-adma");
MODULE_DESCRIPTION("NVIDIA Tegra ADMA driver");
MODULE_AUTHOR("Dara Ramesh <dramesh@nvidia.com>");
MODULE_AUTHOR("Jon Hunter <jonathanh@nvidia.com>");
MODULE_LICENSE("GPL v2");