398 lines
14 KiB
C
398 lines
14 KiB
C
|
/*
|
||
|
* Copyright (C) 2016 Samsung Electronics Co.Ltd
|
||
|
* Authors:
|
||
|
* Marek Szyprowski <m.szyprowski@samsung.com>
|
||
|
*
|
||
|
* DRM core plane blending related functions
|
||
|
*
|
||
|
* Permission to use, copy, modify, distribute, and sell this software and its
|
||
|
* documentation for any purpose is hereby granted without fee, provided that
|
||
|
* the above copyright notice appear in all copies and that both that copyright
|
||
|
* notice and this permission notice appear in supporting documentation, and
|
||
|
* that the name of the copyright holders not be used in advertising or
|
||
|
* publicity pertaining to distribution of the software without specific,
|
||
|
* written prior permission. The copyright holders make no representations
|
||
|
* about the suitability of this software for any purpose. It is provided "as
|
||
|
* is" without express or implied warranty.
|
||
|
*
|
||
|
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
||
|
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
|
||
|
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
|
||
|
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
|
||
|
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||
|
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
||
|
* OF THIS SOFTWARE.
|
||
|
*/
|
||
|
#include <drm/drmP.h>
|
||
|
#include <drm/drm_atomic.h>
|
||
|
#include <drm/drm_blend.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sort.h>
|
||
|
|
||
|
#include "drm_crtc_internal.h"
|
||
|
|
||
|
/**
|
||
|
* DOC: overview
|
||
|
*
|
||
|
* The basic plane composition model supported by standard plane properties only
|
||
|
* has a source rectangle (in logical pixels within the &drm_framebuffer), with
|
||
|
* sub-pixel accuracy, which is scaled up to a pixel-aligned destination
|
||
|
* rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is
|
||
|
* defined by the horizontal and vertical visible pixels (stored in @hdisplay
|
||
|
* and @vdisplay) of the requested mode (stored in @mode in the
|
||
|
* &drm_crtc_state). These two rectangles are both stored in the
|
||
|
* &drm_plane_state.
|
||
|
*
|
||
|
* For the atomic ioctl the following standard (atomic) properties on the plane object
|
||
|
* encode the basic plane composition model:
|
||
|
*
|
||
|
* SRC_X:
|
||
|
* X coordinate offset for the source rectangle within the
|
||
|
* &drm_framebuffer, in 16.16 fixed point. Must be positive.
|
||
|
* SRC_Y:
|
||
|
* Y coordinate offset for the source rectangle within the
|
||
|
* &drm_framebuffer, in 16.16 fixed point. Must be positive.
|
||
|
* SRC_W:
|
||
|
* Width for the source rectangle within the &drm_framebuffer, in 16.16
|
||
|
* fixed point. SRC_X plus SRC_W must be within the width of the source
|
||
|
* framebuffer. Must be positive.
|
||
|
* SRC_H:
|
||
|
* Height for the source rectangle within the &drm_framebuffer, in 16.16
|
||
|
* fixed point. SRC_Y plus SRC_H must be within the height of the source
|
||
|
* framebuffer. Must be positive.
|
||
|
* CRTC_X:
|
||
|
* X coordinate offset for the destination rectangle. Can be negative.
|
||
|
* CRTC_Y:
|
||
|
* Y coordinate offset for the destination rectangle. Can be negative.
|
||
|
* CRTC_W:
|
||
|
* Width for the destination rectangle. CRTC_X plus CRTC_W can extend past
|
||
|
* the currently visible horizontal area of the &drm_crtc.
|
||
|
* CRTC_H:
|
||
|
* Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past
|
||
|
* the currently visible vertical area of the &drm_crtc.
|
||
|
* FB_ID:
|
||
|
* Mode object ID of the &drm_framebuffer this plane should scan out.
|
||
|
* CRTC_ID:
|
||
|
* Mode object ID of the &drm_crtc this plane should be connected to.
|
||
|
*
|
||
|
* Note that the source rectangle must fully lie within the bounds of the
|
||
|
* &drm_framebuffer. The destination rectangle can lie outside of the visible
|
||
|
* area of the current mode of the CRTC. It must be apprpriately clipped by the
|
||
|
* driver, which can be done by calling drm_plane_helper_check_update(). Drivers
|
||
|
* are also allowed to round the subpixel sampling positions appropriately, but
|
||
|
* only to the next full pixel. No pixel outside of the source rectangle may
|
||
|
* ever be sampled, which is important when applying more sophisticated
|
||
|
* filtering than just a bilinear one when scaling. The filtering mode when
|
||
|
* scaling is unspecified.
|
||
|
*
|
||
|
* On top of this basic transformation additional properties can be exposed by
|
||
|
* the driver:
|
||
|
*
|
||
|
* - Rotation is set up with drm_mode_create_rotation_property(). It adds a
|
||
|
* rotation and reflection step between the source and destination rectangles.
|
||
|
* Without this property the rectangle is only scaled, but not rotated or
|
||
|
* reflected.
|
||
|
*
|
||
|
* - Z position is set up with drm_plane_create_zpos_immutable_property() and
|
||
|
* drm_plane_create_zpos_property(). It controls the visibility of overlapping
|
||
|
* planes. Without this property the primary plane is always below the cursor
|
||
|
* plane, and ordering between all other planes is undefined.
|
||
|
*
|
||
|
* Note that all the property extensions described here apply either to the
|
||
|
* plane or the CRTC (e.g. for the background color, which currently is not
|
||
|
* exposed and assumed to be black).
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* drm_mode_create_rotation_property - create a new rotation property
|
||
|
* @dev: DRM device
|
||
|
* @supported_rotations: bitmask of supported rotations and reflections
|
||
|
*
|
||
|
* This creates a new property with the selected support for transformations.
|
||
|
* The resulting property should be stored in @rotation_property in
|
||
|
* &drm_mode_config. It then must be attached to each plane which supports
|
||
|
* rotations using drm_object_attach_property().
|
||
|
*
|
||
|
* FIXME: Probably better if the rotation property is created on each plane,
|
||
|
* like the zpos property. Otherwise it's not possible to allow different
|
||
|
* rotation modes on different planes.
|
||
|
*
|
||
|
* Since a rotation by 180° degress is the same as reflecting both along the x
|
||
|
* and the y axis the rotation property is somewhat redundant. Drivers can use
|
||
|
* drm_rotation_simplify() to normalize values of this property.
|
||
|
*
|
||
|
* The property exposed to userspace is a bitmask property (see
|
||
|
* drm_property_create_bitmask()) called "rotation" and has the following
|
||
|
* bitmask enumaration values:
|
||
|
*
|
||
|
* DRM_ROTATE_0:
|
||
|
* "rotate-0"
|
||
|
* DRM_ROTATE_90:
|
||
|
* "rotate-90"
|
||
|
* DRM_ROTATE_180:
|
||
|
* "rotate-180"
|
||
|
* DRM_ROTATE_270:
|
||
|
* "rotate-270"
|
||
|
* DRM_REFLECT_X:
|
||
|
* "reflect-x"
|
||
|
* DRM_REFELCT_Y:
|
||
|
* "reflect-y"
|
||
|
*
|
||
|
* Rotation is the specified amount in degrees in counter clockwise direction,
|
||
|
* the X and Y axis are within the source rectangle, i.e. the X/Y axis before
|
||
|
* rotation. After reflection, the rotation is applied to the image sampled from
|
||
|
* the source rectangle, before scaling it to fit the destination rectangle.
|
||
|
*/
|
||
|
struct drm_property *drm_mode_create_rotation_property(struct drm_device *dev,
|
||
|
unsigned int supported_rotations)
|
||
|
{
|
||
|
static const struct drm_prop_enum_list props[] = {
|
||
|
{ __builtin_ffs(DRM_ROTATE_0) - 1, "rotate-0" },
|
||
|
{ __builtin_ffs(DRM_ROTATE_90) - 1, "rotate-90" },
|
||
|
{ __builtin_ffs(DRM_ROTATE_180) - 1, "rotate-180" },
|
||
|
{ __builtin_ffs(DRM_ROTATE_270) - 1, "rotate-270" },
|
||
|
{ __builtin_ffs(DRM_REFLECT_X) - 1, "reflect-x" },
|
||
|
{ __builtin_ffs(DRM_REFLECT_Y) - 1, "reflect-y" },
|
||
|
};
|
||
|
|
||
|
return drm_property_create_bitmask(dev, 0, "rotation",
|
||
|
props, ARRAY_SIZE(props),
|
||
|
supported_rotations);
|
||
|
}
|
||
|
EXPORT_SYMBOL(drm_mode_create_rotation_property);
|
||
|
|
||
|
/**
|
||
|
* drm_rotation_simplify() - Try to simplify the rotation
|
||
|
* @rotation: Rotation to be simplified
|
||
|
* @supported_rotations: Supported rotations
|
||
|
*
|
||
|
* Attempt to simplify the rotation to a form that is supported.
|
||
|
* Eg. if the hardware supports everything except DRM_REFLECT_X
|
||
|
* one could call this function like this:
|
||
|
*
|
||
|
* drm_rotation_simplify(rotation, DRM_ROTATE_0 |
|
||
|
* DRM_ROTATE_90 | DRM_ROTATE_180 |
|
||
|
* DRM_ROTATE_270 | DRM_REFLECT_Y);
|
||
|
*
|
||
|
* to eliminate the DRM_ROTATE_X flag. Depending on what kind of
|
||
|
* transforms the hardware supports, this function may not
|
||
|
* be able to produce a supported transform, so the caller should
|
||
|
* check the result afterwards.
|
||
|
*/
|
||
|
unsigned int drm_rotation_simplify(unsigned int rotation,
|
||
|
unsigned int supported_rotations)
|
||
|
{
|
||
|
if (rotation & ~supported_rotations) {
|
||
|
rotation ^= DRM_REFLECT_X | DRM_REFLECT_Y;
|
||
|
rotation = (rotation & DRM_REFLECT_MASK) |
|
||
|
BIT((ffs(rotation & DRM_ROTATE_MASK) + 1) % 4);
|
||
|
}
|
||
|
|
||
|
return rotation;
|
||
|
}
|
||
|
EXPORT_SYMBOL(drm_rotation_simplify);
|
||
|
|
||
|
/**
|
||
|
* drm_plane_create_zpos_property - create mutable zpos property
|
||
|
* @plane: drm plane
|
||
|
* @zpos: initial value of zpos property
|
||
|
* @min: minimal possible value of zpos property
|
||
|
* @max: maximal possible value of zpos property
|
||
|
*
|
||
|
* This function initializes generic mutable zpos property and enables support
|
||
|
* for it in drm core. Drivers can then attach this property to planes to enable
|
||
|
* support for configurable planes arrangement during blending operation.
|
||
|
* Once mutable zpos property has been enabled, the DRM core will automatically
|
||
|
* calculate drm_plane_state->normalized_zpos values. Usually min should be set
|
||
|
* to 0 and max to maximal number of planes for given crtc - 1.
|
||
|
*
|
||
|
* If zpos of some planes cannot be changed (like fixed background or
|
||
|
* cursor/topmost planes), driver should adjust min/max values and assign those
|
||
|
* planes immutable zpos property with lower or higher values (for more
|
||
|
* information, see drm_plane_create_zpos_immutable_property() function). In such
|
||
|
* case driver should also assign proper initial zpos values for all planes in
|
||
|
* its plane_reset() callback, so the planes will be always sorted properly.
|
||
|
*
|
||
|
* See also drm_atomic_normalize_zpos().
|
||
|
*
|
||
|
* The property exposed to userspace is called "zpos".
|
||
|
*
|
||
|
* Returns:
|
||
|
* Zero on success, negative errno on failure.
|
||
|
*/
|
||
|
int drm_plane_create_zpos_property(struct drm_plane *plane,
|
||
|
unsigned int zpos,
|
||
|
unsigned int min, unsigned int max)
|
||
|
{
|
||
|
struct drm_property *prop;
|
||
|
|
||
|
prop = drm_property_create_range(plane->dev, 0, "zpos", min, max);
|
||
|
if (!prop)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
drm_object_attach_property(&plane->base, prop, zpos);
|
||
|
|
||
|
plane->zpos_property = prop;
|
||
|
|
||
|
if (plane->state) {
|
||
|
plane->state->zpos = zpos;
|
||
|
plane->state->normalized_zpos = zpos;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(drm_plane_create_zpos_property);
|
||
|
|
||
|
/**
|
||
|
* drm_plane_create_zpos_immutable_property - create immuttable zpos property
|
||
|
* @plane: drm plane
|
||
|
* @zpos: value of zpos property
|
||
|
*
|
||
|
* This function initializes generic immutable zpos property and enables
|
||
|
* support for it in drm core. Using this property driver lets userspace
|
||
|
* to get the arrangement of the planes for blending operation and notifies
|
||
|
* it that the hardware (or driver) doesn't support changing of the planes'
|
||
|
* order. For mutable zpos see drm_plane_create_zpos_property().
|
||
|
*
|
||
|
* The property exposed to userspace is called "zpos".
|
||
|
*
|
||
|
* Returns:
|
||
|
* Zero on success, negative errno on failure.
|
||
|
*/
|
||
|
int drm_plane_create_zpos_immutable_property(struct drm_plane *plane,
|
||
|
unsigned int zpos)
|
||
|
{
|
||
|
struct drm_property *prop;
|
||
|
|
||
|
prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE,
|
||
|
"zpos", zpos, zpos);
|
||
|
if (!prop)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
drm_object_attach_property(&plane->base, prop, zpos);
|
||
|
|
||
|
plane->zpos_property = prop;
|
||
|
|
||
|
if (plane->state) {
|
||
|
plane->state->zpos = zpos;
|
||
|
plane->state->normalized_zpos = zpos;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property);
|
||
|
|
||
|
static int drm_atomic_state_zpos_cmp(const void *a, const void *b)
|
||
|
{
|
||
|
const struct drm_plane_state *sa = *(struct drm_plane_state **)a;
|
||
|
const struct drm_plane_state *sb = *(struct drm_plane_state **)b;
|
||
|
|
||
|
if (sa->zpos != sb->zpos)
|
||
|
return sa->zpos - sb->zpos;
|
||
|
else
|
||
|
return sa->plane->base.id - sb->plane->base.id;
|
||
|
}
|
||
|
|
||
|
static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc,
|
||
|
struct drm_crtc_state *crtc_state)
|
||
|
{
|
||
|
struct drm_atomic_state *state = crtc_state->state;
|
||
|
struct drm_device *dev = crtc->dev;
|
||
|
int total_planes = dev->mode_config.num_total_plane;
|
||
|
struct drm_plane_state **states;
|
||
|
struct drm_plane *plane;
|
||
|
int i, n = 0;
|
||
|
int ret = 0;
|
||
|
|
||
|
DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n",
|
||
|
crtc->base.id, crtc->name);
|
||
|
|
||
|
states = kmalloc_array(total_planes, sizeof(*states), GFP_TEMPORARY);
|
||
|
if (!states)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/*
|
||
|
* Normalization process might create new states for planes which
|
||
|
* normalized_zpos has to be recalculated.
|
||
|
*/
|
||
|
drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) {
|
||
|
struct drm_plane_state *plane_state =
|
||
|
drm_atomic_get_plane_state(state, plane);
|
||
|
if (IS_ERR(plane_state)) {
|
||
|
ret = PTR_ERR(plane_state);
|
||
|
goto done;
|
||
|
}
|
||
|
states[n++] = plane_state;
|
||
|
DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n",
|
||
|
plane->base.id, plane->name,
|
||
|
plane_state->zpos);
|
||
|
}
|
||
|
|
||
|
sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL);
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
plane = states[i]->plane;
|
||
|
|
||
|
states[i]->normalized_zpos = i;
|
||
|
DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n",
|
||
|
plane->base.id, plane->name, i);
|
||
|
}
|
||
|
crtc_state->zpos_changed = true;
|
||
|
|
||
|
done:
|
||
|
kfree(states);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs
|
||
|
* @dev: DRM device
|
||
|
* @state: atomic state of DRM device
|
||
|
*
|
||
|
* This function calculates normalized zpos value for all modified planes in
|
||
|
* the provided atomic state of DRM device.
|
||
|
*
|
||
|
* For every CRTC this function checks new states of all planes assigned to
|
||
|
* it and calculates normalized zpos value for these planes. Planes are compared
|
||
|
* first by their zpos values, then by plane id (if zpos is equal). The plane
|
||
|
* with lowest zpos value is at the bottom. The plane_state->normalized_zpos is
|
||
|
* then filled with unique values from 0 to number of active planes in crtc
|
||
|
* minus one.
|
||
|
*
|
||
|
* RETURNS
|
||
|
* Zero for success or -errno
|
||
|
*/
|
||
|
int drm_atomic_normalize_zpos(struct drm_device *dev,
|
||
|
struct drm_atomic_state *state)
|
||
|
{
|
||
|
struct drm_crtc *crtc;
|
||
|
struct drm_crtc_state *crtc_state;
|
||
|
struct drm_plane *plane;
|
||
|
struct drm_plane_state *plane_state;
|
||
|
int i, ret = 0;
|
||
|
|
||
|
for_each_plane_in_state(state, plane, plane_state, i) {
|
||
|
crtc = plane_state->crtc;
|
||
|
if (!crtc)
|
||
|
continue;
|
||
|
if (plane->state->zpos != plane_state->zpos) {
|
||
|
crtc_state =
|
||
|
drm_atomic_get_existing_crtc_state(state, crtc);
|
||
|
crtc_state->zpos_changed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for_each_crtc_in_state(state, crtc, crtc_state, i) {
|
||
|
if (crtc_state->plane_mask != crtc->state->plane_mask ||
|
||
|
crtc_state->zpos_changed) {
|
||
|
ret = drm_atomic_helper_crtc_normalize_zpos(crtc,
|
||
|
crtc_state);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(drm_atomic_normalize_zpos);
|