1362 lines
35 KiB
C
1362 lines
35 KiB
C
|
/*
|
||
|
* Driver for I2C adapter in Rockchip RK3xxx SoC
|
||
|
*
|
||
|
* Max Schwarz <max.schwarz@online.de>
|
||
|
* based on the patches by Rockchip Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/i2c.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/of_irq.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/wait.h>
|
||
|
#include <linux/mfd/syscon.h>
|
||
|
#include <linux/regmap.h>
|
||
|
#include <linux/math64.h>
|
||
|
|
||
|
|
||
|
/* Register Map */
|
||
|
#define REG_CON 0x00 /* control register */
|
||
|
#define REG_CLKDIV 0x04 /* clock divisor register */
|
||
|
#define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */
|
||
|
#define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */
|
||
|
#define REG_MTXCNT 0x10 /* number of bytes to be transmitted */
|
||
|
#define REG_MRXCNT 0x14 /* number of bytes to be received */
|
||
|
#define REG_IEN 0x18 /* interrupt enable */
|
||
|
#define REG_IPD 0x1c /* interrupt pending */
|
||
|
#define REG_FCNT 0x20 /* finished count */
|
||
|
|
||
|
/* Data buffer offsets */
|
||
|
#define TXBUFFER_BASE 0x100
|
||
|
#define RXBUFFER_BASE 0x200
|
||
|
|
||
|
/* REG_CON bits */
|
||
|
#define REG_CON_EN BIT(0)
|
||
|
enum {
|
||
|
REG_CON_MOD_TX = 0, /* transmit data */
|
||
|
REG_CON_MOD_REGISTER_TX, /* select register and restart */
|
||
|
REG_CON_MOD_RX, /* receive data */
|
||
|
REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
|
||
|
* register addr */
|
||
|
};
|
||
|
#define REG_CON_MOD(mod) ((mod) << 1)
|
||
|
#define REG_CON_MOD_MASK (BIT(1) | BIT(2))
|
||
|
#define REG_CON_START BIT(3)
|
||
|
#define REG_CON_STOP BIT(4)
|
||
|
#define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
|
||
|
#define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
|
||
|
|
||
|
#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
|
||
|
|
||
|
#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
|
||
|
#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
|
||
|
#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
|
||
|
|
||
|
/* REG_MRXADDR bits */
|
||
|
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
|
||
|
|
||
|
/* REG_IEN/REG_IPD bits */
|
||
|
#define REG_INT_BTF BIT(0) /* a byte was transmitted */
|
||
|
#define REG_INT_BRF BIT(1) /* a byte was received */
|
||
|
#define REG_INT_MBTF BIT(2) /* master data transmit finished */
|
||
|
#define REG_INT_MBRF BIT(3) /* master data receive finished */
|
||
|
#define REG_INT_START BIT(4) /* START condition generated */
|
||
|
#define REG_INT_STOP BIT(5) /* STOP condition generated */
|
||
|
#define REG_INT_NAKRCV BIT(6) /* NACK received */
|
||
|
#define REG_INT_ALL 0x7f
|
||
|
|
||
|
/* Constants */
|
||
|
#define WAIT_TIMEOUT 1000 /* ms */
|
||
|
#define DEFAULT_SCL_RATE (100 * 1000) /* Hz */
|
||
|
|
||
|
/**
|
||
|
* struct i2c_spec_values:
|
||
|
* @min_hold_start_ns: min hold time (repeated) START condition
|
||
|
* @min_low_ns: min LOW period of the SCL clock
|
||
|
* @min_high_ns: min HIGH period of the SCL cloc
|
||
|
* @min_setup_start_ns: min set-up time for a repeated START conditio
|
||
|
* @max_data_hold_ns: max data hold time
|
||
|
* @min_data_setup_ns: min data set-up time
|
||
|
* @min_setup_stop_ns: min set-up time for STOP condition
|
||
|
* @min_hold_buffer_ns: min bus free time between a STOP and
|
||
|
* START condition
|
||
|
*/
|
||
|
struct i2c_spec_values {
|
||
|
unsigned long min_hold_start_ns;
|
||
|
unsigned long min_low_ns;
|
||
|
unsigned long min_high_ns;
|
||
|
unsigned long min_setup_start_ns;
|
||
|
unsigned long max_data_hold_ns;
|
||
|
unsigned long min_data_setup_ns;
|
||
|
unsigned long min_setup_stop_ns;
|
||
|
unsigned long min_hold_buffer_ns;
|
||
|
};
|
||
|
|
||
|
static const struct i2c_spec_values standard_mode_spec = {
|
||
|
.min_hold_start_ns = 4000,
|
||
|
.min_low_ns = 4700,
|
||
|
.min_high_ns = 4000,
|
||
|
.min_setup_start_ns = 4700,
|
||
|
.max_data_hold_ns = 3450,
|
||
|
.min_data_setup_ns = 250,
|
||
|
.min_setup_stop_ns = 4000,
|
||
|
.min_hold_buffer_ns = 4700,
|
||
|
};
|
||
|
|
||
|
static const struct i2c_spec_values fast_mode_spec = {
|
||
|
.min_hold_start_ns = 600,
|
||
|
.min_low_ns = 1300,
|
||
|
.min_high_ns = 600,
|
||
|
.min_setup_start_ns = 600,
|
||
|
.max_data_hold_ns = 900,
|
||
|
.min_data_setup_ns = 100,
|
||
|
.min_setup_stop_ns = 600,
|
||
|
.min_hold_buffer_ns = 1300,
|
||
|
};
|
||
|
|
||
|
static const struct i2c_spec_values fast_mode_plus_spec = {
|
||
|
.min_hold_start_ns = 260,
|
||
|
.min_low_ns = 500,
|
||
|
.min_high_ns = 260,
|
||
|
.min_setup_start_ns = 260,
|
||
|
.max_data_hold_ns = 400,
|
||
|
.min_data_setup_ns = 50,
|
||
|
.min_setup_stop_ns = 260,
|
||
|
.min_hold_buffer_ns = 500,
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct rk3x_i2c_calced_timings:
|
||
|
* @div_low: Divider output for low
|
||
|
* @div_high: Divider output for high
|
||
|
* @tuning: Used to adjust setup/hold data time,
|
||
|
* setup/hold start time and setup stop time for
|
||
|
* v1's calc_timings, the tuning should all be 0
|
||
|
* for old hardware anyone using v0's calc_timings.
|
||
|
*/
|
||
|
struct rk3x_i2c_calced_timings {
|
||
|
unsigned long div_low;
|
||
|
unsigned long div_high;
|
||
|
unsigned int tuning;
|
||
|
};
|
||
|
|
||
|
enum rk3x_i2c_state {
|
||
|
STATE_IDLE,
|
||
|
STATE_START,
|
||
|
STATE_READ,
|
||
|
STATE_WRITE,
|
||
|
STATE_STOP
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* @grf_offset: offset inside the grf regmap for setting the i2c type
|
||
|
* @calc_timings: Callback function for i2c timing information calculated
|
||
|
*/
|
||
|
struct rk3x_i2c_soc_data {
|
||
|
int grf_offset;
|
||
|
int (*calc_timings)(unsigned long, struct i2c_timings *,
|
||
|
struct rk3x_i2c_calced_timings *);
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* struct rk3x_i2c - private data of the controller
|
||
|
* @adap: corresponding I2C adapter
|
||
|
* @dev: device for this controller
|
||
|
* @soc_data: related soc data struct
|
||
|
* @regs: virtual memory area
|
||
|
* @clk: function clk for rk3399 or function & Bus clks for others
|
||
|
* @pclk: Bus clk for rk3399
|
||
|
* @clk_rate_nb: i2c clk rate change notify
|
||
|
* @t: I2C known timing information
|
||
|
* @lock: spinlock for the i2c bus
|
||
|
* @wait: the waitqueue to wait for i2c transfer
|
||
|
* @busy: the condition for the event to wait for
|
||
|
* @msg: current i2c message
|
||
|
* @addr: addr of i2c slave device
|
||
|
* @mode: mode of i2c transfer
|
||
|
* @is_last_msg: flag determines whether it is the last msg in this transfer
|
||
|
* @state: state of i2c transfer
|
||
|
* @processed: byte length which has been send or received
|
||
|
* @error: error code for i2c transfer
|
||
|
*/
|
||
|
struct rk3x_i2c {
|
||
|
struct i2c_adapter adap;
|
||
|
struct device *dev;
|
||
|
struct rk3x_i2c_soc_data *soc_data;
|
||
|
|
||
|
/* Hardware resources */
|
||
|
void __iomem *regs;
|
||
|
struct clk *clk;
|
||
|
struct clk *pclk;
|
||
|
struct notifier_block clk_rate_nb;
|
||
|
|
||
|
/* Settings */
|
||
|
struct i2c_timings t;
|
||
|
|
||
|
/* Synchronization & notification */
|
||
|
spinlock_t lock;
|
||
|
wait_queue_head_t wait;
|
||
|
bool busy;
|
||
|
|
||
|
/* Current message */
|
||
|
struct i2c_msg *msg;
|
||
|
u8 addr;
|
||
|
unsigned int mode;
|
||
|
bool is_last_msg;
|
||
|
|
||
|
/* I2C state machine */
|
||
|
enum rk3x_i2c_state state;
|
||
|
unsigned int processed;
|
||
|
int error;
|
||
|
};
|
||
|
|
||
|
static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
|
||
|
unsigned int offset)
|
||
|
{
|
||
|
writel(value, i2c->regs + offset);
|
||
|
}
|
||
|
|
||
|
static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
|
||
|
{
|
||
|
return readl(i2c->regs + offset);
|
||
|
}
|
||
|
|
||
|
/* Reset all interrupt pending bits */
|
||
|
static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
|
||
|
{
|
||
|
i2c_writel(i2c, REG_INT_ALL, REG_IPD);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate a START condition, which triggers a REG_INT_START interrupt.
|
||
|
*/
|
||
|
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
|
||
|
{
|
||
|
u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
|
||
|
|
||
|
i2c_writel(i2c, REG_INT_START, REG_IEN);
|
||
|
|
||
|
/* enable adapter with correct mode, send START condition */
|
||
|
val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
|
||
|
|
||
|
/* if we want to react to NACK, set ACTACK bit */
|
||
|
if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
|
||
|
val |= REG_CON_ACTACK;
|
||
|
|
||
|
i2c_writel(i2c, val, REG_CON);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
|
||
|
*
|
||
|
* @error: Error code to return in rk3x_i2c_xfer
|
||
|
*/
|
||
|
static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
|
||
|
{
|
||
|
unsigned int ctrl;
|
||
|
|
||
|
i2c->processed = 0;
|
||
|
i2c->msg = NULL;
|
||
|
i2c->error = error;
|
||
|
|
||
|
if (i2c->is_last_msg) {
|
||
|
/* Enable stop interrupt */
|
||
|
i2c_writel(i2c, REG_INT_STOP, REG_IEN);
|
||
|
|
||
|
i2c->state = STATE_STOP;
|
||
|
|
||
|
ctrl = i2c_readl(i2c, REG_CON);
|
||
|
ctrl |= REG_CON_STOP;
|
||
|
i2c_writel(i2c, ctrl, REG_CON);
|
||
|
} else {
|
||
|
/* Signal rk3x_i2c_xfer to start the next message. */
|
||
|
i2c->busy = false;
|
||
|
i2c->state = STATE_IDLE;
|
||
|
|
||
|
/*
|
||
|
* The HW is actually not capable of REPEATED START. But we can
|
||
|
* get the intended effect by resetting its internal state
|
||
|
* and issuing an ordinary START.
|
||
|
*/
|
||
|
ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
|
||
|
i2c_writel(i2c, ctrl, REG_CON);
|
||
|
|
||
|
/* signal that we are finished with the current msg */
|
||
|
wake_up(&i2c->wait);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Setup a read according to i2c->msg
|
||
|
*/
|
||
|
static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
|
||
|
{
|
||
|
unsigned int len = i2c->msg->len - i2c->processed;
|
||
|
u32 con;
|
||
|
|
||
|
con = i2c_readl(i2c, REG_CON);
|
||
|
|
||
|
/*
|
||
|
* The hw can read up to 32 bytes at a time. If we need more than one
|
||
|
* chunk, send an ACK after the last byte of the current chunk.
|
||
|
*/
|
||
|
if (len > 32) {
|
||
|
len = 32;
|
||
|
con &= ~REG_CON_LASTACK;
|
||
|
} else {
|
||
|
con |= REG_CON_LASTACK;
|
||
|
}
|
||
|
|
||
|
/* make sure we are in plain RX mode if we read a second chunk */
|
||
|
if (i2c->processed != 0) {
|
||
|
con &= ~REG_CON_MOD_MASK;
|
||
|
con |= REG_CON_MOD(REG_CON_MOD_RX);
|
||
|
}
|
||
|
|
||
|
i2c_writel(i2c, con, REG_CON);
|
||
|
i2c_writel(i2c, len, REG_MRXCNT);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Fill the transmit buffer with data from i2c->msg
|
||
|
*/
|
||
|
static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
|
||
|
{
|
||
|
unsigned int i, j;
|
||
|
u32 cnt = 0;
|
||
|
u32 val;
|
||
|
u8 byte;
|
||
|
|
||
|
for (i = 0; i < 8; ++i) {
|
||
|
val = 0;
|
||
|
for (j = 0; j < 4; ++j) {
|
||
|
if ((i2c->processed == i2c->msg->len) && (cnt != 0))
|
||
|
break;
|
||
|
|
||
|
if (i2c->processed == 0 && cnt == 0)
|
||
|
byte = (i2c->addr & 0x7f) << 1;
|
||
|
else
|
||
|
byte = i2c->msg->buf[i2c->processed++];
|
||
|
|
||
|
val |= byte << (j * 8);
|
||
|
cnt++;
|
||
|
}
|
||
|
|
||
|
i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
|
||
|
|
||
|
if (i2c->processed == i2c->msg->len)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
i2c_writel(i2c, cnt, REG_MTXCNT);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* IRQ handlers for individual states */
|
||
|
|
||
|
static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
|
||
|
{
|
||
|
if (!(ipd & REG_INT_START)) {
|
||
|
rk3x_i2c_stop(i2c, -EIO);
|
||
|
dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
|
||
|
rk3x_i2c_clean_ipd(i2c);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* ack interrupt */
|
||
|
i2c_writel(i2c, REG_INT_START, REG_IPD);
|
||
|
|
||
|
/* disable start bit */
|
||
|
i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
|
||
|
|
||
|
/* enable appropriate interrupts and transition */
|
||
|
if (i2c->mode == REG_CON_MOD_TX) {
|
||
|
i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
|
||
|
i2c->state = STATE_WRITE;
|
||
|
rk3x_i2c_fill_transmit_buf(i2c);
|
||
|
} else {
|
||
|
/* in any other case, we are going to be reading. */
|
||
|
i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
|
||
|
i2c->state = STATE_READ;
|
||
|
rk3x_i2c_prepare_read(i2c);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
|
||
|
{
|
||
|
if (!(ipd & REG_INT_MBTF)) {
|
||
|
rk3x_i2c_stop(i2c, -EIO);
|
||
|
dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
|
||
|
rk3x_i2c_clean_ipd(i2c);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* ack interrupt */
|
||
|
i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
|
||
|
|
||
|
/* are we finished? */
|
||
|
if (i2c->processed == i2c->msg->len)
|
||
|
rk3x_i2c_stop(i2c, i2c->error);
|
||
|
else
|
||
|
rk3x_i2c_fill_transmit_buf(i2c);
|
||
|
}
|
||
|
|
||
|
static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
unsigned int len = i2c->msg->len - i2c->processed;
|
||
|
u32 uninitialized_var(val);
|
||
|
u8 byte;
|
||
|
|
||
|
/* we only care for MBRF here. */
|
||
|
if (!(ipd & REG_INT_MBRF))
|
||
|
return;
|
||
|
|
||
|
/* ack interrupt */
|
||
|
i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
|
||
|
|
||
|
/* Can only handle a maximum of 32 bytes at a time */
|
||
|
if (len > 32)
|
||
|
len = 32;
|
||
|
|
||
|
/* read the data from receive buffer */
|
||
|
for (i = 0; i < len; ++i) {
|
||
|
if (i % 4 == 0)
|
||
|
val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
|
||
|
|
||
|
byte = (val >> ((i % 4) * 8)) & 0xff;
|
||
|
i2c->msg->buf[i2c->processed++] = byte;
|
||
|
}
|
||
|
|
||
|
/* are we finished? */
|
||
|
if (i2c->processed == i2c->msg->len)
|
||
|
rk3x_i2c_stop(i2c, i2c->error);
|
||
|
else
|
||
|
rk3x_i2c_prepare_read(i2c);
|
||
|
}
|
||
|
|
||
|
static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
|
||
|
{
|
||
|
unsigned int con;
|
||
|
|
||
|
if (!(ipd & REG_INT_STOP)) {
|
||
|
rk3x_i2c_stop(i2c, -EIO);
|
||
|
dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
|
||
|
rk3x_i2c_clean_ipd(i2c);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* ack interrupt */
|
||
|
i2c_writel(i2c, REG_INT_STOP, REG_IPD);
|
||
|
|
||
|
/* disable STOP bit */
|
||
|
con = i2c_readl(i2c, REG_CON);
|
||
|
con &= ~REG_CON_STOP;
|
||
|
i2c_writel(i2c, con, REG_CON);
|
||
|
|
||
|
i2c->busy = false;
|
||
|
i2c->state = STATE_IDLE;
|
||
|
|
||
|
/* signal rk3x_i2c_xfer that we are finished */
|
||
|
wake_up(&i2c->wait);
|
||
|
}
|
||
|
|
||
|
static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
|
||
|
{
|
||
|
struct rk3x_i2c *i2c = dev_id;
|
||
|
unsigned int ipd;
|
||
|
|
||
|
spin_lock(&i2c->lock);
|
||
|
|
||
|
ipd = i2c_readl(i2c, REG_IPD);
|
||
|
if (i2c->state == STATE_IDLE) {
|
||
|
dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
|
||
|
rk3x_i2c_clean_ipd(i2c);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
|
||
|
|
||
|
/* Clean interrupt bits we don't care about */
|
||
|
ipd &= ~(REG_INT_BRF | REG_INT_BTF);
|
||
|
|
||
|
if (ipd & REG_INT_NAKRCV) {
|
||
|
/*
|
||
|
* We got a NACK in the last operation. Depending on whether
|
||
|
* IGNORE_NAK is set, we have to stop the operation and report
|
||
|
* an error.
|
||
|
*/
|
||
|
i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
|
||
|
|
||
|
ipd &= ~REG_INT_NAKRCV;
|
||
|
|
||
|
if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
|
||
|
rk3x_i2c_stop(i2c, -ENXIO);
|
||
|
}
|
||
|
|
||
|
/* is there anything left to handle? */
|
||
|
if ((ipd & REG_INT_ALL) == 0)
|
||
|
goto out;
|
||
|
|
||
|
switch (i2c->state) {
|
||
|
case STATE_START:
|
||
|
rk3x_i2c_handle_start(i2c, ipd);
|
||
|
break;
|
||
|
case STATE_WRITE:
|
||
|
rk3x_i2c_handle_write(i2c, ipd);
|
||
|
break;
|
||
|
case STATE_READ:
|
||
|
rk3x_i2c_handle_read(i2c, ipd);
|
||
|
break;
|
||
|
case STATE_STOP:
|
||
|
rk3x_i2c_handle_stop(i2c, ipd);
|
||
|
break;
|
||
|
case STATE_IDLE:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
spin_unlock(&i2c->lock);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Get timing values of I2C specification
|
||
|
*
|
||
|
* @speed: Desired SCL frequency
|
||
|
*
|
||
|
* Returns: Matched i2c spec values.
|
||
|
*/
|
||
|
static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
|
||
|
{
|
||
|
if (speed <= 100000)
|
||
|
return &standard_mode_spec;
|
||
|
else if (speed <= 400000)
|
||
|
return &fast_mode_spec;
|
||
|
else
|
||
|
return &fast_mode_plus_spec;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate divider values for desired SCL frequency
|
||
|
*
|
||
|
* @clk_rate: I2C input clock rate
|
||
|
* @t: Known I2C timing information
|
||
|
* @t_calc: Caculated rk3x private timings that would be written into regs
|
||
|
*
|
||
|
* Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
|
||
|
* a best-effort divider value is returned in divs. If the target rate is
|
||
|
* too high, we silently use the highest possible rate.
|
||
|
*/
|
||
|
static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
|
||
|
struct i2c_timings *t,
|
||
|
struct rk3x_i2c_calced_timings *t_calc)
|
||
|
{
|
||
|
unsigned long min_low_ns, min_high_ns;
|
||
|
unsigned long max_low_ns, min_total_ns;
|
||
|
|
||
|
unsigned long clk_rate_khz, scl_rate_khz;
|
||
|
|
||
|
unsigned long min_low_div, min_high_div;
|
||
|
unsigned long max_low_div;
|
||
|
|
||
|
unsigned long min_div_for_hold, min_total_div;
|
||
|
unsigned long extra_div, extra_low_div, ideal_low_div;
|
||
|
|
||
|
unsigned long data_hold_buffer_ns = 50;
|
||
|
const struct i2c_spec_values *spec;
|
||
|
int ret = 0;
|
||
|
|
||
|
/* Only support standard-mode and fast-mode */
|
||
|
if (WARN_ON(t->bus_freq_hz > 400000))
|
||
|
t->bus_freq_hz = 400000;
|
||
|
|
||
|
/* prevent scl_rate_khz from becoming 0 */
|
||
|
if (WARN_ON(t->bus_freq_hz < 1000))
|
||
|
t->bus_freq_hz = 1000;
|
||
|
|
||
|
/*
|
||
|
* min_low_ns: The minimum number of ns we need to hold low to
|
||
|
* meet I2C specification, should include fall time.
|
||
|
* min_high_ns: The minimum number of ns we need to hold high to
|
||
|
* meet I2C specification, should include rise time.
|
||
|
* max_low_ns: The maximum number of ns we can hold low to meet
|
||
|
* I2C specification.
|
||
|
*
|
||
|
* Note: max_low_ns should be (maximum data hold time * 2 - buffer)
|
||
|
* This is because the i2c host on Rockchip holds the data line
|
||
|
* for half the low time.
|
||
|
*/
|
||
|
spec = rk3x_i2c_get_spec(t->bus_freq_hz);
|
||
|
min_high_ns = t->scl_rise_ns + spec->min_high_ns;
|
||
|
|
||
|
/*
|
||
|
* Timings for repeated start:
|
||
|
* - controller appears to drop SDA at .875x (7/8) programmed clk high.
|
||
|
* - controller appears to keep SCL high for 2x programmed clk high.
|
||
|
*
|
||
|
* We need to account for those rules in picking our "high" time so
|
||
|
* we meet tSU;STA and tHD;STA times.
|
||
|
*/
|
||
|
min_high_ns = max(min_high_ns, DIV_ROUND_UP(
|
||
|
(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
|
||
|
min_high_ns = max(min_high_ns, DIV_ROUND_UP(
|
||
|
(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
|
||
|
spec->min_high_ns), 2));
|
||
|
|
||
|
min_low_ns = t->scl_fall_ns + spec->min_low_ns;
|
||
|
max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
|
||
|
min_total_ns = min_low_ns + min_high_ns;
|
||
|
|
||
|
/* Adjust to avoid overflow */
|
||
|
clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
|
||
|
scl_rate_khz = t->bus_freq_hz / 1000;
|
||
|
|
||
|
/*
|
||
|
* We need the total div to be >= this number
|
||
|
* so we don't clock too fast.
|
||
|
*/
|
||
|
min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
|
||
|
|
||
|
/* These are the min dividers needed for min hold times. */
|
||
|
min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
|
||
|
min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
|
||
|
min_div_for_hold = (min_low_div + min_high_div);
|
||
|
|
||
|
/*
|
||
|
* This is the maximum divider so we don't go over the maximum.
|
||
|
* We don't round up here (we round down) since this is a maximum.
|
||
|
*/
|
||
|
max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
|
||
|
|
||
|
if (min_low_div > max_low_div) {
|
||
|
WARN_ONCE(true,
|
||
|
"Conflicting, min_low_div %lu, max_low_div %lu\n",
|
||
|
min_low_div, max_low_div);
|
||
|
max_low_div = min_low_div;
|
||
|
}
|
||
|
|
||
|
if (min_div_for_hold > min_total_div) {
|
||
|
/*
|
||
|
* Time needed to meet hold requirements is important.
|
||
|
* Just use that.
|
||
|
*/
|
||
|
t_calc->div_low = min_low_div;
|
||
|
t_calc->div_high = min_high_div;
|
||
|
} else {
|
||
|
/*
|
||
|
* We've got to distribute some time among the low and high
|
||
|
* so we don't run too fast.
|
||
|
*/
|
||
|
extra_div = min_total_div - min_div_for_hold;
|
||
|
|
||
|
/*
|
||
|
* We'll try to split things up perfectly evenly,
|
||
|
* biasing slightly towards having a higher div
|
||
|
* for low (spend more time low).
|
||
|
*/
|
||
|
ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
|
||
|
scl_rate_khz * 8 * min_total_ns);
|
||
|
|
||
|
/* Don't allow it to go over the maximum */
|
||
|
if (ideal_low_div > max_low_div)
|
||
|
ideal_low_div = max_low_div;
|
||
|
|
||
|
/*
|
||
|
* Handle when the ideal low div is going to take up
|
||
|
* more than we have.
|
||
|
*/
|
||
|
if (ideal_low_div > min_low_div + extra_div)
|
||
|
ideal_low_div = min_low_div + extra_div;
|
||
|
|
||
|
/* Give low the "ideal" and give high whatever extra is left */
|
||
|
extra_low_div = ideal_low_div - min_low_div;
|
||
|
t_calc->div_low = ideal_low_div;
|
||
|
t_calc->div_high = min_high_div + (extra_div - extra_low_div);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Adjust to the fact that the hardware has an implicit "+1".
|
||
|
* NOTE: Above calculations always produce div_low > 0 and div_high > 0.
|
||
|
*/
|
||
|
t_calc->div_low--;
|
||
|
t_calc->div_high--;
|
||
|
|
||
|
/* Give the tuning value 0, that would not update con register */
|
||
|
t_calc->tuning = 0;
|
||
|
/* Maximum divider supported by hw is 0xffff */
|
||
|
if (t_calc->div_low > 0xffff) {
|
||
|
t_calc->div_low = 0xffff;
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (t_calc->div_high > 0xffff) {
|
||
|
t_calc->div_high = 0xffff;
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate timing values for desired SCL frequency
|
||
|
*
|
||
|
* @clk_rate: I2C input clock rate
|
||
|
* @t: Known I2C timing information
|
||
|
* @t_calc: Caculated rk3x private timings that would be written into regs
|
||
|
*
|
||
|
* Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
|
||
|
* a best-effort divider value is returned in divs. If the target rate is
|
||
|
* too high, we silently use the highest possible rate.
|
||
|
* The following formulas are v1's method to calculate timings.
|
||
|
*
|
||
|
* l = divl + 1;
|
||
|
* h = divh + 1;
|
||
|
* s = sda_update_config + 1;
|
||
|
* u = start_setup_config + 1;
|
||
|
* p = stop_setup_config + 1;
|
||
|
* T = Tclk_i2c;
|
||
|
*
|
||
|
* tHigh = 8 * h * T;
|
||
|
* tLow = 8 * l * T;
|
||
|
*
|
||
|
* tHD;sda = (l * s + 1) * T;
|
||
|
* tSU;sda = [(8 - s) * l + 1] * T;
|
||
|
* tI2C = 8 * (l + h) * T;
|
||
|
*
|
||
|
* tSU;sta = (8h * u + 1) * T;
|
||
|
* tHD;sta = [8h * (u + 1) - 1] * T;
|
||
|
* tSU;sto = (8h * p + 1) * T;
|
||
|
*/
|
||
|
static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
|
||
|
struct i2c_timings *t,
|
||
|
struct rk3x_i2c_calced_timings *t_calc)
|
||
|
{
|
||
|
unsigned long min_low_ns, min_high_ns;
|
||
|
unsigned long min_setup_start_ns, min_setup_data_ns;
|
||
|
unsigned long min_setup_stop_ns, max_hold_data_ns;
|
||
|
|
||
|
unsigned long clk_rate_khz, scl_rate_khz;
|
||
|
|
||
|
unsigned long min_low_div, min_high_div;
|
||
|
|
||
|
unsigned long min_div_for_hold, min_total_div;
|
||
|
unsigned long extra_div, extra_low_div;
|
||
|
unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
|
||
|
|
||
|
const struct i2c_spec_values *spec;
|
||
|
int ret = 0;
|
||
|
|
||
|
/* Support standard-mode, fast-mode and fast-mode plus */
|
||
|
if (WARN_ON(t->bus_freq_hz > 1000000))
|
||
|
t->bus_freq_hz = 1000000;
|
||
|
|
||
|
/* prevent scl_rate_khz from becoming 0 */
|
||
|
if (WARN_ON(t->bus_freq_hz < 1000))
|
||
|
t->bus_freq_hz = 1000;
|
||
|
|
||
|
/*
|
||
|
* min_low_ns: The minimum number of ns we need to hold low to
|
||
|
* meet I2C specification, should include fall time.
|
||
|
* min_high_ns: The minimum number of ns we need to hold high to
|
||
|
* meet I2C specification, should include rise time.
|
||
|
*/
|
||
|
spec = rk3x_i2c_get_spec(t->bus_freq_hz);
|
||
|
|
||
|
/* calculate min-divh and min-divl */
|
||
|
clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
|
||
|
scl_rate_khz = t->bus_freq_hz / 1000;
|
||
|
min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
|
||
|
|
||
|
min_high_ns = t->scl_rise_ns + spec->min_high_ns;
|
||
|
min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
|
||
|
|
||
|
min_low_ns = t->scl_fall_ns + spec->min_low_ns;
|
||
|
min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
|
||
|
|
||
|
/*
|
||
|
* Final divh and divl must be greater than 0, otherwise the
|
||
|
* hardware would not output the i2c clk.
|
||
|
*/
|
||
|
min_high_div = (min_high_div < 1) ? 2 : min_high_div;
|
||
|
min_low_div = (min_low_div < 1) ? 2 : min_low_div;
|
||
|
|
||
|
/* These are the min dividers needed for min hold times. */
|
||
|
min_div_for_hold = (min_low_div + min_high_div);
|
||
|
|
||
|
/*
|
||
|
* This is the maximum divider so we don't go over the maximum.
|
||
|
* We don't round up here (we round down) since this is a maximum.
|
||
|
*/
|
||
|
if (min_div_for_hold >= min_total_div) {
|
||
|
/*
|
||
|
* Time needed to meet hold requirements is important.
|
||
|
* Just use that.
|
||
|
*/
|
||
|
t_calc->div_low = min_low_div;
|
||
|
t_calc->div_high = min_high_div;
|
||
|
} else {
|
||
|
/*
|
||
|
* We've got to distribute some time among the low and high
|
||
|
* so we don't run too fast.
|
||
|
* We'll try to split things up by the scale of min_low_div and
|
||
|
* min_high_div, biasing slightly towards having a higher div
|
||
|
* for low (spend more time low).
|
||
|
*/
|
||
|
extra_div = min_total_div - min_div_for_hold;
|
||
|
extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
|
||
|
min_div_for_hold);
|
||
|
|
||
|
t_calc->div_low = min_low_div + extra_low_div;
|
||
|
t_calc->div_high = min_high_div + (extra_div - extra_low_div);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* calculate sda data hold count by the rules, data_upd_st:3
|
||
|
* is a appropriate value to reduce calculated times.
|
||
|
*/
|
||
|
for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
|
||
|
max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg
|
||
|
* (t_calc->div_low) + 1)
|
||
|
* 1000000, clk_rate_khz);
|
||
|
min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg)
|
||
|
* (t_calc->div_low) + 1)
|
||
|
* 1000000, clk_rate_khz);
|
||
|
if ((max_hold_data_ns < spec->max_data_hold_ns) &&
|
||
|
(min_setup_data_ns > spec->min_data_setup_ns))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* calculate setup start config */
|
||
|
min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
|
||
|
stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
|
||
|
- 1000000, 8 * 1000000 * (t_calc->div_high));
|
||
|
|
||
|
/* calculate setup stop config */
|
||
|
min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
|
||
|
stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
|
||
|
- 1000000, 8 * 1000000 * (t_calc->div_high));
|
||
|
|
||
|
t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
|
||
|
REG_CON_STA_CFG(--stp_sta_cfg) |
|
||
|
REG_CON_STO_CFG(--stp_sto_cfg);
|
||
|
|
||
|
t_calc->div_low--;
|
||
|
t_calc->div_high--;
|
||
|
|
||
|
/* Maximum divider supported by hw is 0xffff */
|
||
|
if (t_calc->div_low > 0xffff) {
|
||
|
t_calc->div_low = 0xffff;
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (t_calc->div_high > 0xffff) {
|
||
|
t_calc->div_high = 0xffff;
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
|
||
|
{
|
||
|
struct i2c_timings *t = &i2c->t;
|
||
|
struct rk3x_i2c_calced_timings calc;
|
||
|
u64 t_low_ns, t_high_ns;
|
||
|
unsigned long flags;
|
||
|
u32 val;
|
||
|
int ret;
|
||
|
|
||
|
ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
|
||
|
WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
|
||
|
|
||
|
clk_enable(i2c->pclk);
|
||
|
|
||
|
spin_lock_irqsave(&i2c->lock, flags);
|
||
|
val = i2c_readl(i2c, REG_CON);
|
||
|
val &= ~REG_CON_TUNING_MASK;
|
||
|
val |= calc.tuning;
|
||
|
i2c_writel(i2c, val, REG_CON);
|
||
|
i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
|
||
|
REG_CLKDIV);
|
||
|
spin_unlock_irqrestore(&i2c->lock, flags);
|
||
|
|
||
|
clk_disable(i2c->pclk);
|
||
|
|
||
|
t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
|
||
|
t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
|
||
|
clk_rate);
|
||
|
dev_dbg(i2c->dev,
|
||
|
"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
|
||
|
clk_rate / 1000,
|
||
|
1000000000 / t->bus_freq_hz,
|
||
|
t_low_ns, t_high_ns);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* rk3x_i2c_clk_notifier_cb - Clock rate change callback
|
||
|
* @nb: Pointer to notifier block
|
||
|
* @event: Notification reason
|
||
|
* @data: Pointer to notification data object
|
||
|
*
|
||
|
* The callback checks whether a valid bus frequency can be generated after the
|
||
|
* change. If so, the change is acknowledged, otherwise the change is aborted.
|
||
|
* New dividers are written to the HW in the pre- or post change notification
|
||
|
* depending on the scaling direction.
|
||
|
*
|
||
|
* Code adapted from i2c-cadence.c.
|
||
|
*
|
||
|
* Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
|
||
|
* to acknowledge the change, NOTIFY_DONE if the notification is
|
||
|
* considered irrelevant.
|
||
|
*/
|
||
|
static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
|
||
|
event, void *data)
|
||
|
{
|
||
|
struct clk_notifier_data *ndata = data;
|
||
|
struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
|
||
|
struct rk3x_i2c_calced_timings calc;
|
||
|
|
||
|
switch (event) {
|
||
|
case PRE_RATE_CHANGE:
|
||
|
/*
|
||
|
* Try the calculation (but don't store the result) ahead of
|
||
|
* time to see if we need to block the clock change. Timings
|
||
|
* shouldn't actually take effect until rk3x_i2c_adapt_div().
|
||
|
*/
|
||
|
if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
|
||
|
&calc) != 0)
|
||
|
return NOTIFY_STOP;
|
||
|
|
||
|
/* scale up */
|
||
|
if (ndata->new_rate > ndata->old_rate)
|
||
|
rk3x_i2c_adapt_div(i2c, ndata->new_rate);
|
||
|
|
||
|
return NOTIFY_OK;
|
||
|
case POST_RATE_CHANGE:
|
||
|
/* scale down */
|
||
|
if (ndata->new_rate < ndata->old_rate)
|
||
|
rk3x_i2c_adapt_div(i2c, ndata->new_rate);
|
||
|
return NOTIFY_OK;
|
||
|
case ABORT_RATE_CHANGE:
|
||
|
/* scale up */
|
||
|
if (ndata->new_rate > ndata->old_rate)
|
||
|
rk3x_i2c_adapt_div(i2c, ndata->old_rate);
|
||
|
return NOTIFY_OK;
|
||
|
default:
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Setup I2C registers for an I2C operation specified by msgs, num.
|
||
|
*
|
||
|
* Must be called with i2c->lock held.
|
||
|
*
|
||
|
* @msgs: I2C msgs to process
|
||
|
* @num: Number of msgs
|
||
|
*
|
||
|
* returns: Number of I2C msgs processed or negative in case of error
|
||
|
*/
|
||
|
static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
|
||
|
{
|
||
|
u32 addr = (msgs[0].addr & 0x7f) << 1;
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* The I2C adapter can issue a small (len < 4) write packet before
|
||
|
* reading. This speeds up SMBus-style register reads.
|
||
|
* The MRXADDR/MRXRADDR hold the slave address and the slave register
|
||
|
* address in this case.
|
||
|
*/
|
||
|
|
||
|
if (num >= 2 && msgs[0].len < 4 &&
|
||
|
!(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
|
||
|
u32 reg_addr = 0;
|
||
|
int i;
|
||
|
|
||
|
dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
|
||
|
addr >> 1);
|
||
|
|
||
|
/* Fill MRXRADDR with the register address(es) */
|
||
|
for (i = 0; i < msgs[0].len; ++i) {
|
||
|
reg_addr |= msgs[0].buf[i] << (i * 8);
|
||
|
reg_addr |= REG_MRXADDR_VALID(i);
|
||
|
}
|
||
|
|
||
|
/* msgs[0] is handled by hw. */
|
||
|
i2c->msg = &msgs[1];
|
||
|
|
||
|
i2c->mode = REG_CON_MOD_REGISTER_TX;
|
||
|
|
||
|
i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
|
||
|
i2c_writel(i2c, reg_addr, REG_MRXRADDR);
|
||
|
|
||
|
ret = 2;
|
||
|
} else {
|
||
|
/*
|
||
|
* We'll have to do it the boring way and process the msgs
|
||
|
* one-by-one.
|
||
|
*/
|
||
|
|
||
|
if (msgs[0].flags & I2C_M_RD) {
|
||
|
addr |= 1; /* set read bit */
|
||
|
|
||
|
/*
|
||
|
* We have to transmit the slave addr first. Use
|
||
|
* MOD_REGISTER_TX for that purpose.
|
||
|
*/
|
||
|
i2c->mode = REG_CON_MOD_REGISTER_TX;
|
||
|
i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
|
||
|
REG_MRXADDR);
|
||
|
i2c_writel(i2c, 0, REG_MRXRADDR);
|
||
|
} else {
|
||
|
i2c->mode = REG_CON_MOD_TX;
|
||
|
}
|
||
|
|
||
|
i2c->msg = &msgs[0];
|
||
|
|
||
|
ret = 1;
|
||
|
}
|
||
|
|
||
|
i2c->addr = msgs[0].addr;
|
||
|
i2c->busy = true;
|
||
|
i2c->state = STATE_START;
|
||
|
i2c->processed = 0;
|
||
|
i2c->error = 0;
|
||
|
|
||
|
rk3x_i2c_clean_ipd(i2c);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int rk3x_i2c_xfer(struct i2c_adapter *adap,
|
||
|
struct i2c_msg *msgs, int num)
|
||
|
{
|
||
|
struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
|
||
|
unsigned long timeout, flags;
|
||
|
u32 val;
|
||
|
int ret = 0;
|
||
|
int i;
|
||
|
|
||
|
spin_lock_irqsave(&i2c->lock, flags);
|
||
|
|
||
|
clk_enable(i2c->clk);
|
||
|
clk_enable(i2c->pclk);
|
||
|
|
||
|
i2c->is_last_msg = false;
|
||
|
|
||
|
/*
|
||
|
* Process msgs. We can handle more than one message at once (see
|
||
|
* rk3x_i2c_setup()).
|
||
|
*/
|
||
|
for (i = 0; i < num; i += ret) {
|
||
|
ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
|
||
|
|
||
|
if (ret < 0) {
|
||
|
dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (i + ret >= num)
|
||
|
i2c->is_last_msg = true;
|
||
|
|
||
|
spin_unlock_irqrestore(&i2c->lock, flags);
|
||
|
|
||
|
rk3x_i2c_start(i2c);
|
||
|
|
||
|
timeout = wait_event_timeout(i2c->wait, !i2c->busy,
|
||
|
msecs_to_jiffies(WAIT_TIMEOUT));
|
||
|
|
||
|
spin_lock_irqsave(&i2c->lock, flags);
|
||
|
|
||
|
if (timeout == 0) {
|
||
|
dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
|
||
|
i2c_readl(i2c, REG_IPD), i2c->state);
|
||
|
|
||
|
/* Force a STOP condition without interrupt */
|
||
|
i2c_writel(i2c, 0, REG_IEN);
|
||
|
val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
|
||
|
val |= REG_CON_EN | REG_CON_STOP;
|
||
|
i2c_writel(i2c, val, REG_CON);
|
||
|
|
||
|
i2c->state = STATE_IDLE;
|
||
|
|
||
|
ret = -ETIMEDOUT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (i2c->error) {
|
||
|
ret = i2c->error;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
clk_disable(i2c->pclk);
|
||
|
clk_disable(i2c->clk);
|
||
|
|
||
|
spin_unlock_irqrestore(&i2c->lock, flags);
|
||
|
|
||
|
return ret < 0 ? ret : num;
|
||
|
}
|
||
|
|
||
|
static __maybe_unused int rk3x_i2c_resume(struct device *dev)
|
||
|
{
|
||
|
struct rk3x_i2c *i2c = dev_get_drvdata(dev);
|
||
|
|
||
|
rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static u32 rk3x_i2c_func(struct i2c_adapter *adap)
|
||
|
{
|
||
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
|
||
|
}
|
||
|
|
||
|
static const struct i2c_algorithm rk3x_i2c_algorithm = {
|
||
|
.master_xfer = rk3x_i2c_xfer,
|
||
|
.functionality = rk3x_i2c_func,
|
||
|
};
|
||
|
|
||
|
static const struct rk3x_i2c_soc_data rk3066_soc_data = {
|
||
|
.grf_offset = 0x154,
|
||
|
.calc_timings = rk3x_i2c_v0_calc_timings,
|
||
|
};
|
||
|
|
||
|
static const struct rk3x_i2c_soc_data rk3188_soc_data = {
|
||
|
.grf_offset = 0x0a4,
|
||
|
.calc_timings = rk3x_i2c_v0_calc_timings,
|
||
|
};
|
||
|
|
||
|
static const struct rk3x_i2c_soc_data rk3228_soc_data = {
|
||
|
.grf_offset = -1,
|
||
|
.calc_timings = rk3x_i2c_v0_calc_timings,
|
||
|
};
|
||
|
|
||
|
static const struct rk3x_i2c_soc_data rk3288_soc_data = {
|
||
|
.grf_offset = -1,
|
||
|
.calc_timings = rk3x_i2c_v0_calc_timings,
|
||
|
};
|
||
|
|
||
|
static const struct rk3x_i2c_soc_data rk3399_soc_data = {
|
||
|
.grf_offset = -1,
|
||
|
.calc_timings = rk3x_i2c_v1_calc_timings,
|
||
|
};
|
||
|
|
||
|
static const struct of_device_id rk3x_i2c_match[] = {
|
||
|
{
|
||
|
.compatible = "rockchip,rk3066-i2c",
|
||
|
.data = (void *)&rk3066_soc_data
|
||
|
},
|
||
|
{
|
||
|
.compatible = "rockchip,rk3188-i2c",
|
||
|
.data = (void *)&rk3188_soc_data
|
||
|
},
|
||
|
{
|
||
|
.compatible = "rockchip,rk3228-i2c",
|
||
|
.data = (void *)&rk3228_soc_data
|
||
|
},
|
||
|
{
|
||
|
.compatible = "rockchip,rk3288-i2c",
|
||
|
.data = (void *)&rk3288_soc_data
|
||
|
},
|
||
|
{
|
||
|
.compatible = "rockchip,rk3399-i2c",
|
||
|
.data = (void *)&rk3399_soc_data
|
||
|
},
|
||
|
{},
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
|
||
|
|
||
|
static int rk3x_i2c_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device_node *np = pdev->dev.of_node;
|
||
|
const struct of_device_id *match;
|
||
|
struct rk3x_i2c *i2c;
|
||
|
struct resource *mem;
|
||
|
int ret = 0;
|
||
|
int bus_nr;
|
||
|
u32 value;
|
||
|
int irq;
|
||
|
unsigned long clk_rate;
|
||
|
|
||
|
i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
|
||
|
if (!i2c)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
match = of_match_node(rk3x_i2c_match, np);
|
||
|
i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
|
||
|
|
||
|
/* use common interface to get I2C timing properties */
|
||
|
i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
|
||
|
|
||
|
strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
|
||
|
i2c->adap.owner = THIS_MODULE;
|
||
|
i2c->adap.algo = &rk3x_i2c_algorithm;
|
||
|
i2c->adap.retries = 3;
|
||
|
i2c->adap.dev.of_node = np;
|
||
|
i2c->adap.algo_data = i2c;
|
||
|
i2c->adap.dev.parent = &pdev->dev;
|
||
|
|
||
|
i2c->dev = &pdev->dev;
|
||
|
|
||
|
spin_lock_init(&i2c->lock);
|
||
|
init_waitqueue_head(&i2c->wait);
|
||
|
|
||
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||
|
i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
|
||
|
if (IS_ERR(i2c->regs))
|
||
|
return PTR_ERR(i2c->regs);
|
||
|
|
||
|
/* Try to set the I2C adapter number from dt */
|
||
|
bus_nr = of_alias_get_id(np, "i2c");
|
||
|
|
||
|
/*
|
||
|
* Switch to new interface if the SoC also offers the old one.
|
||
|
* The control bit is located in the GRF register space.
|
||
|
*/
|
||
|
if (i2c->soc_data->grf_offset >= 0) {
|
||
|
struct regmap *grf;
|
||
|
|
||
|
grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
|
||
|
if (IS_ERR(grf)) {
|
||
|
dev_err(&pdev->dev,
|
||
|
"rk3x-i2c needs 'rockchip,grf' property\n");
|
||
|
return PTR_ERR(grf);
|
||
|
}
|
||
|
|
||
|
if (bus_nr < 0) {
|
||
|
dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* 27+i: write mask, 11+i: value */
|
||
|
value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
|
||
|
|
||
|
ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
|
||
|
if (ret != 0) {
|
||
|
dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* IRQ setup */
|
||
|
irq = platform_get_irq(pdev, 0);
|
||
|
if (irq < 0) {
|
||
|
dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
|
||
|
return irq;
|
||
|
}
|
||
|
|
||
|
ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
|
||
|
0, dev_name(&pdev->dev), i2c);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&pdev->dev, "cannot request IRQ\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
platform_set_drvdata(pdev, i2c);
|
||
|
|
||
|
if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
|
||
|
/* Only one clock to use for bus clock and peripheral clock */
|
||
|
i2c->clk = devm_clk_get(&pdev->dev, NULL);
|
||
|
i2c->pclk = i2c->clk;
|
||
|
} else {
|
||
|
i2c->clk = devm_clk_get(&pdev->dev, "i2c");
|
||
|
i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
|
||
|
}
|
||
|
|
||
|
if (IS_ERR(i2c->clk)) {
|
||
|
ret = PTR_ERR(i2c->clk);
|
||
|
if (ret != -EPROBE_DEFER)
|
||
|
dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
if (IS_ERR(i2c->pclk)) {
|
||
|
ret = PTR_ERR(i2c->pclk);
|
||
|
if (ret != -EPROBE_DEFER)
|
||
|
dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = clk_prepare(i2c->clk);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
ret = clk_prepare(i2c->pclk);
|
||
|
if (ret < 0) {
|
||
|
dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
|
||
|
goto err_clk;
|
||
|
}
|
||
|
|
||
|
i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
|
||
|
ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
|
||
|
if (ret != 0) {
|
||
|
dev_err(&pdev->dev, "Unable to register clock notifier\n");
|
||
|
goto err_pclk;
|
||
|
}
|
||
|
|
||
|
clk_rate = clk_get_rate(i2c->clk);
|
||
|
rk3x_i2c_adapt_div(i2c, clk_rate);
|
||
|
|
||
|
ret = i2c_add_adapter(&i2c->adap);
|
||
|
if (ret < 0)
|
||
|
goto err_clk_notifier;
|
||
|
|
||
|
dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_clk_notifier:
|
||
|
clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
|
||
|
err_pclk:
|
||
|
clk_unprepare(i2c->pclk);
|
||
|
err_clk:
|
||
|
clk_unprepare(i2c->clk);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int rk3x_i2c_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
|
||
|
|
||
|
i2c_del_adapter(&i2c->adap);
|
||
|
|
||
|
clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
|
||
|
clk_unprepare(i2c->pclk);
|
||
|
clk_unprepare(i2c->clk);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
|
||
|
|
||
|
static struct platform_driver rk3x_i2c_driver = {
|
||
|
.probe = rk3x_i2c_probe,
|
||
|
.remove = rk3x_i2c_remove,
|
||
|
.driver = {
|
||
|
.name = "rk3x-i2c",
|
||
|
.of_match_table = rk3x_i2c_match,
|
||
|
.pm = &rk3x_i2c_pm_ops,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
module_platform_driver(rk3x_i2c_driver);
|
||
|
|
||
|
MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
|
||
|
MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
|
||
|
MODULE_LICENSE("GPL v2");
|