1061 lines
30 KiB
C
1061 lines
30 KiB
C
|
/*
|
||
|
* Copyright(c) 2015, 2016 Intel Corporation.
|
||
|
*
|
||
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
||
|
* redistributing this file, you may do so under either license.
|
||
|
*
|
||
|
* GPL LICENSE SUMMARY
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of version 2 of the GNU General Public License as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* - Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* - Neither the name of Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
*/
|
||
|
#include <asm/page.h>
|
||
|
|
||
|
#include "user_exp_rcv.h"
|
||
|
#include "trace.h"
|
||
|
#include "mmu_rb.h"
|
||
|
|
||
|
struct tid_group {
|
||
|
struct list_head list;
|
||
|
unsigned base;
|
||
|
u8 size;
|
||
|
u8 used;
|
||
|
u8 map;
|
||
|
};
|
||
|
|
||
|
struct tid_rb_node {
|
||
|
struct mmu_rb_node mmu;
|
||
|
unsigned long phys;
|
||
|
struct tid_group *grp;
|
||
|
u32 rcventry;
|
||
|
dma_addr_t dma_addr;
|
||
|
bool freed;
|
||
|
unsigned npages;
|
||
|
struct page *pages[0];
|
||
|
};
|
||
|
|
||
|
struct tid_pageset {
|
||
|
u16 idx;
|
||
|
u16 count;
|
||
|
};
|
||
|
|
||
|
#define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
|
||
|
|
||
|
#define num_user_pages(vaddr, len) \
|
||
|
(1 + (((((unsigned long)(vaddr) + \
|
||
|
(unsigned long)(len) - 1) & PAGE_MASK) - \
|
||
|
((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
|
||
|
|
||
|
static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
|
||
|
struct hfi1_filedata *);
|
||
|
static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
|
||
|
static int set_rcvarray_entry(struct file *, unsigned long, u32,
|
||
|
struct tid_group *, struct page **, unsigned);
|
||
|
static int tid_rb_insert(void *, struct mmu_rb_node *);
|
||
|
static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
|
||
|
struct tid_rb_node *tnode);
|
||
|
static void tid_rb_remove(void *, struct mmu_rb_node *);
|
||
|
static int tid_rb_invalidate(void *, struct mmu_rb_node *);
|
||
|
static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
|
||
|
struct tid_pageset *, unsigned, u16, struct page **,
|
||
|
u32 *, unsigned *, unsigned *);
|
||
|
static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
|
||
|
static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
|
||
|
|
||
|
static struct mmu_rb_ops tid_rb_ops = {
|
||
|
.insert = tid_rb_insert,
|
||
|
.remove = tid_rb_remove,
|
||
|
.invalidate = tid_rb_invalidate
|
||
|
};
|
||
|
|
||
|
static inline u32 rcventry2tidinfo(u32 rcventry)
|
||
|
{
|
||
|
u32 pair = rcventry & ~0x1;
|
||
|
|
||
|
return EXP_TID_SET(IDX, pair >> 1) |
|
||
|
EXP_TID_SET(CTRL, 1 << (rcventry - pair));
|
||
|
}
|
||
|
|
||
|
static inline void exp_tid_group_init(struct exp_tid_set *set)
|
||
|
{
|
||
|
INIT_LIST_HEAD(&set->list);
|
||
|
set->count = 0;
|
||
|
}
|
||
|
|
||
|
static inline void tid_group_remove(struct tid_group *grp,
|
||
|
struct exp_tid_set *set)
|
||
|
{
|
||
|
list_del_init(&grp->list);
|
||
|
set->count--;
|
||
|
}
|
||
|
|
||
|
static inline void tid_group_add_tail(struct tid_group *grp,
|
||
|
struct exp_tid_set *set)
|
||
|
{
|
||
|
list_add_tail(&grp->list, &set->list);
|
||
|
set->count++;
|
||
|
}
|
||
|
|
||
|
static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
|
||
|
{
|
||
|
struct tid_group *grp =
|
||
|
list_first_entry(&set->list, struct tid_group, list);
|
||
|
list_del_init(&grp->list);
|
||
|
set->count--;
|
||
|
return grp;
|
||
|
}
|
||
|
|
||
|
static inline void tid_group_move(struct tid_group *group,
|
||
|
struct exp_tid_set *s1,
|
||
|
struct exp_tid_set *s2)
|
||
|
{
|
||
|
tid_group_remove(group, s1);
|
||
|
tid_group_add_tail(group, s2);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize context and file private data needed for Expected
|
||
|
* receive caching. This needs to be done after the context has
|
||
|
* been configured with the eager/expected RcvEntry counts.
|
||
|
*/
|
||
|
int hfi1_user_exp_rcv_init(struct file *fp)
|
||
|
{
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
struct hfi1_devdata *dd = uctxt->dd;
|
||
|
unsigned tidbase;
|
||
|
int i, ret = 0;
|
||
|
|
||
|
spin_lock_init(&fd->tid_lock);
|
||
|
spin_lock_init(&fd->invalid_lock);
|
||
|
|
||
|
if (!uctxt->subctxt_cnt || !fd->subctxt) {
|
||
|
exp_tid_group_init(&uctxt->tid_group_list);
|
||
|
exp_tid_group_init(&uctxt->tid_used_list);
|
||
|
exp_tid_group_init(&uctxt->tid_full_list);
|
||
|
|
||
|
tidbase = uctxt->expected_base;
|
||
|
for (i = 0; i < uctxt->expected_count /
|
||
|
dd->rcv_entries.group_size; i++) {
|
||
|
struct tid_group *grp;
|
||
|
|
||
|
grp = kzalloc(sizeof(*grp), GFP_KERNEL);
|
||
|
if (!grp) {
|
||
|
/*
|
||
|
* If we fail here, the groups already
|
||
|
* allocated will be freed by the close
|
||
|
* call.
|
||
|
*/
|
||
|
ret = -ENOMEM;
|
||
|
goto done;
|
||
|
}
|
||
|
grp->size = dd->rcv_entries.group_size;
|
||
|
grp->base = tidbase;
|
||
|
tid_group_add_tail(grp, &uctxt->tid_group_list);
|
||
|
tidbase += dd->rcv_entries.group_size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fd->entry_to_rb = kcalloc(uctxt->expected_count,
|
||
|
sizeof(struct rb_node *),
|
||
|
GFP_KERNEL);
|
||
|
if (!fd->entry_to_rb)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
|
||
|
fd->invalid_tid_idx = 0;
|
||
|
fd->invalid_tids = kzalloc(uctxt->expected_count *
|
||
|
sizeof(u32), GFP_KERNEL);
|
||
|
if (!fd->invalid_tids) {
|
||
|
ret = -ENOMEM;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Register MMU notifier callbacks. If the registration
|
||
|
* fails, continue without TID caching for this context.
|
||
|
*/
|
||
|
ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops,
|
||
|
dd->pport->hfi1_wq,
|
||
|
&fd->handler);
|
||
|
if (ret) {
|
||
|
dd_dev_info(dd,
|
||
|
"Failed MMU notifier registration %d\n",
|
||
|
ret);
|
||
|
ret = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* PSM does not have a good way to separate, count, and
|
||
|
* effectively enforce a limit on RcvArray entries used by
|
||
|
* subctxts (when context sharing is used) when TID caching
|
||
|
* is enabled. To help with that, we calculate a per-process
|
||
|
* RcvArray entry share and enforce that.
|
||
|
* If TID caching is not in use, PSM deals with usage on its
|
||
|
* own. In that case, we allow any subctxt to take all of the
|
||
|
* entries.
|
||
|
*
|
||
|
* Make sure that we set the tid counts only after successful
|
||
|
* init.
|
||
|
*/
|
||
|
spin_lock(&fd->tid_lock);
|
||
|
if (uctxt->subctxt_cnt && fd->handler) {
|
||
|
u16 remainder;
|
||
|
|
||
|
fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
|
||
|
remainder = uctxt->expected_count % uctxt->subctxt_cnt;
|
||
|
if (remainder && fd->subctxt < remainder)
|
||
|
fd->tid_limit++;
|
||
|
} else {
|
||
|
fd->tid_limit = uctxt->expected_count;
|
||
|
}
|
||
|
spin_unlock(&fd->tid_lock);
|
||
|
done:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void hfi1_user_exp_rcv_grp_free(struct hfi1_ctxtdata *uctxt)
|
||
|
{
|
||
|
struct tid_group *grp, *gptr;
|
||
|
|
||
|
list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
|
||
|
list) {
|
||
|
list_del_init(&grp->list);
|
||
|
kfree(grp);
|
||
|
}
|
||
|
hfi1_clear_tids(uctxt);
|
||
|
}
|
||
|
|
||
|
int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
|
||
|
{
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
|
||
|
/*
|
||
|
* The notifier would have been removed when the process'es mm
|
||
|
* was freed.
|
||
|
*/
|
||
|
if (fd->handler) {
|
||
|
hfi1_mmu_rb_unregister(fd->handler);
|
||
|
} else {
|
||
|
if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
|
||
|
unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
|
||
|
if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
|
||
|
unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
|
||
|
}
|
||
|
|
||
|
kfree(fd->invalid_tids);
|
||
|
fd->invalid_tids = NULL;
|
||
|
|
||
|
kfree(fd->entry_to_rb);
|
||
|
fd->entry_to_rb = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write an "empty" RcvArray entry.
|
||
|
* This function exists so the TID registaration code can use it
|
||
|
* to write to unused/unneeded entries and still take advantage
|
||
|
* of the WC performance improvements. The HFI will ignore this
|
||
|
* write to the RcvArray entry.
|
||
|
*/
|
||
|
static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
|
||
|
{
|
||
|
/*
|
||
|
* Doing the WC fill writes only makes sense if the device is
|
||
|
* present and the RcvArray has been mapped as WC memory.
|
||
|
*/
|
||
|
if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
|
||
|
writeq(0, dd->rcvarray_wc + (index * 8));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* RcvArray entry allocation for Expected Receives is done by the
|
||
|
* following algorithm:
|
||
|
*
|
||
|
* The context keeps 3 lists of groups of RcvArray entries:
|
||
|
* 1. List of empty groups - tid_group_list
|
||
|
* This list is created during user context creation and
|
||
|
* contains elements which describe sets (of 8) of empty
|
||
|
* RcvArray entries.
|
||
|
* 2. List of partially used groups - tid_used_list
|
||
|
* This list contains sets of RcvArray entries which are
|
||
|
* not completely used up. Another mapping request could
|
||
|
* use some of all of the remaining entries.
|
||
|
* 3. List of full groups - tid_full_list
|
||
|
* This is the list where sets that are completely used
|
||
|
* up go.
|
||
|
*
|
||
|
* An attempt to optimize the usage of RcvArray entries is
|
||
|
* made by finding all sets of physically contiguous pages in a
|
||
|
* user's buffer.
|
||
|
* These physically contiguous sets are further split into
|
||
|
* sizes supported by the receive engine of the HFI. The
|
||
|
* resulting sets of pages are stored in struct tid_pageset,
|
||
|
* which describes the sets as:
|
||
|
* * .count - number of pages in this set
|
||
|
* * .idx - starting index into struct page ** array
|
||
|
* of this set
|
||
|
*
|
||
|
* From this point on, the algorithm deals with the page sets
|
||
|
* described above. The number of pagesets is divided by the
|
||
|
* RcvArray group size to produce the number of full groups
|
||
|
* needed.
|
||
|
*
|
||
|
* Groups from the 3 lists are manipulated using the following
|
||
|
* rules:
|
||
|
* 1. For each set of 8 pagesets, a complete group from
|
||
|
* tid_group_list is taken, programmed, and moved to
|
||
|
* the tid_full_list list.
|
||
|
* 2. For all remaining pagesets:
|
||
|
* 2.1 If the tid_used_list is empty and the tid_group_list
|
||
|
* is empty, stop processing pageset and return only
|
||
|
* what has been programmed up to this point.
|
||
|
* 2.2 If the tid_used_list is empty and the tid_group_list
|
||
|
* is not empty, move a group from tid_group_list to
|
||
|
* tid_used_list.
|
||
|
* 2.3 For each group is tid_used_group, program as much as
|
||
|
* can fit into the group. If the group becomes fully
|
||
|
* used, move it to tid_full_list.
|
||
|
*/
|
||
|
int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
|
||
|
{
|
||
|
int ret = 0, need_group = 0, pinned;
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
struct hfi1_devdata *dd = uctxt->dd;
|
||
|
unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
|
||
|
tididx = 0, mapped, mapped_pages = 0;
|
||
|
unsigned long vaddr = tinfo->vaddr;
|
||
|
struct page **pages = NULL;
|
||
|
u32 *tidlist = NULL;
|
||
|
struct tid_pageset *pagesets = NULL;
|
||
|
|
||
|
/* Get the number of pages the user buffer spans */
|
||
|
npages = num_user_pages(vaddr, tinfo->length);
|
||
|
if (!npages)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (npages > uctxt->expected_count) {
|
||
|
dd_dev_err(dd, "Expected buffer too big\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Verify that access is OK for the user buffer */
|
||
|
if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
|
||
|
npages * PAGE_SIZE)) {
|
||
|
dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
|
||
|
(void *)vaddr, npages);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
|
||
|
GFP_KERNEL);
|
||
|
if (!pagesets)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Allocate the array of struct page pointers needed for pinning */
|
||
|
pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
|
||
|
if (!pages) {
|
||
|
ret = -ENOMEM;
|
||
|
goto bail;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pin all the pages of the user buffer. If we can't pin all the
|
||
|
* pages, accept the amount pinned so far and program only that.
|
||
|
* User space knows how to deal with partially programmed buffers.
|
||
|
*/
|
||
|
if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
|
||
|
ret = -ENOMEM;
|
||
|
goto bail;
|
||
|
}
|
||
|
|
||
|
pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
|
||
|
if (pinned <= 0) {
|
||
|
ret = pinned;
|
||
|
goto bail;
|
||
|
}
|
||
|
fd->tid_n_pinned += npages;
|
||
|
|
||
|
/* Find sets of physically contiguous pages */
|
||
|
npagesets = find_phys_blocks(pages, pinned, pagesets);
|
||
|
|
||
|
/*
|
||
|
* We don't need to access this under a lock since tid_used is per
|
||
|
* process and the same process cannot be in hfi1_user_exp_rcv_clear()
|
||
|
* and hfi1_user_exp_rcv_setup() at the same time.
|
||
|
*/
|
||
|
spin_lock(&fd->tid_lock);
|
||
|
if (fd->tid_used + npagesets > fd->tid_limit)
|
||
|
pageset_count = fd->tid_limit - fd->tid_used;
|
||
|
else
|
||
|
pageset_count = npagesets;
|
||
|
spin_unlock(&fd->tid_lock);
|
||
|
|
||
|
if (!pageset_count)
|
||
|
goto bail;
|
||
|
|
||
|
ngroups = pageset_count / dd->rcv_entries.group_size;
|
||
|
tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
|
||
|
if (!tidlist) {
|
||
|
ret = -ENOMEM;
|
||
|
goto nomem;
|
||
|
}
|
||
|
|
||
|
tididx = 0;
|
||
|
|
||
|
/*
|
||
|
* From this point on, we are going to be using shared (between master
|
||
|
* and subcontexts) context resources. We need to take the lock.
|
||
|
*/
|
||
|
mutex_lock(&uctxt->exp_lock);
|
||
|
/*
|
||
|
* The first step is to program the RcvArray entries which are complete
|
||
|
* groups.
|
||
|
*/
|
||
|
while (ngroups && uctxt->tid_group_list.count) {
|
||
|
struct tid_group *grp =
|
||
|
tid_group_pop(&uctxt->tid_group_list);
|
||
|
|
||
|
ret = program_rcvarray(fp, vaddr, grp, pagesets,
|
||
|
pageidx, dd->rcv_entries.group_size,
|
||
|
pages, tidlist, &tididx, &mapped);
|
||
|
/*
|
||
|
* If there was a failure to program the RcvArray
|
||
|
* entries for the entire group, reset the grp fields
|
||
|
* and add the grp back to the free group list.
|
||
|
*/
|
||
|
if (ret <= 0) {
|
||
|
tid_group_add_tail(grp, &uctxt->tid_group_list);
|
||
|
hfi1_cdbg(TID,
|
||
|
"Failed to program RcvArray group %d", ret);
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
tid_group_add_tail(grp, &uctxt->tid_full_list);
|
||
|
ngroups--;
|
||
|
pageidx += ret;
|
||
|
mapped_pages += mapped;
|
||
|
}
|
||
|
|
||
|
while (pageidx < pageset_count) {
|
||
|
struct tid_group *grp, *ptr;
|
||
|
/*
|
||
|
* If we don't have any partially used tid groups, check
|
||
|
* if we have empty groups. If so, take one from there and
|
||
|
* put in the partially used list.
|
||
|
*/
|
||
|
if (!uctxt->tid_used_list.count || need_group) {
|
||
|
if (!uctxt->tid_group_list.count)
|
||
|
goto unlock;
|
||
|
|
||
|
grp = tid_group_pop(&uctxt->tid_group_list);
|
||
|
tid_group_add_tail(grp, &uctxt->tid_used_list);
|
||
|
need_group = 0;
|
||
|
}
|
||
|
/*
|
||
|
* There is an optimization opportunity here - instead of
|
||
|
* fitting as many page sets as we can, check for a group
|
||
|
* later on in the list that could fit all of them.
|
||
|
*/
|
||
|
list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
|
||
|
list) {
|
||
|
unsigned use = min_t(unsigned, pageset_count - pageidx,
|
||
|
grp->size - grp->used);
|
||
|
|
||
|
ret = program_rcvarray(fp, vaddr, grp, pagesets,
|
||
|
pageidx, use, pages, tidlist,
|
||
|
&tididx, &mapped);
|
||
|
if (ret < 0) {
|
||
|
hfi1_cdbg(TID,
|
||
|
"Failed to program RcvArray entries %d",
|
||
|
ret);
|
||
|
ret = -EFAULT;
|
||
|
goto unlock;
|
||
|
} else if (ret > 0) {
|
||
|
if (grp->used == grp->size)
|
||
|
tid_group_move(grp,
|
||
|
&uctxt->tid_used_list,
|
||
|
&uctxt->tid_full_list);
|
||
|
pageidx += ret;
|
||
|
mapped_pages += mapped;
|
||
|
need_group = 0;
|
||
|
/* Check if we are done so we break out early */
|
||
|
if (pageidx >= pageset_count)
|
||
|
break;
|
||
|
} else if (WARN_ON(ret == 0)) {
|
||
|
/*
|
||
|
* If ret is 0, we did not program any entries
|
||
|
* into this group, which can only happen if
|
||
|
* we've screwed up the accounting somewhere.
|
||
|
* Warn and try to continue.
|
||
|
*/
|
||
|
need_group = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
unlock:
|
||
|
mutex_unlock(&uctxt->exp_lock);
|
||
|
nomem:
|
||
|
hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
|
||
|
mapped_pages, ret);
|
||
|
if (tididx) {
|
||
|
spin_lock(&fd->tid_lock);
|
||
|
fd->tid_used += tididx;
|
||
|
spin_unlock(&fd->tid_lock);
|
||
|
tinfo->tidcnt = tididx;
|
||
|
tinfo->length = mapped_pages * PAGE_SIZE;
|
||
|
|
||
|
if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
|
||
|
tidlist, sizeof(tidlist[0]) * tididx)) {
|
||
|
/*
|
||
|
* On failure to copy to the user level, we need to undo
|
||
|
* everything done so far so we don't leak resources.
|
||
|
*/
|
||
|
tinfo->tidlist = (unsigned long)&tidlist;
|
||
|
hfi1_user_exp_rcv_clear(fp, tinfo);
|
||
|
tinfo->tidlist = 0;
|
||
|
ret = -EFAULT;
|
||
|
goto bail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If not everything was mapped (due to insufficient RcvArray entries,
|
||
|
* for example), unpin all unmapped pages so we can pin them nex time.
|
||
|
*/
|
||
|
if (mapped_pages != pinned) {
|
||
|
hfi1_release_user_pages(fd->mm, &pages[mapped_pages],
|
||
|
pinned - mapped_pages,
|
||
|
false);
|
||
|
fd->tid_n_pinned -= pinned - mapped_pages;
|
||
|
}
|
||
|
bail:
|
||
|
kfree(pagesets);
|
||
|
kfree(pages);
|
||
|
kfree(tidlist);
|
||
|
return ret > 0 ? 0 : ret;
|
||
|
}
|
||
|
|
||
|
int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
u32 *tidinfo;
|
||
|
unsigned tididx;
|
||
|
|
||
|
tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
|
||
|
if (!tidinfo)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (copy_from_user(tidinfo, (void __user *)(unsigned long)
|
||
|
tinfo->tidlist, sizeof(tidinfo[0]) *
|
||
|
tinfo->tidcnt)) {
|
||
|
ret = -EFAULT;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&uctxt->exp_lock);
|
||
|
for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
|
||
|
ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
|
||
|
if (ret) {
|
||
|
hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
|
||
|
ret);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
spin_lock(&fd->tid_lock);
|
||
|
fd->tid_used -= tididx;
|
||
|
spin_unlock(&fd->tid_lock);
|
||
|
tinfo->tidcnt = tididx;
|
||
|
mutex_unlock(&uctxt->exp_lock);
|
||
|
done:
|
||
|
kfree(tidinfo);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
|
||
|
{
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
unsigned long *ev = uctxt->dd->events +
|
||
|
(((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
|
||
|
HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
|
||
|
u32 *array;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (!fd->invalid_tids)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* copy_to_user() can sleep, which will leave the invalid_lock
|
||
|
* locked and cause the MMU notifier to be blocked on the lock
|
||
|
* for a long time.
|
||
|
* Copy the data to a local buffer so we can release the lock.
|
||
|
*/
|
||
|
array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
|
||
|
if (!array)
|
||
|
return -EFAULT;
|
||
|
|
||
|
spin_lock(&fd->invalid_lock);
|
||
|
if (fd->invalid_tid_idx) {
|
||
|
memcpy(array, fd->invalid_tids, sizeof(*array) *
|
||
|
fd->invalid_tid_idx);
|
||
|
memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
|
||
|
fd->invalid_tid_idx);
|
||
|
tinfo->tidcnt = fd->invalid_tid_idx;
|
||
|
fd->invalid_tid_idx = 0;
|
||
|
/*
|
||
|
* Reset the user flag while still holding the lock.
|
||
|
* Otherwise, PSM can miss events.
|
||
|
*/
|
||
|
clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
|
||
|
} else {
|
||
|
tinfo->tidcnt = 0;
|
||
|
}
|
||
|
spin_unlock(&fd->invalid_lock);
|
||
|
|
||
|
if (tinfo->tidcnt) {
|
||
|
if (copy_to_user((void __user *)tinfo->tidlist,
|
||
|
array, sizeof(*array) * tinfo->tidcnt))
|
||
|
ret = -EFAULT;
|
||
|
}
|
||
|
kfree(array);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static u32 find_phys_blocks(struct page **pages, unsigned npages,
|
||
|
struct tid_pageset *list)
|
||
|
{
|
||
|
unsigned pagecount, pageidx, setcount = 0, i;
|
||
|
unsigned long pfn, this_pfn;
|
||
|
|
||
|
if (!npages)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Look for sets of physically contiguous pages in the user buffer.
|
||
|
* This will allow us to optimize Expected RcvArray entry usage by
|
||
|
* using the bigger supported sizes.
|
||
|
*/
|
||
|
pfn = page_to_pfn(pages[0]);
|
||
|
for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
|
||
|
this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
|
||
|
|
||
|
/*
|
||
|
* If the pfn's are not sequential, pages are not physically
|
||
|
* contiguous.
|
||
|
*/
|
||
|
if (this_pfn != ++pfn) {
|
||
|
/*
|
||
|
* At this point we have to loop over the set of
|
||
|
* physically contiguous pages and break them down it
|
||
|
* sizes supported by the HW.
|
||
|
* There are two main constraints:
|
||
|
* 1. The max buffer size is MAX_EXPECTED_BUFFER.
|
||
|
* If the total set size is bigger than that
|
||
|
* program only a MAX_EXPECTED_BUFFER chunk.
|
||
|
* 2. The buffer size has to be a power of two. If
|
||
|
* it is not, round down to the closes power of
|
||
|
* 2 and program that size.
|
||
|
*/
|
||
|
while (pagecount) {
|
||
|
int maxpages = pagecount;
|
||
|
u32 bufsize = pagecount * PAGE_SIZE;
|
||
|
|
||
|
if (bufsize > MAX_EXPECTED_BUFFER)
|
||
|
maxpages =
|
||
|
MAX_EXPECTED_BUFFER >>
|
||
|
PAGE_SHIFT;
|
||
|
else if (!is_power_of_2(bufsize))
|
||
|
maxpages =
|
||
|
rounddown_pow_of_two(bufsize) >>
|
||
|
PAGE_SHIFT;
|
||
|
|
||
|
list[setcount].idx = pageidx;
|
||
|
list[setcount].count = maxpages;
|
||
|
pagecount -= maxpages;
|
||
|
pageidx += maxpages;
|
||
|
setcount++;
|
||
|
}
|
||
|
pageidx = i;
|
||
|
pagecount = 1;
|
||
|
pfn = this_pfn;
|
||
|
} else {
|
||
|
pagecount++;
|
||
|
}
|
||
|
}
|
||
|
return setcount;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* program_rcvarray() - program an RcvArray group with receive buffers
|
||
|
* @fp: file pointer
|
||
|
* @vaddr: starting user virtual address
|
||
|
* @grp: RcvArray group
|
||
|
* @sets: array of struct tid_pageset holding information on physically
|
||
|
* contiguous chunks from the user buffer
|
||
|
* @start: starting index into sets array
|
||
|
* @count: number of struct tid_pageset's to program
|
||
|
* @pages: an array of struct page * for the user buffer
|
||
|
* @tidlist: the array of u32 elements when the information about the
|
||
|
* programmed RcvArray entries is to be encoded.
|
||
|
* @tididx: starting offset into tidlist
|
||
|
* @pmapped: (output parameter) number of pages programmed into the RcvArray
|
||
|
* entries.
|
||
|
*
|
||
|
* This function will program up to 'count' number of RcvArray entries from the
|
||
|
* group 'grp'. To make best use of write-combining writes, the function will
|
||
|
* perform writes to the unused RcvArray entries which will be ignored by the
|
||
|
* HW. Each RcvArray entry will be programmed with a physically contiguous
|
||
|
* buffer chunk from the user's virtual buffer.
|
||
|
*
|
||
|
* Return:
|
||
|
* -EINVAL if the requested count is larger than the size of the group,
|
||
|
* -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
|
||
|
* number of RcvArray entries programmed.
|
||
|
*/
|
||
|
static int program_rcvarray(struct file *fp, unsigned long vaddr,
|
||
|
struct tid_group *grp,
|
||
|
struct tid_pageset *sets,
|
||
|
unsigned start, u16 count, struct page **pages,
|
||
|
u32 *tidlist, unsigned *tididx, unsigned *pmapped)
|
||
|
{
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
struct hfi1_devdata *dd = uctxt->dd;
|
||
|
u16 idx;
|
||
|
u32 tidinfo = 0, rcventry, useidx = 0;
|
||
|
int mapped = 0;
|
||
|
|
||
|
/* Count should never be larger than the group size */
|
||
|
if (count > grp->size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Find the first unused entry in the group */
|
||
|
for (idx = 0; idx < grp->size; idx++) {
|
||
|
if (!(grp->map & (1 << idx))) {
|
||
|
useidx = idx;
|
||
|
break;
|
||
|
}
|
||
|
rcv_array_wc_fill(dd, grp->base + idx);
|
||
|
}
|
||
|
|
||
|
idx = 0;
|
||
|
while (idx < count) {
|
||
|
u16 npages, pageidx, setidx = start + idx;
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* If this entry in the group is used, move to the next one.
|
||
|
* If we go past the end of the group, exit the loop.
|
||
|
*/
|
||
|
if (useidx >= grp->size) {
|
||
|
break;
|
||
|
} else if (grp->map & (1 << useidx)) {
|
||
|
rcv_array_wc_fill(dd, grp->base + useidx);
|
||
|
useidx++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
rcventry = grp->base + useidx;
|
||
|
npages = sets[setidx].count;
|
||
|
pageidx = sets[setidx].idx;
|
||
|
|
||
|
ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
|
||
|
rcventry, grp, pages + pageidx,
|
||
|
npages);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
mapped += npages;
|
||
|
|
||
|
tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
|
||
|
EXP_TID_SET(LEN, npages);
|
||
|
tidlist[(*tididx)++] = tidinfo;
|
||
|
grp->used++;
|
||
|
grp->map |= 1 << useidx++;
|
||
|
idx++;
|
||
|
}
|
||
|
|
||
|
/* Fill the rest of the group with "blank" writes */
|
||
|
for (; useidx < grp->size; useidx++)
|
||
|
rcv_array_wc_fill(dd, grp->base + useidx);
|
||
|
*pmapped = mapped;
|
||
|
return idx;
|
||
|
}
|
||
|
|
||
|
static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
|
||
|
u32 rcventry, struct tid_group *grp,
|
||
|
struct page **pages, unsigned npages)
|
||
|
{
|
||
|
int ret;
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
struct tid_rb_node *node;
|
||
|
struct hfi1_devdata *dd = uctxt->dd;
|
||
|
dma_addr_t phys;
|
||
|
|
||
|
/*
|
||
|
* Allocate the node first so we can handle a potential
|
||
|
* failure before we've programmed anything.
|
||
|
*/
|
||
|
node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
|
||
|
GFP_KERNEL);
|
||
|
if (!node)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
phys = pci_map_single(dd->pcidev,
|
||
|
__va(page_to_phys(pages[0])),
|
||
|
npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
||
|
if (dma_mapping_error(&dd->pcidev->dev, phys)) {
|
||
|
dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
|
||
|
phys);
|
||
|
kfree(node);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
node->mmu.addr = vaddr;
|
||
|
node->mmu.len = npages * PAGE_SIZE;
|
||
|
node->phys = page_to_phys(pages[0]);
|
||
|
node->npages = npages;
|
||
|
node->rcventry = rcventry;
|
||
|
node->dma_addr = phys;
|
||
|
node->grp = grp;
|
||
|
node->freed = false;
|
||
|
memcpy(node->pages, pages, sizeof(struct page *) * npages);
|
||
|
|
||
|
if (!fd->handler)
|
||
|
ret = tid_rb_insert(fd, &node->mmu);
|
||
|
else
|
||
|
ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu);
|
||
|
|
||
|
if (ret) {
|
||
|
hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
|
||
|
node->rcventry, node->mmu.addr, node->phys, ret);
|
||
|
pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
|
||
|
PCI_DMA_FROMDEVICE);
|
||
|
kfree(node);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
|
||
|
trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
|
||
|
node->mmu.addr, node->phys, phys);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
|
||
|
struct tid_group **grp)
|
||
|
{
|
||
|
struct hfi1_filedata *fd = fp->private_data;
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
struct hfi1_devdata *dd = uctxt->dd;
|
||
|
struct tid_rb_node *node;
|
||
|
u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
|
||
|
u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
|
||
|
|
||
|
if (tididx >= uctxt->expected_count) {
|
||
|
dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
|
||
|
tididx, uctxt->ctxt);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (tidctrl == 0x3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
rcventry = tididx + (tidctrl - 1);
|
||
|
|
||
|
node = fd->entry_to_rb[rcventry];
|
||
|
if (!node || node->rcventry != (uctxt->expected_base + rcventry))
|
||
|
return -EBADF;
|
||
|
|
||
|
if (grp)
|
||
|
*grp = node->grp;
|
||
|
|
||
|
if (!fd->handler)
|
||
|
cacheless_tid_rb_remove(fd, node);
|
||
|
else
|
||
|
hfi1_mmu_rb_remove(fd->handler, &node->mmu);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
|
||
|
{
|
||
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
||
|
struct hfi1_devdata *dd = uctxt->dd;
|
||
|
|
||
|
trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
|
||
|
node->npages, node->mmu.addr, node->phys,
|
||
|
node->dma_addr);
|
||
|
|
||
|
hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
|
||
|
/*
|
||
|
* Make sure device has seen the write before we unpin the
|
||
|
* pages.
|
||
|
*/
|
||
|
flush_wc();
|
||
|
|
||
|
pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
|
||
|
PCI_DMA_FROMDEVICE);
|
||
|
hfi1_release_user_pages(fd->mm, node->pages, node->npages, true);
|
||
|
fd->tid_n_pinned -= node->npages;
|
||
|
|
||
|
node->grp->used--;
|
||
|
node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
|
||
|
|
||
|
if (node->grp->used == node->grp->size - 1)
|
||
|
tid_group_move(node->grp, &uctxt->tid_full_list,
|
||
|
&uctxt->tid_used_list);
|
||
|
else if (!node->grp->used)
|
||
|
tid_group_move(node->grp, &uctxt->tid_used_list,
|
||
|
&uctxt->tid_group_list);
|
||
|
kfree(node);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* As a simple helper for hfi1_user_exp_rcv_free, this function deals with
|
||
|
* clearing nodes in the non-cached case.
|
||
|
*/
|
||
|
static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
|
||
|
struct exp_tid_set *set,
|
||
|
struct hfi1_filedata *fd)
|
||
|
{
|
||
|
struct tid_group *grp, *ptr;
|
||
|
int i;
|
||
|
|
||
|
list_for_each_entry_safe(grp, ptr, &set->list, list) {
|
||
|
list_del_init(&grp->list);
|
||
|
|
||
|
for (i = 0; i < grp->size; i++) {
|
||
|
if (grp->map & (1 << i)) {
|
||
|
u16 rcventry = grp->base + i;
|
||
|
struct tid_rb_node *node;
|
||
|
|
||
|
node = fd->entry_to_rb[rcventry -
|
||
|
uctxt->expected_base];
|
||
|
if (!node || node->rcventry != rcventry)
|
||
|
continue;
|
||
|
|
||
|
cacheless_tid_rb_remove(fd, node);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Always return 0 from this function. A non-zero return indicates that the
|
||
|
* remove operation will be called and that memory should be unpinned.
|
||
|
* However, the driver cannot unpin out from under PSM. Instead, retain the
|
||
|
* memory (by returning 0) and inform PSM that the memory is going away. PSM
|
||
|
* will call back later when it has removed the memory from its list.
|
||
|
*/
|
||
|
static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
|
||
|
{
|
||
|
struct hfi1_filedata *fdata = arg;
|
||
|
struct hfi1_ctxtdata *uctxt = fdata->uctxt;
|
||
|
struct tid_rb_node *node =
|
||
|
container_of(mnode, struct tid_rb_node, mmu);
|
||
|
|
||
|
if (node->freed)
|
||
|
return 0;
|
||
|
|
||
|
trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
|
||
|
node->rcventry, node->npages, node->dma_addr);
|
||
|
node->freed = true;
|
||
|
|
||
|
spin_lock(&fdata->invalid_lock);
|
||
|
if (fdata->invalid_tid_idx < uctxt->expected_count) {
|
||
|
fdata->invalid_tids[fdata->invalid_tid_idx] =
|
||
|
rcventry2tidinfo(node->rcventry - uctxt->expected_base);
|
||
|
fdata->invalid_tids[fdata->invalid_tid_idx] |=
|
||
|
EXP_TID_SET(LEN, node->npages);
|
||
|
if (!fdata->invalid_tid_idx) {
|
||
|
unsigned long *ev;
|
||
|
|
||
|
/*
|
||
|
* hfi1_set_uevent_bits() sets a user event flag
|
||
|
* for all processes. Because calling into the
|
||
|
* driver to process TID cache invalidations is
|
||
|
* expensive and TID cache invalidations are
|
||
|
* handled on a per-process basis, we can
|
||
|
* optimize this to set the flag only for the
|
||
|
* process in question.
|
||
|
*/
|
||
|
ev = uctxt->dd->events +
|
||
|
(((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
|
||
|
HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
|
||
|
set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
|
||
|
}
|
||
|
fdata->invalid_tid_idx++;
|
||
|
}
|
||
|
spin_unlock(&fdata->invalid_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int tid_rb_insert(void *arg, struct mmu_rb_node *node)
|
||
|
{
|
||
|
struct hfi1_filedata *fdata = arg;
|
||
|
struct tid_rb_node *tnode =
|
||
|
container_of(node, struct tid_rb_node, mmu);
|
||
|
u32 base = fdata->uctxt->expected_base;
|
||
|
|
||
|
fdata->entry_to_rb[tnode->rcventry - base] = tnode;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
|
||
|
struct tid_rb_node *tnode)
|
||
|
{
|
||
|
u32 base = fdata->uctxt->expected_base;
|
||
|
|
||
|
fdata->entry_to_rb[tnode->rcventry - base] = NULL;
|
||
|
clear_tid_node(fdata, tnode);
|
||
|
}
|
||
|
|
||
|
static void tid_rb_remove(void *arg, struct mmu_rb_node *node)
|
||
|
{
|
||
|
struct hfi1_filedata *fdata = arg;
|
||
|
struct tid_rb_node *tnode =
|
||
|
container_of(node, struct tid_rb_node, mmu);
|
||
|
|
||
|
cacheless_tid_rb_remove(fdata, tnode);
|
||
|
}
|