tegrakernel/kernel/kernel-4.9/drivers/infiniband/sw/rxe/rxe_mr.c

647 lines
12 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "rxe.h"
#include "rxe_loc.h"
/*
* lfsr (linear feedback shift register) with period 255
*/
static u8 rxe_get_key(void)
{
static u32 key = 1;
key = key << 1;
key |= (0 != (key & 0x100)) ^ (0 != (key & 0x10))
^ (0 != (key & 0x80)) ^ (0 != (key & 0x40));
key &= 0xff;
return key;
}
int mem_check_range(struct rxe_mem *mem, u64 iova, size_t length)
{
switch (mem->type) {
case RXE_MEM_TYPE_DMA:
return 0;
case RXE_MEM_TYPE_MR:
case RXE_MEM_TYPE_FMR:
if (iova < mem->iova ||
length > mem->length ||
iova > mem->iova + mem->length - length)
return -EFAULT;
return 0;
default:
return -EFAULT;
}
}
#define IB_ACCESS_REMOTE (IB_ACCESS_REMOTE_READ \
| IB_ACCESS_REMOTE_WRITE \
| IB_ACCESS_REMOTE_ATOMIC)
static void rxe_mem_init(int access, struct rxe_mem *mem)
{
u32 lkey = mem->pelem.index << 8 | rxe_get_key();
u32 rkey = (access & IB_ACCESS_REMOTE) ? lkey : 0;
if (mem->pelem.pool->type == RXE_TYPE_MR) {
mem->ibmr.lkey = lkey;
mem->ibmr.rkey = rkey;
}
mem->lkey = lkey;
mem->rkey = rkey;
mem->state = RXE_MEM_STATE_INVALID;
mem->type = RXE_MEM_TYPE_NONE;
mem->map_shift = ilog2(RXE_BUF_PER_MAP);
}
void rxe_mem_cleanup(void *arg)
{
struct rxe_mem *mem = arg;
int i;
if (mem->umem)
ib_umem_release(mem->umem);
if (mem->map) {
for (i = 0; i < mem->num_map; i++)
kfree(mem->map[i]);
kfree(mem->map);
}
}
static int rxe_mem_alloc(struct rxe_dev *rxe, struct rxe_mem *mem, int num_buf)
{
int i;
int num_map;
struct rxe_map **map = mem->map;
num_map = (num_buf + RXE_BUF_PER_MAP - 1) / RXE_BUF_PER_MAP;
mem->map = kmalloc_array(num_map, sizeof(*map), GFP_KERNEL);
if (!mem->map)
goto err1;
for (i = 0; i < num_map; i++) {
mem->map[i] = kmalloc(sizeof(**map), GFP_KERNEL);
if (!mem->map[i])
goto err2;
}
WARN_ON(!is_power_of_2(RXE_BUF_PER_MAP));
mem->map_shift = ilog2(RXE_BUF_PER_MAP);
mem->map_mask = RXE_BUF_PER_MAP - 1;
mem->num_buf = num_buf;
mem->num_map = num_map;
mem->max_buf = num_map * RXE_BUF_PER_MAP;
return 0;
err2:
for (i--; i >= 0; i--)
kfree(mem->map[i]);
kfree(mem->map);
err1:
return -ENOMEM;
}
int rxe_mem_init_dma(struct rxe_dev *rxe, struct rxe_pd *pd,
int access, struct rxe_mem *mem)
{
rxe_mem_init(access, mem);
mem->pd = pd;
mem->access = access;
mem->state = RXE_MEM_STATE_VALID;
mem->type = RXE_MEM_TYPE_DMA;
return 0;
}
int rxe_mem_init_user(struct rxe_dev *rxe, struct rxe_pd *pd, u64 start,
u64 length, u64 iova, int access, struct ib_udata *udata,
struct rxe_mem *mem)
{
int entry;
struct rxe_map **map;
struct rxe_phys_buf *buf = NULL;
struct ib_umem *umem;
struct scatterlist *sg;
int num_buf;
void *vaddr;
int err;
umem = ib_umem_get(pd->ibpd.uobject->context, start, length, access, 0);
if (IS_ERR(umem)) {
pr_warn("err %d from rxe_umem_get\n",
(int)PTR_ERR(umem));
err = -EINVAL;
goto err1;
}
mem->umem = umem;
num_buf = umem->nmap;
rxe_mem_init(access, mem);
err = rxe_mem_alloc(rxe, mem, num_buf);
if (err) {
pr_warn("err %d from rxe_mem_alloc\n", err);
ib_umem_release(umem);
goto err1;
}
WARN_ON(!is_power_of_2(umem->page_size));
mem->page_shift = ilog2(umem->page_size);
mem->page_mask = umem->page_size - 1;
num_buf = 0;
map = mem->map;
if (length > 0) {
buf = map[0]->buf;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
vaddr = page_address(sg_page(sg));
if (!vaddr) {
pr_warn("null vaddr\n");
ib_umem_release(umem);
err = -ENOMEM;
goto err1;
}
buf->addr = (uintptr_t)vaddr;
buf->size = umem->page_size;
num_buf++;
buf++;
if (num_buf >= RXE_BUF_PER_MAP) {
map++;
buf = map[0]->buf;
num_buf = 0;
}
}
}
mem->pd = pd;
mem->umem = umem;
mem->access = access;
mem->length = length;
mem->iova = iova;
mem->va = start;
mem->offset = ib_umem_offset(umem);
mem->state = RXE_MEM_STATE_VALID;
mem->type = RXE_MEM_TYPE_MR;
return 0;
err1:
return err;
}
int rxe_mem_init_fast(struct rxe_dev *rxe, struct rxe_pd *pd,
int max_pages, struct rxe_mem *mem)
{
int err;
rxe_mem_init(0, mem);
/* In fastreg, we also set the rkey */
mem->ibmr.rkey = mem->ibmr.lkey;
err = rxe_mem_alloc(rxe, mem, max_pages);
if (err)
goto err1;
mem->pd = pd;
mem->max_buf = max_pages;
mem->state = RXE_MEM_STATE_FREE;
mem->type = RXE_MEM_TYPE_MR;
return 0;
err1:
return err;
}
static void lookup_iova(
struct rxe_mem *mem,
u64 iova,
int *m_out,
int *n_out,
size_t *offset_out)
{
size_t offset = iova - mem->iova + mem->offset;
int map_index;
int buf_index;
u64 length;
if (likely(mem->page_shift)) {
*offset_out = offset & mem->page_mask;
offset >>= mem->page_shift;
*n_out = offset & mem->map_mask;
*m_out = offset >> mem->map_shift;
} else {
map_index = 0;
buf_index = 0;
length = mem->map[map_index]->buf[buf_index].size;
while (offset >= length) {
offset -= length;
buf_index++;
if (buf_index == RXE_BUF_PER_MAP) {
map_index++;
buf_index = 0;
}
length = mem->map[map_index]->buf[buf_index].size;
}
*m_out = map_index;
*n_out = buf_index;
*offset_out = offset;
}
}
void *iova_to_vaddr(struct rxe_mem *mem, u64 iova, int length)
{
size_t offset;
int m, n;
void *addr;
if (mem->state != RXE_MEM_STATE_VALID) {
pr_warn("mem not in valid state\n");
addr = NULL;
goto out;
}
if (!mem->map) {
addr = (void *)(uintptr_t)iova;
goto out;
}
if (mem_check_range(mem, iova, length)) {
pr_warn("range violation\n");
addr = NULL;
goto out;
}
lookup_iova(mem, iova, &m, &n, &offset);
if (offset + length > mem->map[m]->buf[n].size) {
pr_warn("crosses page boundary\n");
addr = NULL;
goto out;
}
addr = (void *)(uintptr_t)mem->map[m]->buf[n].addr + offset;
out:
return addr;
}
/* copy data from a range (vaddr, vaddr+length-1) to or from
* a mem object starting at iova. Compute incremental value of
* crc32 if crcp is not zero. caller must hold a reference to mem
*/
int rxe_mem_copy(struct rxe_mem *mem, u64 iova, void *addr, int length,
enum copy_direction dir, u32 *crcp)
{
int err;
int bytes;
u8 *va;
struct rxe_map **map;
struct rxe_phys_buf *buf;
int m;
int i;
size_t offset;
u32 crc = crcp ? (*crcp) : 0;
if (mem->type == RXE_MEM_TYPE_DMA) {
u8 *src, *dest;
src = (dir == to_mem_obj) ?
addr : ((void *)(uintptr_t)iova);
dest = (dir == to_mem_obj) ?
((void *)(uintptr_t)iova) : addr;
if (crcp)
*crcp = crc32_le(*crcp, src, length);
memcpy(dest, src, length);
return 0;
}
WARN_ON(!mem->map);
err = mem_check_range(mem, iova, length);
if (err) {
err = -EFAULT;
goto err1;
}
lookup_iova(mem, iova, &m, &i, &offset);
map = mem->map + m;
buf = map[0]->buf + i;
while (length > 0) {
u8 *src, *dest;
va = (u8 *)(uintptr_t)buf->addr + offset;
src = (dir == to_mem_obj) ? addr : va;
dest = (dir == to_mem_obj) ? va : addr;
bytes = buf->size - offset;
if (bytes > length)
bytes = length;
if (crcp)
crc = crc32_le(crc, src, bytes);
memcpy(dest, src, bytes);
length -= bytes;
addr += bytes;
offset = 0;
buf++;
i++;
if (i == RXE_BUF_PER_MAP) {
i = 0;
map++;
buf = map[0]->buf;
}
}
if (crcp)
*crcp = crc;
return 0;
err1:
return err;
}
/* copy data in or out of a wqe, i.e. sg list
* under the control of a dma descriptor
*/
int copy_data(
struct rxe_dev *rxe,
struct rxe_pd *pd,
int access,
struct rxe_dma_info *dma,
void *addr,
int length,
enum copy_direction dir,
u32 *crcp)
{
int bytes;
struct rxe_sge *sge = &dma->sge[dma->cur_sge];
int offset = dma->sge_offset;
int resid = dma->resid;
struct rxe_mem *mem = NULL;
u64 iova;
int err;
if (length == 0)
return 0;
if (length > resid) {
err = -EINVAL;
goto err2;
}
if (sge->length && (offset < sge->length)) {
mem = lookup_mem(pd, access, sge->lkey, lookup_local);
if (!mem) {
err = -EINVAL;
goto err1;
}
}
while (length > 0) {
bytes = length;
if (offset >= sge->length) {
if (mem) {
rxe_drop_ref(mem);
mem = NULL;
}
sge++;
dma->cur_sge++;
offset = 0;
if (dma->cur_sge >= dma->num_sge) {
err = -ENOSPC;
goto err2;
}
if (sge->length) {
mem = lookup_mem(pd, access, sge->lkey,
lookup_local);
if (!mem) {
err = -EINVAL;
goto err1;
}
} else {
continue;
}
}
if (bytes > sge->length - offset)
bytes = sge->length - offset;
if (bytes > 0) {
iova = sge->addr + offset;
err = rxe_mem_copy(mem, iova, addr, bytes, dir, crcp);
if (err)
goto err2;
offset += bytes;
resid -= bytes;
length -= bytes;
addr += bytes;
}
}
dma->sge_offset = offset;
dma->resid = resid;
if (mem)
rxe_drop_ref(mem);
return 0;
err2:
if (mem)
rxe_drop_ref(mem);
err1:
return err;
}
int advance_dma_data(struct rxe_dma_info *dma, unsigned int length)
{
struct rxe_sge *sge = &dma->sge[dma->cur_sge];
int offset = dma->sge_offset;
int resid = dma->resid;
while (length) {
unsigned int bytes;
if (offset >= sge->length) {
sge++;
dma->cur_sge++;
offset = 0;
if (dma->cur_sge >= dma->num_sge)
return -ENOSPC;
}
bytes = length;
if (bytes > sge->length - offset)
bytes = sge->length - offset;
offset += bytes;
resid -= bytes;
length -= bytes;
}
dma->sge_offset = offset;
dma->resid = resid;
return 0;
}
/* (1) find the mem (mr or mw) corresponding to lkey/rkey
* depending on lookup_type
* (2) verify that the (qp) pd matches the mem pd
* (3) verify that the mem can support the requested access
* (4) verify that mem state is valid
*/
struct rxe_mem *lookup_mem(struct rxe_pd *pd, int access, u32 key,
enum lookup_type type)
{
struct rxe_mem *mem;
struct rxe_dev *rxe = to_rdev(pd->ibpd.device);
int index = key >> 8;
if (index >= RXE_MIN_MR_INDEX && index <= RXE_MAX_MR_INDEX) {
mem = rxe_pool_get_index(&rxe->mr_pool, index);
if (!mem)
goto err1;
} else {
goto err1;
}
if ((type == lookup_local && mem->lkey != key) ||
(type == lookup_remote && mem->rkey != key))
goto err2;
if (mem->pd != pd)
goto err2;
if (access && !(access & mem->access))
goto err2;
if (mem->state != RXE_MEM_STATE_VALID)
goto err2;
return mem;
err2:
rxe_drop_ref(mem);
err1:
return NULL;
}
int rxe_mem_map_pages(struct rxe_dev *rxe, struct rxe_mem *mem,
u64 *page, int num_pages, u64 iova)
{
int i;
int num_buf;
int err;
struct rxe_map **map;
struct rxe_phys_buf *buf;
int page_size;
if (num_pages > mem->max_buf) {
err = -EINVAL;
goto err1;
}
num_buf = 0;
page_size = 1 << mem->page_shift;
map = mem->map;
buf = map[0]->buf;
for (i = 0; i < num_pages; i++) {
buf->addr = *page++;
buf->size = page_size;
buf++;
num_buf++;
if (num_buf == RXE_BUF_PER_MAP) {
map++;
buf = map[0]->buf;
num_buf = 0;
}
}
mem->iova = iova;
mem->va = iova;
mem->length = num_pages << mem->page_shift;
mem->state = RXE_MEM_STATE_VALID;
return 0;
err1:
return err;
}