tegrakernel/kernel/kernel-4.9/drivers/iommu/dma-iommu.c

902 lines
25 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* A fairly generic DMA-API to IOMMU-API glue layer.
*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
* Copyright (C) 2014-2015 ARM Ltd.
*
* based in part on arch/arm/mm/dma-mapping.c:
* Copyright (C) 2000-2004 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) "%s():%d: " fmt, __func__, __LINE__
#include <linux/device.h>
#include <linux/dma-iommu.h>
#include <linux/gfp.h>
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
#include <linux/irq.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
#include <linux/dma-contiguous.h>
#include <trace/events/dmadebug.h>
#include <asm/cacheflush.h>
#include <asm/dma-iommu.h>
#include <asm/memory.h>
struct iommu_dma_msi_page {
struct list_head list;
dma_addr_t iova;
phys_addr_t phys;
};
struct iommu_dma_cookie {
struct iova_domain iovad;
struct list_head msi_page_list;
spinlock_t msi_lock;
};
static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
{
return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
}
int iommu_dma_init(void)
{
return iova_cache_get();
}
/**
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
* @domain: IOMMU domain to prepare for DMA-API usage
*
* IOMMU drivers should normally call this from their domain_alloc
* callback when domain->type == IOMMU_DOMAIN_DMA.
*/
int iommu_get_dma_cookie(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie;
if (domain->iova_cookie)
return -EEXIST;
cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
if (!cookie)
return -ENOMEM;
spin_lock_init(&cookie->msi_lock);
INIT_LIST_HEAD(&cookie->msi_page_list);
domain->iova_cookie = cookie;
return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);
/**
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
*
* IOMMU drivers should normally call this from their domain_free callback.
*/
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi, *tmp;
if (!cookie)
return;
if (cookie->iovad.granule)
put_iova_domain(&cookie->iovad);
list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
list_del(&msi->list);
kfree(msi);
}
kfree(cookie);
domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);
static void iova_reserve_pci_windows(struct pci_dev *dev,
struct iova_domain *iovad)
{
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
struct resource_entry *window;
unsigned long lo, hi;
resource_list_for_each_entry(window, &bridge->windows) {
if (resource_type(window->res) != IORESOURCE_MEM)
continue;
lo = iova_pfn(iovad, window->res->start - window->offset);
hi = iova_pfn(iovad, window->res->end - window->offset);
reserve_iova(iovad, lo, hi);
}
}
/**
* iommu_dma_init_domain - Initialise a DMA mapping domain
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
* @base: IOVA at which the mappable address space starts
* @size: Size of IOVA space
* @dev: Device the domain is being initialised for
*
* @base and @size should be exact multiples of IOMMU page granularity to
* avoid rounding surprises. If necessary, we reserve the page at address 0
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
* any change which could make prior IOVAs invalid will fail.
*/
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
u64 size, struct device *dev)
{
struct iova_domain *iovad = cookie_iovad(domain);
unsigned long order, base_pfn, end_pfn;
if (!iovad)
return -ENODEV;
/* Use the smallest supported page size for IOVA granularity */
order = __ffs(domain->pgsize_bitmap);
base_pfn = max_t(unsigned long, 1, base >> order);
end_pfn = (base + size - 1) >> order;
/* Check the domain allows at least some access to the device... */
if (domain->geometry.force_aperture) {
if (base > domain->geometry.aperture_end ||
base + size <= domain->geometry.aperture_start) {
pr_warn("specified DMA range outside IOMMU capability\n");
return -EFAULT;
}
/* ...then finally give it a kicking to make sure it fits */
base_pfn = max_t(unsigned long, base_pfn,
domain->geometry.aperture_start >> order);
end_pfn = min_t(unsigned long, end_pfn,
domain->geometry.aperture_end >> order);
}
/* All we can safely do with an existing domain is enlarge it */
if (iovad->start_pfn) {
if (1UL << order != iovad->granule ||
base_pfn != iovad->start_pfn ||
end_pfn < iovad->dma_32bit_pfn) {
pr_warn("Incompatible range for DMA domain\n");
return -EFAULT;
}
iovad->dma_32bit_pfn = end_pfn;
} else {
init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
if (dev && dev_is_pci(dev))
iova_reserve_pci_windows(to_pci_dev(dev), iovad);
}
return 0;
}
EXPORT_SYMBOL(iommu_dma_init_domain);
/**
* dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
* @dir: Direction of DMA transfer
* @coherent: Is the DMA master cache-coherent?
*
* Return: corresponding IOMMU API page protection flags
*/
int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
{
int prot = coherent ? IOMMU_CACHE : 0;
switch (dir) {
case DMA_BIDIRECTIONAL:
return prot | IOMMU_READ | IOMMU_WRITE;
case DMA_TO_DEVICE:
return prot | IOMMU_READ;
case DMA_FROM_DEVICE:
return prot | IOMMU_WRITE;
default:
return 0;
}
}
dma_addr_t __iommu_dma_alloc_iova(struct iommu_domain *domain,
size_t size, dma_addr_t dma_limit, bool size_aligned)
{
struct iova_domain *iovad = cookie_iovad(domain);
unsigned long shift, iova_len;
shift = iova_shift(iovad);
iova_len = size >> shift;
if (is_power_of_2(iova_len)) {
unsigned long iova = 0;
/*
* We can only free and allocate power-of-two allocations
* into the IOVA caches. Nvidia only needs fast allocations
* for multithreaded optimizations on 4Kb pages, so it
* doesn't matter if other allocations take slightly longer.
*/
iova = alloc_iova_fast(iovad, iova_len,
dma_limit >> shift, size_aligned);
return (dma_addr_t) iova << shift;
} else {
struct iova *iova = NULL;
/*
* Enforce size-alignment to be safe - there could perhaps be an
* attribute to control this per-device, or at least per-domain...
*/
iova = alloc_iova(iovad, iova_len,
dma_limit >> shift, size_aligned);
if (iova)
return (dma_addr_t) iova->pfn_lo << shift;
else
return 0;
}
}
dma_addr_t iommu_dma_alloc_iova(struct device *dev, size_t size,
dma_addr_t dma_limit)
{
struct iommu_domain *domain;
domain = iommu_get_domain_for_dev(dev);
if (!domain) {
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
domain = mapping->domain;
if (!domain)
return 0;
}
return __iommu_dma_alloc_iova(domain, size, dma_limit, true);
}
void __iommu_dma_free_iova(struct iova_domain *iovad,
dma_addr_t iova, size_t size)
{
unsigned long shift = iova_shift(iovad);
if (is_power_of_2(size >> shift)) {
free_iova_fast(iovad, iova >> shift, size >> shift);
} else {
struct iova *iova_rbnode;
iova_rbnode = find_iova(iovad, iova_pfn(iovad, iova));
if (WARN_ON(!iova_rbnode))
return;
__free_iova(iovad, iova_rbnode);
}
}
void iommu_dma_free_iova(struct device *dev, dma_addr_t iova, size_t size)
{
struct iommu_domain *domain;
struct iova_domain *iovad;
domain = iommu_get_domain_for_dev(dev);
if (!domain) {
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
domain = mapping->domain;
if (!domain)
return;
}
iovad = cookie_iovad(domain);
__iommu_dma_free_iova(iovad, iova, size);
}
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
size_t size)
{
struct iova_domain *iovad = cookie_iovad(domain);
size_t iova_off = iova_offset(iovad, dma_addr);
dma_addr -= iova_off;
size = iova_align(iovad, size + iova_off);
WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
__iommu_dma_free_iova(iovad, dma_addr, size);
}
static void __iommu_dma_free_cont_pages(struct device *dev, struct page **pages,
int count)
{
dma_release_from_contiguous(dev, pages[0], count);
kvfree(pages);
}
static void __iommu_dma_free_pages(struct page **pages, int count)
{
while (count--)
__free_page(pages[count]);
kvfree(pages);
}
static struct page **__iommu_dma_alloc_cont_pages(struct device *dev,
size_t size, gfp_t gfp)
{
unsigned long order = get_order(size);
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
int array_size = count * sizeof(struct page *);
int i = 0;
struct page *page;
struct page **pages;
if (array_size <= PAGE_SIZE)
pages = kzalloc(array_size, GFP_KERNEL);
else
pages = vzalloc(array_size);
if (!pages)
return NULL;
page = dma_alloc_from_contiguous(dev, count, order);
if (!page)
goto error;
for (i = 0; i < count; i++)
pages[i] = page + i;
return pages;
error:
if (array_size <= PAGE_SIZE)
kfree(pages);
else
vfree(pages);
return NULL;
}
static struct page **__iommu_dma_alloc_pages(unsigned int count,
unsigned long order_mask, gfp_t gfp)
{
struct page **pages;
unsigned int i = 0, array_size = count * sizeof(*pages);
order_mask &= (2U << MAX_ORDER) - 1;
if (!order_mask)
return NULL;
if (array_size <= PAGE_SIZE)
pages = kzalloc(array_size, GFP_KERNEL);
else
pages = vzalloc(array_size);
if (!pages)
return NULL;
/* IOMMU can map any pages, so himem can also be used here */
if (!(gfp & GFP_DMA) && !(gfp & GFP_DMA32))
gfp |= __GFP_HIGHMEM;
gfp |= __GFP_NOWARN;
while (count) {
int j, order = __fls(count);
pages[i] = alloc_pages(gfp, order);
while (!pages[i] && order)
pages[i] = alloc_pages(gfp, --order);
if (!pages[i])
goto error;
if (order) {
split_page(pages[i], order);
j = 1 << order;
while (--j)
pages[i + j] = pages[i] + j;
}
i += 1 << order;
count -= 1 << order;
}
return pages;
error:
while (i--)
if (pages[i])
__free_pages(pages[i], 0);
if (array_size <= PAGE_SIZE)
kfree(pages);
else
vfree(pages);
return NULL;
}
/**
* iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
* @dev: Device which owns this buffer
* @pages: Array of buffer pages as returned by iommu_dma_alloc()
* @size: Size of buffer in bytes
* @handle: DMA address of buffer
*
* Frees both the pages associated with the buffer, and the array
* describing them
*/
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
dma_addr_t *handle, unsigned long attrs)
{
int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
__iommu_dma_free_cont_pages(dev, pages, count);
else
__iommu_dma_free_pages(pages, count);
*handle = DMA_ERROR_CODE;
}
/**
* iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
* @dev: Device to allocate memory for. Must be a real device
* attached to an iommu_dma_domain
* @size: Size of buffer in bytes
* @gfp: Allocation flags
* @attrs: DMA attributes for this allocation
* @prot: IOMMU mapping flags
* @handle: Out argument for allocated DMA handle
* @flush_page: Arch callback which must ensure the full sg is visible to the
* given non-coherent device.
*
* If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
* but an IOMMU which supports smaller pages might not map the whole thing.
*
* Return: Array of struct page pointers describing the buffer,
* or NULL on failure.
*/
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
unsigned long attrs, int prot, dma_addr_t *handle,
void (*flush_sg)(struct device *, struct sg_table *))
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iova_domain *iovad = cookie_iovad(domain);
struct page **pages;
struct sg_table sgt;
struct scatterlist *s;
dma_addr_t iova;
unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
int i;
min_size = alloc_sizes & -alloc_sizes;
if (min_size < PAGE_SIZE) {
min_size = PAGE_SIZE;
alloc_sizes |= PAGE_SIZE;
} else {
size = ALIGN(size, min_size);
}
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
alloc_sizes = min_size;
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
pages = __iommu_dma_alloc_cont_pages(dev, size, gfp);
else
pages = __iommu_dma_alloc_pages(count,
alloc_sizes >> PAGE_SHIFT, gfp);
if (!pages)
return NULL;
size = iova_align(iovad, size);
if (*handle == DMA_ERROR_CODE) {
iova = __iommu_dma_alloc_iova(domain, size,
dev->coherent_dma_mask, true);
} else {
phys_addr_t limit_addr = *handle + size - iovad->granule;
iova = __iommu_dma_alloc_iova(domain, size,
limit_addr, false);
if (iova != *handle) {
pr_err("iova alloc failed, da=%pad, handle=%pad, "
"size=%zx, limit=%pa, spfn=%lx, dpfn=%lx\n",
&iova, handle, size, &limit_addr,
iovad->start_pfn, iovad->dma_32bit_pfn);
__iommu_dma_free_iova(iovad, iova, size);
iova = 0;
}
}
if (!iova)
goto out_free_pages;
if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
goto out_free_iova;
for_each_sg(sgt.sgl, s, sgt.orig_nents, i) {
memset(sg_virt(s), 0, s->length);
}
if (!(prot & IOMMU_CACHE)) {
flush_sg(dev, &sgt);
}
if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
< size)
goto out_free_sg;
*handle = iova;
sg_free_table(&sgt);
return pages;
out_free_sg:
sg_free_table(&sgt);
out_free_iova:
__iommu_dma_free_iova(iovad, iova, size);
out_free_pages:
__iommu_dma_free_pages(pages, count);
return NULL;
}
/**
* iommu_dma_mmap - Map a buffer into provided user VMA
* @pages: Array representing buffer from iommu_dma_alloc()
* @size: Size of buffer in bytes
* @vma: VMA describing requested userspace mapping
*
* Maps the pages of the buffer in @pages into @vma. The caller is responsible
* for verifying the correct size and protection of @vma beforehand.
*/
int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
unsigned long uaddr = vma->vm_start;
unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
int ret = -ENXIO;
for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
ret = vm_insert_page(vma, uaddr, pages[i]);
if (ret)
break;
uaddr += PAGE_SIZE;
}
return ret;
}
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, int prot)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iova_domain *iovad = cookie_iovad(domain);
phys_addr_t phys = page_to_phys(page) + offset;
size_t iova_off = iova_offset(iovad, phys);
size_t len = iova_align(iovad, size + iova_off);
dma_addr_t dma_addr = __iommu_dma_alloc_iova(domain, len,
dma_get_mask(dev), true);
if (!dma_addr)
return DMA_ERROR_CODE;
if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
__iommu_dma_free_iova(iovad, dma_addr, size);
return DMA_ERROR_CODE;
}
return dma_addr + iova_off;
}
dma_addr_t iommu_dma_map_at(struct device *dev, dma_addr_t dma_handle,
phys_addr_t phys, size_t size, int prot)
{
dma_addr_t dma_addr;
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iova_domain *iovad = domain->iova_cookie;
size_t iova_off = iova_offset(iovad, phys);
size_t len = iova_align(iovad, size + iova_off);
/* limit addr is inclusive. */
dma_addr_t limit_addr = dma_handle + iova_align(iovad, size) -
iovad->granule;
if (iova_pfn(iovad, dma_handle) > iovad->dma_32bit_pfn) {
if (iommu_map(domain, dma_handle, phys, len, prot))
return DMA_ERROR_CODE;
return dma_handle + iova_off;
}
dma_addr = __iommu_dma_alloc_iova(domain, len, limit_addr, false);
if (!dma_addr)
return DMA_ERROR_CODE;
if (dma_addr != dma_handle) {
pr_err("iova alloc don't match, dh=%pad, da=%pad\n",
&dma_handle, &dma_addr);
__iommu_dma_free_iova(iovad, dma_addr, size);
return DMA_ERROR_CODE;
}
if (iommu_map(domain, dma_addr, phys, len, prot)) {
__iommu_dma_free_iova(iovad, dma_addr, size);
return DMA_ERROR_CODE;
}
trace_dmadebug_map_page(dev, dma_handle + iova_off, size,
phys_to_page(phys));
return dma_addr + iova_off;
}
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
}
/*
* Prepare a successfully-mapped scatterlist to give back to the caller.
*
* At this point the segments are already laid out by iommu_dma_map_sg() to
* avoid individually crossing any boundaries, so we merely need to check a
* segment's start address to avoid concatenating across one.
*/
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
dma_addr_t dma_addr)
{
struct scatterlist *s, *cur = sg;
unsigned long seg_mask = dma_get_seg_boundary(dev);
unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
int i, count = 0;
for_each_sg(sg, s, nents, i) {
/* Restore this segment's original unaligned fields first */
unsigned int s_iova_off = sg_dma_address(s);
unsigned int s_length = sg_dma_len(s);
unsigned int s_iova_len = s->length;
s->offset += s_iova_off;
s->length = s_length;
sg_dma_address(s) = DMA_ERROR_CODE;
sg_dma_len(s) = 0;
/*
* Now fill in the real DMA data. If...
* - there is a valid output segment to append to
* - and this segment starts on an IOVA page boundary
* - but doesn't fall at a segment boundary
* - and wouldn't make the resulting output segment too long
*/
if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
(max_len - cur_len >= s_length)) {
/* ...then concatenate it with the previous one */
cur_len += s_length;
} else {
/* Otherwise start the next output segment */
if (i > 0)
cur = sg_next(cur);
cur_len = s_length;
count++;
sg_dma_address(cur) = dma_addr + s_iova_off;
}
sg_dma_len(cur) = cur_len;
dma_addr += s_iova_len;
if (s_length + s_iova_off < s_iova_len)
cur_len = 0;
}
return count;
}
/*
* If mapping failed, then just restore the original list,
* but making sure the DMA fields are invalidated.
*/
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
if (sg_dma_address(s) != DMA_ERROR_CODE)
s->offset += sg_dma_address(s);
if (sg_dma_len(s))
s->length = sg_dma_len(s);
sg_dma_address(s) = DMA_ERROR_CODE;
sg_dma_len(s) = 0;
}
}
/*
* The DMA API client is passing in a scatterlist which could describe
* any old buffer layout, but the IOMMU API requires everything to be
* aligned to IOMMU pages. Hence the need for this complicated bit of
* impedance-matching, to be able to hand off a suitably-aligned list,
* but still preserve the original offsets and sizes for the caller.
*/
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, int prot)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iova_domain *iovad = cookie_iovad(domain);
struct scatterlist *s, *prev = NULL;
dma_addr_t dma_addr;
size_t iova_len = 0;
unsigned long mask = dma_get_seg_boundary(dev);
int i;
/*
* Work out how much IOVA space we need, and align the segments to
* IOVA granules for the IOMMU driver to handle. With some clever
* trickery we can modify the list in-place, but reversibly, by
* stashing the unaligned parts in the as-yet-unused DMA fields.
*/
for_each_sg(sg, s, nents, i) {
size_t s_iova_off = iova_offset(iovad, s->offset);
size_t s_length = s->length;
size_t pad_len = (mask - iova_len + 1) & mask;
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
/*
* Due to the alignment of our single IOVA allocation, we can
* depend on these assumptions about the segment boundary mask:
* - If mask size >= IOVA size, then the IOVA range cannot
* possibly fall across a boundary, so we don't care.
* - If mask size < IOVA size, then the IOVA range must start
* exactly on a boundary, therefore we can lay things out
* based purely on segment lengths without needing to know
* the actual addresses beforehand.
* - The mask must be a power of 2, so pad_len == 0 if
* iova_len == 0, thus we cannot dereference prev the first
* time through here (i.e. before it has a meaningful value).
*/
if (pad_len && pad_len < s_length - 1) {
prev->length += pad_len;
iova_len += pad_len;
}
iova_len += s_length;
prev = s;
}
dma_addr = __iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev),
true);
if (!dma_addr)
goto out_restore_sg;
/*
* We'll leave any physical concatenation to the IOMMU driver's
* implementation - it knows better than we do.
*/
if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
goto out_free_iova;
trace_dmadebug_map_sg(dev, dma_addr, sg_dma_len(sg),
sg_page(sg));
return __finalise_sg(dev, sg, nents, dma_addr);
out_free_iova:
__iommu_dma_free_iova(iovad, dma_addr, iova_len);
out_restore_sg:
__invalidate_sg(sg, nents);
return 0;
}
void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start, end;
struct scatterlist *tmp;
int i;
/*
* The scatterlist segments are mapped into a single
* contiguous IOVA allocation, so this is incredibly easy.
*/
start = sg_dma_address(sg);
for_each_sg(sg_next(sg), tmp, nents - 1, i) {
if (sg_dma_len(tmp) == 0)
break;
sg = tmp;
}
trace_dmadebug_unmap_sg(dev, sg_dma_address(sg), sg_dma_len(sg),
sg_page(sg));
end = sg_dma_address(sg) + sg_dma_len(sg);
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
}
int iommu_dma_supported(struct device *dev, u64 mask)
{
/*
* 'Special' IOMMUs which don't have the same addressing capability
* as the CPU will have to wait until we have some way to query that
* before they'll be able to use this framework.
*/
return 1;
}
int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return dma_addr == DMA_ERROR_CODE;
}
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
phys_addr_t msi_addr, struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi_page;
struct iova_domain *iovad = &cookie->iovad;
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
dma_addr_t iova;
msi_addr &= ~(phys_addr_t)iova_mask(iovad);
list_for_each_entry(msi_page, &cookie->msi_page_list, list)
if (msi_page->phys == msi_addr)
return msi_page;
msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
if (!msi_page)
return NULL;
iova = __iommu_dma_alloc_iova(domain, iovad->granule, dma_get_mask(dev),
true);
if (!iova)
goto out_free_page;
msi_page->phys = msi_addr;
msi_page->iova = iova;
if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot))
goto out_free_iova;
INIT_LIST_HEAD(&msi_page->list);
list_add(&msi_page->list, &cookie->msi_page_list);
return msi_page;
out_free_iova:
__iommu_dma_free_iova(iovad, iova, iovad->granule);
out_free_page:
kfree(msi_page);
return NULL;
}
void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie;
struct iommu_dma_msi_page *msi_page;
phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
unsigned long flags;
if (!domain || !domain->iova_cookie)
return;
cookie = domain->iova_cookie;
/*
* We disable IRQs to rule out a possible inversion against
* irq_desc_lock if, say, someone tries to retarget the affinity
* of an MSI from within an IPI handler.
*/
spin_lock_irqsave(&cookie->msi_lock, flags);
msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
spin_unlock_irqrestore(&cookie->msi_lock, flags);
if (WARN_ON(!msi_page)) {
/*
* We're called from a void callback, so the best we can do is
* 'fail' by filling the message with obviously bogus values.
* Since we got this far due to an IOMMU being present, it's
* not like the existing address would have worked anyway...
*/
msg->address_hi = ~0U;
msg->address_lo = ~0U;
msg->data = ~0U;
} else {
msg->address_hi = upper_32_bits(msi_page->iova);
msg->address_lo &= iova_mask(&cookie->iovad);
msg->address_lo += lower_32_bits(msi_page->iova);
}
}