tegrakernel/kernel/kernel-4.9/drivers/media/platform/omap3isp/ispccdc.c

2745 lines
76 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* ispccdc.c
*
* TI OMAP3 ISP - CCDC module
*
* Copyright (C) 2009-2010 Nokia Corporation
* Copyright (C) 2009 Texas Instruments, Inc.
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <media/v4l2-event.h>
#include "isp.h"
#include "ispreg.h"
#include "ispccdc.h"
#define CCDC_MIN_WIDTH 32
#define CCDC_MIN_HEIGHT 32
static struct v4l2_mbus_framefmt *
__ccdc_get_format(struct isp_ccdc_device *ccdc, struct v4l2_subdev_pad_config *cfg,
unsigned int pad, enum v4l2_subdev_format_whence which);
static const unsigned int ccdc_fmts[] = {
MEDIA_BUS_FMT_Y8_1X8,
MEDIA_BUS_FMT_Y10_1X10,
MEDIA_BUS_FMT_Y12_1X12,
MEDIA_BUS_FMT_SGRBG8_1X8,
MEDIA_BUS_FMT_SRGGB8_1X8,
MEDIA_BUS_FMT_SBGGR8_1X8,
MEDIA_BUS_FMT_SGBRG8_1X8,
MEDIA_BUS_FMT_SGRBG10_1X10,
MEDIA_BUS_FMT_SRGGB10_1X10,
MEDIA_BUS_FMT_SBGGR10_1X10,
MEDIA_BUS_FMT_SGBRG10_1X10,
MEDIA_BUS_FMT_SGRBG12_1X12,
MEDIA_BUS_FMT_SRGGB12_1X12,
MEDIA_BUS_FMT_SBGGR12_1X12,
MEDIA_BUS_FMT_SGBRG12_1X12,
MEDIA_BUS_FMT_YUYV8_2X8,
MEDIA_BUS_FMT_UYVY8_2X8,
};
/*
* ccdc_print_status - Print current CCDC Module register values.
* @ccdc: Pointer to ISP CCDC device.
*
* Also prints other debug information stored in the CCDC module.
*/
#define CCDC_PRINT_REGISTER(isp, name)\
dev_dbg(isp->dev, "###CCDC " #name "=0x%08x\n", \
isp_reg_readl(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_##name))
static void ccdc_print_status(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
dev_dbg(isp->dev, "-------------CCDC Register dump-------------\n");
CCDC_PRINT_REGISTER(isp, PCR);
CCDC_PRINT_REGISTER(isp, SYN_MODE);
CCDC_PRINT_REGISTER(isp, HD_VD_WID);
CCDC_PRINT_REGISTER(isp, PIX_LINES);
CCDC_PRINT_REGISTER(isp, HORZ_INFO);
CCDC_PRINT_REGISTER(isp, VERT_START);
CCDC_PRINT_REGISTER(isp, VERT_LINES);
CCDC_PRINT_REGISTER(isp, CULLING);
CCDC_PRINT_REGISTER(isp, HSIZE_OFF);
CCDC_PRINT_REGISTER(isp, SDOFST);
CCDC_PRINT_REGISTER(isp, SDR_ADDR);
CCDC_PRINT_REGISTER(isp, CLAMP);
CCDC_PRINT_REGISTER(isp, DCSUB);
CCDC_PRINT_REGISTER(isp, COLPTN);
CCDC_PRINT_REGISTER(isp, BLKCMP);
CCDC_PRINT_REGISTER(isp, FPC);
CCDC_PRINT_REGISTER(isp, FPC_ADDR);
CCDC_PRINT_REGISTER(isp, VDINT);
CCDC_PRINT_REGISTER(isp, ALAW);
CCDC_PRINT_REGISTER(isp, REC656IF);
CCDC_PRINT_REGISTER(isp, CFG);
CCDC_PRINT_REGISTER(isp, FMTCFG);
CCDC_PRINT_REGISTER(isp, FMT_HORZ);
CCDC_PRINT_REGISTER(isp, FMT_VERT);
CCDC_PRINT_REGISTER(isp, PRGEVEN0);
CCDC_PRINT_REGISTER(isp, PRGEVEN1);
CCDC_PRINT_REGISTER(isp, PRGODD0);
CCDC_PRINT_REGISTER(isp, PRGODD1);
CCDC_PRINT_REGISTER(isp, VP_OUT);
CCDC_PRINT_REGISTER(isp, LSC_CONFIG);
CCDC_PRINT_REGISTER(isp, LSC_INITIAL);
CCDC_PRINT_REGISTER(isp, LSC_TABLE_BASE);
CCDC_PRINT_REGISTER(isp, LSC_TABLE_OFFSET);
dev_dbg(isp->dev, "--------------------------------------------\n");
}
/*
* omap3isp_ccdc_busy - Get busy state of the CCDC.
* @ccdc: Pointer to ISP CCDC device.
*/
int omap3isp_ccdc_busy(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
return isp_reg_readl(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_PCR) &
ISPCCDC_PCR_BUSY;
}
/* -----------------------------------------------------------------------------
* Lens Shading Compensation
*/
/*
* ccdc_lsc_validate_config - Check that LSC configuration is valid.
* @ccdc: Pointer to ISP CCDC device.
* @lsc_cfg: the LSC configuration to check.
*
* Returns 0 if the LSC configuration is valid, or -EINVAL if invalid.
*/
static int ccdc_lsc_validate_config(struct isp_ccdc_device *ccdc,
struct omap3isp_ccdc_lsc_config *lsc_cfg)
{
struct isp_device *isp = to_isp_device(ccdc);
struct v4l2_mbus_framefmt *format;
unsigned int paxel_width, paxel_height;
unsigned int paxel_shift_x, paxel_shift_y;
unsigned int min_width, min_height, min_size;
unsigned int input_width, input_height;
paxel_shift_x = lsc_cfg->gain_mode_m;
paxel_shift_y = lsc_cfg->gain_mode_n;
if ((paxel_shift_x < 2) || (paxel_shift_x > 6) ||
(paxel_shift_y < 2) || (paxel_shift_y > 6)) {
dev_dbg(isp->dev, "CCDC: LSC: Invalid paxel size\n");
return -EINVAL;
}
if (lsc_cfg->offset & 3) {
dev_dbg(isp->dev, "CCDC: LSC: Offset must be a multiple of "
"4\n");
return -EINVAL;
}
if ((lsc_cfg->initial_x & 1) || (lsc_cfg->initial_y & 1)) {
dev_dbg(isp->dev, "CCDC: LSC: initial_x and y must be even\n");
return -EINVAL;
}
format = __ccdc_get_format(ccdc, NULL, CCDC_PAD_SINK,
V4L2_SUBDEV_FORMAT_ACTIVE);
input_width = format->width;
input_height = format->height;
/* Calculate minimum bytesize for validation */
paxel_width = 1 << paxel_shift_x;
min_width = ((input_width + lsc_cfg->initial_x + paxel_width - 1)
>> paxel_shift_x) + 1;
paxel_height = 1 << paxel_shift_y;
min_height = ((input_height + lsc_cfg->initial_y + paxel_height - 1)
>> paxel_shift_y) + 1;
min_size = 4 * min_width * min_height;
if (min_size > lsc_cfg->size) {
dev_dbg(isp->dev, "CCDC: LSC: too small table\n");
return -EINVAL;
}
if (lsc_cfg->offset < (min_width * 4)) {
dev_dbg(isp->dev, "CCDC: LSC: Offset is too small\n");
return -EINVAL;
}
if ((lsc_cfg->size / lsc_cfg->offset) < min_height) {
dev_dbg(isp->dev, "CCDC: LSC: Wrong size/offset combination\n");
return -EINVAL;
}
return 0;
}
/*
* ccdc_lsc_program_table - Program Lens Shading Compensation table address.
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_lsc_program_table(struct isp_ccdc_device *ccdc,
dma_addr_t addr)
{
isp_reg_writel(to_isp_device(ccdc), addr,
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_LSC_TABLE_BASE);
}
/*
* ccdc_lsc_setup_regs - Configures the lens shading compensation module
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_lsc_setup_regs(struct isp_ccdc_device *ccdc,
struct omap3isp_ccdc_lsc_config *cfg)
{
struct isp_device *isp = to_isp_device(ccdc);
int reg;
isp_reg_writel(isp, cfg->offset, OMAP3_ISP_IOMEM_CCDC,
ISPCCDC_LSC_TABLE_OFFSET);
reg = 0;
reg |= cfg->gain_mode_n << ISPCCDC_LSC_GAIN_MODE_N_SHIFT;
reg |= cfg->gain_mode_m << ISPCCDC_LSC_GAIN_MODE_M_SHIFT;
reg |= cfg->gain_format << ISPCCDC_LSC_GAIN_FORMAT_SHIFT;
isp_reg_writel(isp, reg, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_LSC_CONFIG);
reg = 0;
reg &= ~ISPCCDC_LSC_INITIAL_X_MASK;
reg |= cfg->initial_x << ISPCCDC_LSC_INITIAL_X_SHIFT;
reg &= ~ISPCCDC_LSC_INITIAL_Y_MASK;
reg |= cfg->initial_y << ISPCCDC_LSC_INITIAL_Y_SHIFT;
isp_reg_writel(isp, reg, OMAP3_ISP_IOMEM_CCDC,
ISPCCDC_LSC_INITIAL);
}
static int ccdc_lsc_wait_prefetch(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
unsigned int wait;
isp_reg_writel(isp, IRQ0STATUS_CCDC_LSC_PREF_COMP_IRQ,
OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
/* timeout 1 ms */
for (wait = 0; wait < 1000; wait++) {
if (isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS) &
IRQ0STATUS_CCDC_LSC_PREF_COMP_IRQ) {
isp_reg_writel(isp, IRQ0STATUS_CCDC_LSC_PREF_COMP_IRQ,
OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
return 0;
}
rmb();
udelay(1);
}
return -ETIMEDOUT;
}
/*
* __ccdc_lsc_enable - Enables/Disables the Lens Shading Compensation module.
* @ccdc: Pointer to ISP CCDC device.
* @enable: 0 Disables LSC, 1 Enables LSC.
*/
static int __ccdc_lsc_enable(struct isp_ccdc_device *ccdc, int enable)
{
struct isp_device *isp = to_isp_device(ccdc);
const struct v4l2_mbus_framefmt *format =
__ccdc_get_format(ccdc, NULL, CCDC_PAD_SINK,
V4L2_SUBDEV_FORMAT_ACTIVE);
if ((format->code != MEDIA_BUS_FMT_SGRBG10_1X10) &&
(format->code != MEDIA_BUS_FMT_SRGGB10_1X10) &&
(format->code != MEDIA_BUS_FMT_SBGGR10_1X10) &&
(format->code != MEDIA_BUS_FMT_SGBRG10_1X10))
return -EINVAL;
if (enable)
omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_CCDC_LSC_READ);
isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_LSC_CONFIG,
ISPCCDC_LSC_ENABLE, enable ? ISPCCDC_LSC_ENABLE : 0);
if (enable) {
if (ccdc_lsc_wait_prefetch(ccdc) < 0) {
isp_reg_clr(isp, OMAP3_ISP_IOMEM_CCDC,
ISPCCDC_LSC_CONFIG, ISPCCDC_LSC_ENABLE);
ccdc->lsc.state = LSC_STATE_STOPPED;
dev_warn(to_device(ccdc), "LSC prefetch timeout\n");
return -ETIMEDOUT;
}
ccdc->lsc.state = LSC_STATE_RUNNING;
} else {
ccdc->lsc.state = LSC_STATE_STOPPING;
}
return 0;
}
static int ccdc_lsc_busy(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
return isp_reg_readl(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_LSC_CONFIG) &
ISPCCDC_LSC_BUSY;
}
/* __ccdc_lsc_configure - Apply a new configuration to the LSC engine
* @ccdc: Pointer to ISP CCDC device
* @req: New configuration request
*
* context: in_interrupt()
*/
static int __ccdc_lsc_configure(struct isp_ccdc_device *ccdc,
struct ispccdc_lsc_config_req *req)
{
if (!req->enable)
return -EINVAL;
if (ccdc_lsc_validate_config(ccdc, &req->config) < 0) {
dev_dbg(to_device(ccdc), "Discard LSC configuration\n");
return -EINVAL;
}
if (ccdc_lsc_busy(ccdc))
return -EBUSY;
ccdc_lsc_setup_regs(ccdc, &req->config);
ccdc_lsc_program_table(ccdc, req->table.dma);
return 0;
}
/*
* ccdc_lsc_error_handler - Handle LSC prefetch error scenario.
* @ccdc: Pointer to ISP CCDC device.
*
* Disables LSC, and defers enablement to shadow registers update time.
*/
static void ccdc_lsc_error_handler(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
/*
* From OMAP3 TRM: When this event is pending, the module
* goes into transparent mode (output =input). Normal
* operation can be resumed at the start of the next frame
* after:
* 1) Clearing this event
* 2) Disabling the LSC module
* 3) Enabling it
*/
isp_reg_clr(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_LSC_CONFIG,
ISPCCDC_LSC_ENABLE);
ccdc->lsc.state = LSC_STATE_STOPPED;
}
static void ccdc_lsc_free_request(struct isp_ccdc_device *ccdc,
struct ispccdc_lsc_config_req *req)
{
struct isp_device *isp = to_isp_device(ccdc);
if (req == NULL)
return;
if (req->table.addr) {
sg_free_table(&req->table.sgt);
dma_free_coherent(isp->dev, req->config.size, req->table.addr,
req->table.dma);
}
kfree(req);
}
static void ccdc_lsc_free_queue(struct isp_ccdc_device *ccdc,
struct list_head *queue)
{
struct ispccdc_lsc_config_req *req, *n;
unsigned long flags;
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
list_for_each_entry_safe(req, n, queue, list) {
list_del(&req->list);
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
ccdc_lsc_free_request(ccdc, req);
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
}
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
}
static void ccdc_lsc_free_table_work(struct work_struct *work)
{
struct isp_ccdc_device *ccdc;
struct ispccdc_lsc *lsc;
lsc = container_of(work, struct ispccdc_lsc, table_work);
ccdc = container_of(lsc, struct isp_ccdc_device, lsc);
ccdc_lsc_free_queue(ccdc, &lsc->free_queue);
}
/*
* ccdc_lsc_config - Configure the LSC module from a userspace request
*
* Store the request LSC configuration in the LSC engine request pointer. The
* configuration will be applied to the hardware when the CCDC will be enabled,
* or at the next LSC interrupt if the CCDC is already running.
*/
static int ccdc_lsc_config(struct isp_ccdc_device *ccdc,
struct omap3isp_ccdc_update_config *config)
{
struct isp_device *isp = to_isp_device(ccdc);
struct ispccdc_lsc_config_req *req;
unsigned long flags;
u16 update;
int ret;
update = config->update &
(OMAP3ISP_CCDC_CONFIG_LSC | OMAP3ISP_CCDC_TBL_LSC);
if (!update)
return 0;
if (update != (OMAP3ISP_CCDC_CONFIG_LSC | OMAP3ISP_CCDC_TBL_LSC)) {
dev_dbg(to_device(ccdc), "%s: Both LSC configuration and table "
"need to be supplied\n", __func__);
return -EINVAL;
}
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (req == NULL)
return -ENOMEM;
if (config->flag & OMAP3ISP_CCDC_CONFIG_LSC) {
if (copy_from_user(&req->config, config->lsc_cfg,
sizeof(req->config))) {
ret = -EFAULT;
goto done;
}
req->enable = 1;
req->table.addr = dma_alloc_coherent(isp->dev, req->config.size,
&req->table.dma,
GFP_KERNEL);
if (req->table.addr == NULL) {
ret = -ENOMEM;
goto done;
}
ret = dma_get_sgtable(isp->dev, &req->table.sgt,
req->table.addr, req->table.dma,
req->config.size);
if (ret < 0)
goto done;
dma_sync_sg_for_cpu(isp->dev, req->table.sgt.sgl,
req->table.sgt.nents, DMA_TO_DEVICE);
if (copy_from_user(req->table.addr, config->lsc,
req->config.size)) {
ret = -EFAULT;
goto done;
}
dma_sync_sg_for_device(isp->dev, req->table.sgt.sgl,
req->table.sgt.nents, DMA_TO_DEVICE);
}
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
if (ccdc->lsc.request) {
list_add_tail(&ccdc->lsc.request->list, &ccdc->lsc.free_queue);
schedule_work(&ccdc->lsc.table_work);
}
ccdc->lsc.request = req;
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
ret = 0;
done:
if (ret < 0)
ccdc_lsc_free_request(ccdc, req);
return ret;
}
static inline int ccdc_lsc_is_configured(struct isp_ccdc_device *ccdc)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
ret = ccdc->lsc.active != NULL;
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
return ret;
}
static int ccdc_lsc_enable(struct isp_ccdc_device *ccdc)
{
struct ispccdc_lsc *lsc = &ccdc->lsc;
if (lsc->state != LSC_STATE_STOPPED)
return -EINVAL;
if (lsc->active) {
list_add_tail(&lsc->active->list, &lsc->free_queue);
lsc->active = NULL;
}
if (__ccdc_lsc_configure(ccdc, lsc->request) < 0) {
omap3isp_sbl_disable(to_isp_device(ccdc),
OMAP3_ISP_SBL_CCDC_LSC_READ);
list_add_tail(&lsc->request->list, &lsc->free_queue);
lsc->request = NULL;
goto done;
}
lsc->active = lsc->request;
lsc->request = NULL;
__ccdc_lsc_enable(ccdc, 1);
done:
if (!list_empty(&lsc->free_queue))
schedule_work(&lsc->table_work);
return 0;
}
/* -----------------------------------------------------------------------------
* Parameters configuration
*/
/*
* ccdc_configure_clamp - Configure optical-black or digital clamping
* @ccdc: Pointer to ISP CCDC device.
*
* The CCDC performs either optical-black or digital clamp. Configure and enable
* the selected clamp method.
*/
static void ccdc_configure_clamp(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
u32 clamp;
if (ccdc->obclamp) {
clamp = ccdc->clamp.obgain << ISPCCDC_CLAMP_OBGAIN_SHIFT;
clamp |= ccdc->clamp.oblen << ISPCCDC_CLAMP_OBSLEN_SHIFT;
clamp |= ccdc->clamp.oblines << ISPCCDC_CLAMP_OBSLN_SHIFT;
clamp |= ccdc->clamp.obstpixel << ISPCCDC_CLAMP_OBST_SHIFT;
isp_reg_writel(isp, clamp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CLAMP);
} else {
isp_reg_writel(isp, ccdc->clamp.dcsubval,
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_DCSUB);
}
isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CLAMP,
ISPCCDC_CLAMP_CLAMPEN,
ccdc->obclamp ? ISPCCDC_CLAMP_CLAMPEN : 0);
}
/*
* ccdc_configure_fpc - Configure Faulty Pixel Correction
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_configure_fpc(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
isp_reg_clr(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FPC, ISPCCDC_FPC_FPCEN);
if (!ccdc->fpc_en)
return;
isp_reg_writel(isp, ccdc->fpc.dma, OMAP3_ISP_IOMEM_CCDC,
ISPCCDC_FPC_ADDR);
/* The FPNUM field must be set before enabling FPC. */
isp_reg_writel(isp, (ccdc->fpc.fpnum << ISPCCDC_FPC_FPNUM_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FPC);
isp_reg_writel(isp, (ccdc->fpc.fpnum << ISPCCDC_FPC_FPNUM_SHIFT) |
ISPCCDC_FPC_FPCEN, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FPC);
}
/*
* ccdc_configure_black_comp - Configure Black Level Compensation.
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_configure_black_comp(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
u32 blcomp;
blcomp = ccdc->blcomp.b_mg << ISPCCDC_BLKCMP_B_MG_SHIFT;
blcomp |= ccdc->blcomp.gb_g << ISPCCDC_BLKCMP_GB_G_SHIFT;
blcomp |= ccdc->blcomp.gr_cy << ISPCCDC_BLKCMP_GR_CY_SHIFT;
blcomp |= ccdc->blcomp.r_ye << ISPCCDC_BLKCMP_R_YE_SHIFT;
isp_reg_writel(isp, blcomp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_BLKCMP);
}
/*
* ccdc_configure_lpf - Configure Low-Pass Filter (LPF).
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_configure_lpf(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SYN_MODE,
ISPCCDC_SYN_MODE_LPF,
ccdc->lpf ? ISPCCDC_SYN_MODE_LPF : 0);
}
/*
* ccdc_configure_alaw - Configure A-law compression.
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_configure_alaw(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
const struct isp_format_info *info;
u32 alaw = 0;
info = omap3isp_video_format_info(ccdc->formats[CCDC_PAD_SINK].code);
switch (info->width) {
case 8:
return;
case 10:
alaw = ISPCCDC_ALAW_GWDI_9_0;
break;
case 11:
alaw = ISPCCDC_ALAW_GWDI_10_1;
break;
case 12:
alaw = ISPCCDC_ALAW_GWDI_11_2;
break;
case 13:
alaw = ISPCCDC_ALAW_GWDI_12_3;
break;
}
if (ccdc->alaw)
alaw |= ISPCCDC_ALAW_CCDTBL;
isp_reg_writel(isp, alaw, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_ALAW);
}
/*
* ccdc_config_imgattr - Configure sensor image specific attributes.
* @ccdc: Pointer to ISP CCDC device.
* @colptn: Color pattern of the sensor.
*/
static void ccdc_config_imgattr(struct isp_ccdc_device *ccdc, u32 colptn)
{
struct isp_device *isp = to_isp_device(ccdc);
isp_reg_writel(isp, colptn, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_COLPTN);
}
/*
* ccdc_config - Set CCDC configuration from userspace
* @ccdc: Pointer to ISP CCDC device.
* @ccdc_struct: Structure containing CCDC configuration sent from userspace.
*
* Returns 0 if successful, -EINVAL if the pointer to the configuration
* structure is null, or the copy_from_user function fails to copy user space
* memory to kernel space memory.
*/
static int ccdc_config(struct isp_ccdc_device *ccdc,
struct omap3isp_ccdc_update_config *ccdc_struct)
{
struct isp_device *isp = to_isp_device(ccdc);
unsigned long flags;
spin_lock_irqsave(&ccdc->lock, flags);
ccdc->shadow_update = 1;
spin_unlock_irqrestore(&ccdc->lock, flags);
if (OMAP3ISP_CCDC_ALAW & ccdc_struct->update) {
ccdc->alaw = !!(OMAP3ISP_CCDC_ALAW & ccdc_struct->flag);
ccdc->update |= OMAP3ISP_CCDC_ALAW;
}
if (OMAP3ISP_CCDC_LPF & ccdc_struct->update) {
ccdc->lpf = !!(OMAP3ISP_CCDC_LPF & ccdc_struct->flag);
ccdc->update |= OMAP3ISP_CCDC_LPF;
}
if (OMAP3ISP_CCDC_BLCLAMP & ccdc_struct->update) {
if (copy_from_user(&ccdc->clamp, ccdc_struct->bclamp,
sizeof(ccdc->clamp))) {
ccdc->shadow_update = 0;
return -EFAULT;
}
ccdc->obclamp = !!(OMAP3ISP_CCDC_BLCLAMP & ccdc_struct->flag);
ccdc->update |= OMAP3ISP_CCDC_BLCLAMP;
}
if (OMAP3ISP_CCDC_BCOMP & ccdc_struct->update) {
if (copy_from_user(&ccdc->blcomp, ccdc_struct->blcomp,
sizeof(ccdc->blcomp))) {
ccdc->shadow_update = 0;
return -EFAULT;
}
ccdc->update |= OMAP3ISP_CCDC_BCOMP;
}
ccdc->shadow_update = 0;
if (OMAP3ISP_CCDC_FPC & ccdc_struct->update) {
struct omap3isp_ccdc_fpc fpc;
struct ispccdc_fpc fpc_old = { .addr = NULL, };
struct ispccdc_fpc fpc_new;
u32 size;
if (ccdc->state != ISP_PIPELINE_STREAM_STOPPED)
return -EBUSY;
ccdc->fpc_en = !!(OMAP3ISP_CCDC_FPC & ccdc_struct->flag);
if (ccdc->fpc_en) {
if (copy_from_user(&fpc, ccdc_struct->fpc, sizeof(fpc)))
return -EFAULT;
size = fpc.fpnum * 4;
/*
* The table address must be 64-bytes aligned, which is
* guaranteed by dma_alloc_coherent().
*/
fpc_new.fpnum = fpc.fpnum;
fpc_new.addr = dma_alloc_coherent(isp->dev, size,
&fpc_new.dma,
GFP_KERNEL);
if (fpc_new.addr == NULL)
return -ENOMEM;
if (copy_from_user(fpc_new.addr,
(__force void __user *)fpc.fpcaddr,
size)) {
dma_free_coherent(isp->dev, size, fpc_new.addr,
fpc_new.dma);
return -EFAULT;
}
fpc_old = ccdc->fpc;
ccdc->fpc = fpc_new;
}
ccdc_configure_fpc(ccdc);
if (fpc_old.addr != NULL)
dma_free_coherent(isp->dev, fpc_old.fpnum * 4,
fpc_old.addr, fpc_old.dma);
}
return ccdc_lsc_config(ccdc, ccdc_struct);
}
static void ccdc_apply_controls(struct isp_ccdc_device *ccdc)
{
if (ccdc->update & OMAP3ISP_CCDC_ALAW) {
ccdc_configure_alaw(ccdc);
ccdc->update &= ~OMAP3ISP_CCDC_ALAW;
}
if (ccdc->update & OMAP3ISP_CCDC_LPF) {
ccdc_configure_lpf(ccdc);
ccdc->update &= ~OMAP3ISP_CCDC_LPF;
}
if (ccdc->update & OMAP3ISP_CCDC_BLCLAMP) {
ccdc_configure_clamp(ccdc);
ccdc->update &= ~OMAP3ISP_CCDC_BLCLAMP;
}
if (ccdc->update & OMAP3ISP_CCDC_BCOMP) {
ccdc_configure_black_comp(ccdc);
ccdc->update &= ~OMAP3ISP_CCDC_BCOMP;
}
}
/*
* omap3isp_ccdc_restore_context - Restore values of the CCDC module registers
* @isp: Pointer to ISP device
*/
void omap3isp_ccdc_restore_context(struct isp_device *isp)
{
struct isp_ccdc_device *ccdc = &isp->isp_ccdc;
isp_reg_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CFG, ISPCCDC_CFG_VDLC);
ccdc->update = OMAP3ISP_CCDC_ALAW | OMAP3ISP_CCDC_LPF
| OMAP3ISP_CCDC_BLCLAMP | OMAP3ISP_CCDC_BCOMP;
ccdc_apply_controls(ccdc);
ccdc_configure_fpc(ccdc);
}
/* -----------------------------------------------------------------------------
* Format- and pipeline-related configuration helpers
*/
/*
* ccdc_config_vp - Configure the Video Port.
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_config_vp(struct isp_ccdc_device *ccdc)
{
struct isp_pipeline *pipe = to_isp_pipeline(&ccdc->subdev.entity);
struct isp_device *isp = to_isp_device(ccdc);
const struct isp_format_info *info;
struct v4l2_mbus_framefmt *format;
unsigned long l3_ick = pipe->l3_ick;
unsigned int max_div = isp->revision == ISP_REVISION_15_0 ? 64 : 8;
unsigned int div = 0;
u32 fmtcfg = ISPCCDC_FMTCFG_VPEN;
format = &ccdc->formats[CCDC_PAD_SOURCE_VP];
if (!format->code) {
/* Disable the video port when the input format isn't supported.
* This is indicated by a pixel code set to 0.
*/
isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FMTCFG);
return;
}
isp_reg_writel(isp, (0 << ISPCCDC_FMT_HORZ_FMTSPH_SHIFT) |
(format->width << ISPCCDC_FMT_HORZ_FMTLNH_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FMT_HORZ);
isp_reg_writel(isp, (0 << ISPCCDC_FMT_VERT_FMTSLV_SHIFT) |
((format->height + 1) << ISPCCDC_FMT_VERT_FMTLNV_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FMT_VERT);
isp_reg_writel(isp, (format->width << ISPCCDC_VP_OUT_HORZ_NUM_SHIFT) |
(format->height << ISPCCDC_VP_OUT_VERT_NUM_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_VP_OUT);
info = omap3isp_video_format_info(ccdc->formats[CCDC_PAD_SINK].code);
switch (info->width) {
case 8:
case 10:
fmtcfg |= ISPCCDC_FMTCFG_VPIN_9_0;
break;
case 11:
fmtcfg |= ISPCCDC_FMTCFG_VPIN_10_1;
break;
case 12:
fmtcfg |= ISPCCDC_FMTCFG_VPIN_11_2;
break;
case 13:
fmtcfg |= ISPCCDC_FMTCFG_VPIN_12_3;
break;
}
if (pipe->input)
div = DIV_ROUND_UP(l3_ick, pipe->max_rate);
else if (pipe->external_rate)
div = l3_ick / pipe->external_rate;
div = clamp(div, 2U, max_div);
fmtcfg |= (div - 2) << ISPCCDC_FMTCFG_VPIF_FRQ_SHIFT;
isp_reg_writel(isp, fmtcfg, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_FMTCFG);
}
/*
* ccdc_config_outlineoffset - Configure memory saving output line offset
* @ccdc: Pointer to ISP CCDC device.
* @bpl: Number of bytes per line when stored in memory.
* @field: Field order when storing interlaced formats in memory.
*
* Configure the offsets for the line output control:
*
* - The horizontal line offset is defined as the number of bytes between the
* start of two consecutive lines in memory. Set it to the given bytes per
* line value.
*
* - The field offset value is defined as the number of lines to offset the
* start of the field identified by FID = 1. Set it to one.
*
* - The line offset values are defined as the number of lines (as defined by
* the horizontal line offset) between the start of two consecutive lines for
* all combinations of odd/even lines in odd/even fields. When interleaving
* fields set them all to two lines, and to one line otherwise.
*/
static void ccdc_config_outlineoffset(struct isp_ccdc_device *ccdc,
unsigned int bpl,
enum v4l2_field field)
{
struct isp_device *isp = to_isp_device(ccdc);
u32 sdofst = 0;
isp_reg_writel(isp, bpl & 0xffff, OMAP3_ISP_IOMEM_CCDC,
ISPCCDC_HSIZE_OFF);
switch (field) {
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_INTERLACED_BT:
/* When interleaving fields in memory offset field one by one
* line and set the line offset to two lines.
*/
sdofst |= (1 << ISPCCDC_SDOFST_LOFST0_SHIFT)
| (1 << ISPCCDC_SDOFST_LOFST1_SHIFT)
| (1 << ISPCCDC_SDOFST_LOFST2_SHIFT)
| (1 << ISPCCDC_SDOFST_LOFST3_SHIFT);
break;
default:
/* In all other cases set the line offsets to one line. */
break;
}
isp_reg_writel(isp, sdofst, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SDOFST);
}
/*
* ccdc_set_outaddr - Set memory address to save output image
* @ccdc: Pointer to ISP CCDC device.
* @addr: ISP MMU Mapped 32-bit memory address aligned on 32 byte boundary.
*
* Sets the memory address where the output will be saved.
*/
static void ccdc_set_outaddr(struct isp_ccdc_device *ccdc, u32 addr)
{
struct isp_device *isp = to_isp_device(ccdc);
isp_reg_writel(isp, addr, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SDR_ADDR);
}
/*
* omap3isp_ccdc_max_rate - Calculate maximum input data rate based on the input
* @ccdc: Pointer to ISP CCDC device.
* @max_rate: Maximum calculated data rate.
*
* Returns in *max_rate less value between calculated and passed
*/
void omap3isp_ccdc_max_rate(struct isp_ccdc_device *ccdc,
unsigned int *max_rate)
{
struct isp_pipeline *pipe = to_isp_pipeline(&ccdc->subdev.entity);
unsigned int rate;
if (pipe == NULL)
return;
/*
* TRM says that for parallel sensors the maximum data rate
* should be 90% form L3/2 clock, otherwise just L3/2.
*/
if (ccdc->input == CCDC_INPUT_PARALLEL)
rate = pipe->l3_ick / 2 * 9 / 10;
else
rate = pipe->l3_ick / 2;
*max_rate = min(*max_rate, rate);
}
/*
* ccdc_config_sync_if - Set CCDC sync interface configuration
* @ccdc: Pointer to ISP CCDC device.
* @parcfg: Parallel interface platform data (may be NULL)
* @data_size: Data size
*/
static void ccdc_config_sync_if(struct isp_ccdc_device *ccdc,
struct isp_parallel_cfg *parcfg,
unsigned int data_size)
{
struct isp_device *isp = to_isp_device(ccdc);
const struct v4l2_mbus_framefmt *format;
u32 syn_mode = ISPCCDC_SYN_MODE_VDHDEN;
format = &ccdc->formats[CCDC_PAD_SINK];
if (format->code == MEDIA_BUS_FMT_YUYV8_2X8 ||
format->code == MEDIA_BUS_FMT_UYVY8_2X8) {
/* According to the OMAP3 TRM the input mode only affects SYNC
* mode, enabling BT.656 mode should take precedence. However,
* in practice setting the input mode to YCbCr data on 8 bits
* seems to be required in BT.656 mode. In SYNC mode set it to
* YCbCr on 16 bits as the bridge is enabled in that case.
*/
if (ccdc->bt656)
syn_mode |= ISPCCDC_SYN_MODE_INPMOD_YCBCR8;
else
syn_mode |= ISPCCDC_SYN_MODE_INPMOD_YCBCR16;
}
switch (data_size) {
case 8:
syn_mode |= ISPCCDC_SYN_MODE_DATSIZ_8;
break;
case 10:
syn_mode |= ISPCCDC_SYN_MODE_DATSIZ_10;
break;
case 11:
syn_mode |= ISPCCDC_SYN_MODE_DATSIZ_11;
break;
case 12:
syn_mode |= ISPCCDC_SYN_MODE_DATSIZ_12;
break;
}
if (parcfg && parcfg->data_pol)
syn_mode |= ISPCCDC_SYN_MODE_DATAPOL;
if (parcfg && parcfg->hs_pol)
syn_mode |= ISPCCDC_SYN_MODE_HDPOL;
/* The polarity of the vertical sync signal output by the BT.656
* decoder is not documented and seems to be active low.
*/
if ((parcfg && parcfg->vs_pol) || ccdc->bt656)
syn_mode |= ISPCCDC_SYN_MODE_VDPOL;
if (parcfg && parcfg->fld_pol)
syn_mode |= ISPCCDC_SYN_MODE_FLDPOL;
isp_reg_writel(isp, syn_mode, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SYN_MODE);
/* The CCDC_CFG.Y8POS bit is used in YCbCr8 input mode only. The
* hardware seems to ignore it in all other input modes.
*/
if (format->code == MEDIA_BUS_FMT_UYVY8_2X8)
isp_reg_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CFG,
ISPCCDC_CFG_Y8POS);
else
isp_reg_clr(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CFG,
ISPCCDC_CFG_Y8POS);
/* Enable or disable BT.656 mode, including error correction for the
* synchronization codes.
*/
if (ccdc->bt656)
isp_reg_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_REC656IF,
ISPCCDC_REC656IF_R656ON | ISPCCDC_REC656IF_ECCFVH);
else
isp_reg_clr(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_REC656IF,
ISPCCDC_REC656IF_R656ON | ISPCCDC_REC656IF_ECCFVH);
}
/* CCDC formats descriptions */
static const u32 ccdc_sgrbg_pattern =
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP0PLC0_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP0PLC1_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP0PLC2_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP0PLC3_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP1PLC0_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP1PLC1_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP1PLC2_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP1PLC3_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP2PLC0_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP2PLC1_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP2PLC2_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP2PLC3_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP3PLC0_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP3PLC1_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP3PLC2_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP3PLC3_SHIFT;
static const u32 ccdc_srggb_pattern =
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP0PLC0_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP0PLC1_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP0PLC2_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP0PLC3_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP1PLC0_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP1PLC1_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP1PLC2_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP1PLC3_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP2PLC0_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP2PLC1_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP2PLC2_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP2PLC3_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP3PLC0_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP3PLC1_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP3PLC2_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP3PLC3_SHIFT;
static const u32 ccdc_sbggr_pattern =
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP0PLC0_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP0PLC1_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP0PLC2_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP0PLC3_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP1PLC0_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP1PLC1_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP1PLC2_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP1PLC3_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP2PLC0_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP2PLC1_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP2PLC2_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP2PLC3_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP3PLC0_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP3PLC1_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP3PLC2_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP3PLC3_SHIFT;
static const u32 ccdc_sgbrg_pattern =
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP0PLC0_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP0PLC1_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP0PLC2_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP0PLC3_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP1PLC0_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP1PLC1_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP1PLC2_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP1PLC3_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP2PLC0_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP2PLC1_SHIFT |
ISPCCDC_COLPTN_Gb_G << ISPCCDC_COLPTN_CP2PLC2_SHIFT |
ISPCCDC_COLPTN_B_Mg << ISPCCDC_COLPTN_CP2PLC3_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP3PLC0_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP3PLC1_SHIFT |
ISPCCDC_COLPTN_R_Ye << ISPCCDC_COLPTN_CP3PLC2_SHIFT |
ISPCCDC_COLPTN_Gr_Cy << ISPCCDC_COLPTN_CP3PLC3_SHIFT;
static void ccdc_configure(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
struct isp_parallel_cfg *parcfg = NULL;
struct v4l2_subdev *sensor;
struct v4l2_mbus_framefmt *format;
const struct v4l2_rect *crop;
const struct isp_format_info *fmt_info;
struct v4l2_subdev_format fmt_src;
unsigned int depth_out;
unsigned int depth_in = 0;
struct media_pad *pad;
unsigned long flags;
unsigned int bridge;
unsigned int shift;
unsigned int nph;
unsigned int sph;
u32 syn_mode;
u32 ccdc_pattern;
ccdc->bt656 = false;
ccdc->fields = 0;
pad = media_entity_remote_pad(&ccdc->pads[CCDC_PAD_SINK]);
sensor = media_entity_to_v4l2_subdev(pad->entity);
if (ccdc->input == CCDC_INPUT_PARALLEL) {
struct v4l2_mbus_config cfg;
int ret;
ret = v4l2_subdev_call(sensor, video, g_mbus_config, &cfg);
if (!ret)
ccdc->bt656 = cfg.type == V4L2_MBUS_BT656;
parcfg = &((struct isp_bus_cfg *)sensor->host_priv)
->bus.parallel;
}
/* CCDC_PAD_SINK */
format = &ccdc->formats[CCDC_PAD_SINK];
/* Compute the lane shifter shift value and enable the bridge when the
* input format is a non-BT.656 YUV variant.
*/
fmt_src.pad = pad->index;
fmt_src.which = V4L2_SUBDEV_FORMAT_ACTIVE;
if (!v4l2_subdev_call(sensor, pad, get_fmt, NULL, &fmt_src)) {
fmt_info = omap3isp_video_format_info(fmt_src.format.code);
depth_in = fmt_info->width;
}
fmt_info = omap3isp_video_format_info(format->code);
depth_out = fmt_info->width;
shift = depth_in - depth_out;
if (ccdc->bt656)
bridge = ISPCTRL_PAR_BRIDGE_DISABLE;
else if (fmt_info->code == MEDIA_BUS_FMT_YUYV8_2X8)
bridge = ISPCTRL_PAR_BRIDGE_LENDIAN;
else if (fmt_info->code == MEDIA_BUS_FMT_UYVY8_2X8)
bridge = ISPCTRL_PAR_BRIDGE_BENDIAN;
else
bridge = ISPCTRL_PAR_BRIDGE_DISABLE;
omap3isp_configure_bridge(isp, ccdc->input, parcfg, shift, bridge);
/* Configure the sync interface. */
ccdc_config_sync_if(ccdc, parcfg, depth_out);
syn_mode = isp_reg_readl(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SYN_MODE);
/* Use the raw, unprocessed data when writing to memory. The H3A and
* histogram modules are still fed with lens shading corrected data.
*/
syn_mode &= ~ISPCCDC_SYN_MODE_VP2SDR;
if (ccdc->output & CCDC_OUTPUT_MEMORY)
syn_mode |= ISPCCDC_SYN_MODE_WEN;
else
syn_mode &= ~ISPCCDC_SYN_MODE_WEN;
if (ccdc->output & CCDC_OUTPUT_RESIZER)
syn_mode |= ISPCCDC_SYN_MODE_SDR2RSZ;
else
syn_mode &= ~ISPCCDC_SYN_MODE_SDR2RSZ;
/* Mosaic filter */
switch (format->code) {
case MEDIA_BUS_FMT_SRGGB10_1X10:
case MEDIA_BUS_FMT_SRGGB12_1X12:
ccdc_pattern = ccdc_srggb_pattern;
break;
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SBGGR12_1X12:
ccdc_pattern = ccdc_sbggr_pattern;
break;
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGBRG12_1X12:
ccdc_pattern = ccdc_sgbrg_pattern;
break;
default:
/* Use GRBG */
ccdc_pattern = ccdc_sgrbg_pattern;
break;
}
ccdc_config_imgattr(ccdc, ccdc_pattern);
/* Generate VD0 on the last line of the image and VD1 on the
* 2/3 height line.
*/
isp_reg_writel(isp, ((format->height - 2) << ISPCCDC_VDINT_0_SHIFT) |
((format->height * 2 / 3) << ISPCCDC_VDINT_1_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_VDINT);
/* CCDC_PAD_SOURCE_OF */
format = &ccdc->formats[CCDC_PAD_SOURCE_OF];
crop = &ccdc->crop;
/* The horizontal coordinates are expressed in pixel clock cycles. We
* need two cycles per pixel in BT.656 mode, and one cycle per pixel in
* SYNC mode regardless of the format as the bridge is enabled for YUV
* formats in that case.
*/
if (ccdc->bt656) {
sph = crop->left * 2;
nph = crop->width * 2 - 1;
} else {
sph = crop->left;
nph = crop->width - 1;
}
isp_reg_writel(isp, (sph << ISPCCDC_HORZ_INFO_SPH_SHIFT) |
(nph << ISPCCDC_HORZ_INFO_NPH_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_HORZ_INFO);
isp_reg_writel(isp, (crop->top << ISPCCDC_VERT_START_SLV0_SHIFT) |
(crop->top << ISPCCDC_VERT_START_SLV1_SHIFT),
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_VERT_START);
isp_reg_writel(isp, (crop->height - 1)
<< ISPCCDC_VERT_LINES_NLV_SHIFT,
OMAP3_ISP_IOMEM_CCDC, ISPCCDC_VERT_LINES);
ccdc_config_outlineoffset(ccdc, ccdc->video_out.bpl_value,
format->field);
/* When interleaving fields enable processing of the field input signal.
* This will cause the line output control module to apply the field
* offset to field 1.
*/
if (ccdc->formats[CCDC_PAD_SINK].field == V4L2_FIELD_ALTERNATE &&
(format->field == V4L2_FIELD_INTERLACED_TB ||
format->field == V4L2_FIELD_INTERLACED_BT))
syn_mode |= ISPCCDC_SYN_MODE_FLDMODE;
/* The CCDC outputs data in UYVY order by default. Swap bytes to get
* YUYV.
*/
if (format->code == MEDIA_BUS_FMT_YUYV8_1X16)
isp_reg_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CFG,
ISPCCDC_CFG_BSWD);
else
isp_reg_clr(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CFG,
ISPCCDC_CFG_BSWD);
/* Use PACK8 mode for 1byte per pixel formats. Check for BT.656 mode
* explicitly as the driver reports 1X16 instead of 2X8 at the OF pad
* for simplicity.
*/
if (omap3isp_video_format_info(format->code)->width <= 8 || ccdc->bt656)
syn_mode |= ISPCCDC_SYN_MODE_PACK8;
else
syn_mode &= ~ISPCCDC_SYN_MODE_PACK8;
isp_reg_writel(isp, syn_mode, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SYN_MODE);
/* CCDC_PAD_SOURCE_VP */
ccdc_config_vp(ccdc);
/* Lens shading correction. */
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
if (ccdc->lsc.request == NULL)
goto unlock;
WARN_ON(ccdc->lsc.active);
/* Get last good LSC configuration. If it is not supported for
* the current active resolution discard it.
*/
if (ccdc->lsc.active == NULL &&
__ccdc_lsc_configure(ccdc, ccdc->lsc.request) == 0) {
ccdc->lsc.active = ccdc->lsc.request;
} else {
list_add_tail(&ccdc->lsc.request->list, &ccdc->lsc.free_queue);
schedule_work(&ccdc->lsc.table_work);
}
ccdc->lsc.request = NULL;
unlock:
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
ccdc_apply_controls(ccdc);
}
static void __ccdc_enable(struct isp_ccdc_device *ccdc, int enable)
{
struct isp_device *isp = to_isp_device(ccdc);
isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_PCR,
ISPCCDC_PCR_EN, enable ? ISPCCDC_PCR_EN : 0);
ccdc->running = enable;
}
static int ccdc_disable(struct isp_ccdc_device *ccdc)
{
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&ccdc->lock, flags);
if (ccdc->state == ISP_PIPELINE_STREAM_CONTINUOUS)
ccdc->stopping = CCDC_STOP_REQUEST;
if (!ccdc->running)
ccdc->stopping = CCDC_STOP_FINISHED;
spin_unlock_irqrestore(&ccdc->lock, flags);
ret = wait_event_timeout(ccdc->wait,
ccdc->stopping == CCDC_STOP_FINISHED,
msecs_to_jiffies(2000));
if (ret == 0) {
ret = -ETIMEDOUT;
dev_warn(to_device(ccdc), "CCDC stop timeout!\n");
}
omap3isp_sbl_disable(to_isp_device(ccdc), OMAP3_ISP_SBL_CCDC_LSC_READ);
mutex_lock(&ccdc->ioctl_lock);
ccdc_lsc_free_request(ccdc, ccdc->lsc.request);
ccdc->lsc.request = ccdc->lsc.active;
ccdc->lsc.active = NULL;
cancel_work_sync(&ccdc->lsc.table_work);
ccdc_lsc_free_queue(ccdc, &ccdc->lsc.free_queue);
mutex_unlock(&ccdc->ioctl_lock);
ccdc->stopping = CCDC_STOP_NOT_REQUESTED;
return ret > 0 ? 0 : ret;
}
static void ccdc_enable(struct isp_ccdc_device *ccdc)
{
if (ccdc_lsc_is_configured(ccdc))
__ccdc_lsc_enable(ccdc, 1);
__ccdc_enable(ccdc, 1);
}
/* -----------------------------------------------------------------------------
* Interrupt handling
*/
/*
* ccdc_sbl_busy - Poll idle state of CCDC and related SBL memory write bits
* @ccdc: Pointer to ISP CCDC device.
*
* Returns zero if the CCDC is idle and the image has been written to
* memory, too.
*/
static int ccdc_sbl_busy(struct isp_ccdc_device *ccdc)
{
struct isp_device *isp = to_isp_device(ccdc);
return omap3isp_ccdc_busy(ccdc)
| (isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_CCDC_WR_0) &
ISPSBL_CCDC_WR_0_DATA_READY)
| (isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_CCDC_WR_1) &
ISPSBL_CCDC_WR_0_DATA_READY)
| (isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_CCDC_WR_2) &
ISPSBL_CCDC_WR_0_DATA_READY)
| (isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_CCDC_WR_3) &
ISPSBL_CCDC_WR_0_DATA_READY);
}
/*
* ccdc_sbl_wait_idle - Wait until the CCDC and related SBL are idle
* @ccdc: Pointer to ISP CCDC device.
* @max_wait: Max retry count in us for wait for idle/busy transition.
*/
static int ccdc_sbl_wait_idle(struct isp_ccdc_device *ccdc,
unsigned int max_wait)
{
unsigned int wait = 0;
if (max_wait == 0)
max_wait = 10000; /* 10 ms */
for (wait = 0; wait <= max_wait; wait++) {
if (!ccdc_sbl_busy(ccdc))
return 0;
rmb();
udelay(1);
}
return -EBUSY;
}
/* ccdc_handle_stopping - Handle CCDC and/or LSC stopping sequence
* @ccdc: Pointer to ISP CCDC device.
* @event: Pointing which event trigger handler
*
* Return 1 when the event and stopping request combination is satisfied,
* zero otherwise.
*/
static int ccdc_handle_stopping(struct isp_ccdc_device *ccdc, u32 event)
{
int rval = 0;
switch ((ccdc->stopping & 3) | event) {
case CCDC_STOP_REQUEST | CCDC_EVENT_VD1:
if (ccdc->lsc.state != LSC_STATE_STOPPED)
__ccdc_lsc_enable(ccdc, 0);
__ccdc_enable(ccdc, 0);
ccdc->stopping = CCDC_STOP_EXECUTED;
return 1;
case CCDC_STOP_EXECUTED | CCDC_EVENT_VD0:
ccdc->stopping |= CCDC_STOP_CCDC_FINISHED;
if (ccdc->lsc.state == LSC_STATE_STOPPED)
ccdc->stopping |= CCDC_STOP_LSC_FINISHED;
rval = 1;
break;
case CCDC_STOP_EXECUTED | CCDC_EVENT_LSC_DONE:
ccdc->stopping |= CCDC_STOP_LSC_FINISHED;
rval = 1;
break;
case CCDC_STOP_EXECUTED | CCDC_EVENT_VD1:
return 1;
}
if (ccdc->stopping == CCDC_STOP_FINISHED) {
wake_up(&ccdc->wait);
rval = 1;
}
return rval;
}
static void ccdc_hs_vs_isr(struct isp_ccdc_device *ccdc)
{
struct isp_pipeline *pipe = to_isp_pipeline(&ccdc->subdev.entity);
struct video_device *vdev = ccdc->subdev.devnode;
struct v4l2_event event;
/* Frame number propagation */
atomic_inc(&pipe->frame_number);
memset(&event, 0, sizeof(event));
event.type = V4L2_EVENT_FRAME_SYNC;
event.u.frame_sync.frame_sequence = atomic_read(&pipe->frame_number);
v4l2_event_queue(vdev, &event);
}
/*
* ccdc_lsc_isr - Handle LSC events
* @ccdc: Pointer to ISP CCDC device.
* @events: LSC events
*/
static void ccdc_lsc_isr(struct isp_ccdc_device *ccdc, u32 events)
{
unsigned long flags;
if (events & IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ) {
struct isp_pipeline *pipe =
to_isp_pipeline(&ccdc->subdev.entity);
ccdc_lsc_error_handler(ccdc);
pipe->error = true;
dev_dbg(to_device(ccdc), "lsc prefetch error\n");
}
if (!(events & IRQ0STATUS_CCDC_LSC_DONE_IRQ))
return;
/* LSC_DONE interrupt occur, there are two cases
* 1. stopping for reconfiguration
* 2. stopping because of STREAM OFF command
*/
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
if (ccdc->lsc.state == LSC_STATE_STOPPING)
ccdc->lsc.state = LSC_STATE_STOPPED;
if (ccdc_handle_stopping(ccdc, CCDC_EVENT_LSC_DONE))
goto done;
if (ccdc->lsc.state != LSC_STATE_RECONFIG)
goto done;
/* LSC is in STOPPING state, change to the new state */
ccdc->lsc.state = LSC_STATE_STOPPED;
/* This is an exception. Start of frame and LSC_DONE interrupt
* have been received on the same time. Skip this event and wait
* for better times.
*/
if (events & IRQ0STATUS_HS_VS_IRQ)
goto done;
/* The LSC engine is stopped at this point. Enable it if there's a
* pending request.
*/
if (ccdc->lsc.request == NULL)
goto done;
ccdc_lsc_enable(ccdc);
done:
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
}
/*
* Check whether the CCDC has captured all fields necessary to complete the
* buffer.
*/
static bool ccdc_has_all_fields(struct isp_ccdc_device *ccdc)
{
struct isp_pipeline *pipe = to_isp_pipeline(&ccdc->subdev.entity);
struct isp_device *isp = to_isp_device(ccdc);
enum v4l2_field of_field = ccdc->formats[CCDC_PAD_SOURCE_OF].field;
enum v4l2_field field;
/* When the input is progressive fields don't matter. */
if (of_field == V4L2_FIELD_NONE)
return true;
/* Read the current field identifier. */
field = isp_reg_readl(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_SYN_MODE)
& ISPCCDC_SYN_MODE_FLDSTAT
? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
/* When capturing fields in alternate order just store the current field
* identifier in the pipeline.
*/
if (of_field == V4L2_FIELD_ALTERNATE) {
pipe->field = field;
return true;
}
/* The format is interlaced. Make sure we've captured both fields. */
ccdc->fields |= field == V4L2_FIELD_BOTTOM
? CCDC_FIELD_BOTTOM : CCDC_FIELD_TOP;
if (ccdc->fields != CCDC_FIELD_BOTH)
return false;
/* Verify that the field just captured corresponds to the last field
* needed based on the desired field order.
*/
if ((of_field == V4L2_FIELD_INTERLACED_TB && field == V4L2_FIELD_TOP) ||
(of_field == V4L2_FIELD_INTERLACED_BT && field == V4L2_FIELD_BOTTOM))
return false;
/* The buffer can be completed, reset the fields for the next buffer. */
ccdc->fields = 0;
return true;
}
static int ccdc_isr_buffer(struct isp_ccdc_device *ccdc)
{
struct isp_pipeline *pipe = to_isp_pipeline(&ccdc->subdev.entity);
struct isp_device *isp = to_isp_device(ccdc);
struct isp_buffer *buffer;
/* The CCDC generates VD0 interrupts even when disabled (the datasheet
* doesn't explicitly state if that's supposed to happen or not, so it
* can be considered as a hardware bug or as a feature, but we have to
* deal with it anyway). Disabling the CCDC when no buffer is available
* would thus not be enough, we need to handle the situation explicitly.
*/
if (list_empty(&ccdc->video_out.dmaqueue))
return 0;
/* We're in continuous mode, and memory writes were disabled due to a
* buffer underrun. Reenable them now that we have a buffer. The buffer
* address has been set in ccdc_video_queue.
*/
if (ccdc->state == ISP_PIPELINE_STREAM_CONTINUOUS && ccdc->underrun) {
ccdc->underrun = 0;
return 1;
}
/* Wait for the CCDC to become idle. */
if (ccdc_sbl_wait_idle(ccdc, 1000)) {
dev_info(isp->dev, "CCDC won't become idle!\n");
media_entity_enum_set(&isp->crashed, &ccdc->subdev.entity);
omap3isp_pipeline_cancel_stream(pipe);
return 0;
}
if (!ccdc_has_all_fields(ccdc))
return 1;
buffer = omap3isp_video_buffer_next(&ccdc->video_out);
if (buffer != NULL)
ccdc_set_outaddr(ccdc, buffer->dma);
pipe->state |= ISP_PIPELINE_IDLE_OUTPUT;
if (ccdc->state == ISP_PIPELINE_STREAM_SINGLESHOT &&
isp_pipeline_ready(pipe))
omap3isp_pipeline_set_stream(pipe,
ISP_PIPELINE_STREAM_SINGLESHOT);
return buffer != NULL;
}
/*
* ccdc_vd0_isr - Handle VD0 event
* @ccdc: Pointer to ISP CCDC device.
*
* Executes LSC deferred enablement before next frame starts.
*/
static void ccdc_vd0_isr(struct isp_ccdc_device *ccdc)
{
unsigned long flags;
int restart = 0;
/* In BT.656 mode the CCDC doesn't generate an HS/VS interrupt. We thus
* need to increment the frame counter here.
*/
if (ccdc->bt656) {
struct isp_pipeline *pipe =
to_isp_pipeline(&ccdc->subdev.entity);
atomic_inc(&pipe->frame_number);
}
/* Emulate a VD1 interrupt for BT.656 mode, as we can't stop the CCDC in
* the VD1 interrupt handler in that mode without risking a CCDC stall
* if a short frame is received.
*/
if (ccdc->bt656) {
spin_lock_irqsave(&ccdc->lock, flags);
if (ccdc->state == ISP_PIPELINE_STREAM_CONTINUOUS &&
ccdc->output & CCDC_OUTPUT_MEMORY) {
if (ccdc->lsc.state != LSC_STATE_STOPPED)
__ccdc_lsc_enable(ccdc, 0);
__ccdc_enable(ccdc, 0);
}
ccdc_handle_stopping(ccdc, CCDC_EVENT_VD1);
spin_unlock_irqrestore(&ccdc->lock, flags);
}
if (ccdc->output & CCDC_OUTPUT_MEMORY)
restart = ccdc_isr_buffer(ccdc);
spin_lock_irqsave(&ccdc->lock, flags);
if (ccdc_handle_stopping(ccdc, CCDC_EVENT_VD0)) {
spin_unlock_irqrestore(&ccdc->lock, flags);
return;
}
if (!ccdc->shadow_update)
ccdc_apply_controls(ccdc);
spin_unlock_irqrestore(&ccdc->lock, flags);
if (restart)
ccdc_enable(ccdc);
}
/*
* ccdc_vd1_isr - Handle VD1 event
* @ccdc: Pointer to ISP CCDC device.
*/
static void ccdc_vd1_isr(struct isp_ccdc_device *ccdc)
{
unsigned long flags;
/* In BT.656 mode the synchronization signals are generated by the CCDC
* from the embedded sync codes. The VD0 and VD1 interrupts are thus
* only triggered when the CCDC is enabled, unlike external sync mode
* where the line counter runs even when the CCDC is stopped. We can't
* disable the CCDC at VD1 time, as no VD0 interrupt would be generated
* for a short frame, which would result in the CCDC being stopped and
* no VD interrupt generated anymore. The CCDC is stopped from the VD0
* interrupt handler instead for BT.656.
*/
if (ccdc->bt656)
return;
spin_lock_irqsave(&ccdc->lsc.req_lock, flags);
/*
* Depending on the CCDC pipeline state, CCDC stopping should be
* handled differently. In SINGLESHOT we emulate an internal CCDC
* stopping because the CCDC hw works only in continuous mode.
* When CONTINUOUS pipeline state is used and the CCDC writes it's
* data to memory the CCDC and LSC are stopped immediately but
* without change the CCDC stopping state machine. The CCDC
* stopping state machine should be used only when user request
* for stopping is received (SINGLESHOT is an exeption).
*/
switch (ccdc->state) {
case ISP_PIPELINE_STREAM_SINGLESHOT:
ccdc->stopping = CCDC_STOP_REQUEST;
break;
case ISP_PIPELINE_STREAM_CONTINUOUS:
if (ccdc->output & CCDC_OUTPUT_MEMORY) {
if (ccdc->lsc.state != LSC_STATE_STOPPED)
__ccdc_lsc_enable(ccdc, 0);
__ccdc_enable(ccdc, 0);
}
break;
case ISP_PIPELINE_STREAM_STOPPED:
break;
}
if (ccdc_handle_stopping(ccdc, CCDC_EVENT_VD1))
goto done;
if (ccdc->lsc.request == NULL)
goto done;
/*
* LSC need to be reconfigured. Stop it here and on next LSC_DONE IRQ
* do the appropriate changes in registers
*/
if (ccdc->lsc.state == LSC_STATE_RUNNING) {
__ccdc_lsc_enable(ccdc, 0);
ccdc->lsc.state = LSC_STATE_RECONFIG;
goto done;
}
/* LSC has been in STOPPED state, enable it */
if (ccdc->lsc.state == LSC_STATE_STOPPED)
ccdc_lsc_enable(ccdc);
done:
spin_unlock_irqrestore(&ccdc->lsc.req_lock, flags);
}
/*
* omap3isp_ccdc_isr - Configure CCDC during interframe time.
* @ccdc: Pointer to ISP CCDC device.
* @events: CCDC events
*/
int omap3isp_ccdc_isr(struct isp_ccdc_device *ccdc, u32 events)
{
if (ccdc->state == ISP_PIPELINE_STREAM_STOPPED)
return 0;
if (events & IRQ0STATUS_CCDC_VD1_IRQ)
ccdc_vd1_isr(ccdc);
ccdc_lsc_isr(ccdc, events);
if (events & IRQ0STATUS_CCDC_VD0_IRQ)
ccdc_vd0_isr(ccdc);
if (events & IRQ0STATUS_HS_VS_IRQ)
ccdc_hs_vs_isr(ccdc);
return 0;
}
/* -----------------------------------------------------------------------------
* ISP video operations
*/
static int ccdc_video_queue(struct isp_video *video, struct isp_buffer *buffer)
{
struct isp_ccdc_device *ccdc = &video->isp->isp_ccdc;
unsigned long flags;
bool restart = false;
if (!(ccdc->output & CCDC_OUTPUT_MEMORY))
return -ENODEV;
ccdc_set_outaddr(ccdc, buffer->dma);
/* We now have a buffer queued on the output, restart the pipeline
* on the next CCDC interrupt if running in continuous mode (or when
* starting the stream) in external sync mode, or immediately in BT.656
* sync mode as no CCDC interrupt is generated when the CCDC is stopped
* in that case.
*/
spin_lock_irqsave(&ccdc->lock, flags);
if (ccdc->state == ISP_PIPELINE_STREAM_CONTINUOUS && !ccdc->running &&
ccdc->bt656)
restart = true;
else
ccdc->underrun = 1;
spin_unlock_irqrestore(&ccdc->lock, flags);
if (restart)
ccdc_enable(ccdc);
return 0;
}
static const struct isp_video_operations ccdc_video_ops = {
.queue = ccdc_video_queue,
};
/* -----------------------------------------------------------------------------
* V4L2 subdev operations
*/
/*
* ccdc_ioctl - CCDC module private ioctl's
* @sd: ISP CCDC V4L2 subdevice
* @cmd: ioctl command
* @arg: ioctl argument
*
* Return 0 on success or a negative error code otherwise.
*/
static long ccdc_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
int ret;
switch (cmd) {
case VIDIOC_OMAP3ISP_CCDC_CFG:
mutex_lock(&ccdc->ioctl_lock);
ret = ccdc_config(ccdc, arg);
mutex_unlock(&ccdc->ioctl_lock);
break;
default:
return -ENOIOCTLCMD;
}
return ret;
}
static int ccdc_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
if (sub->type != V4L2_EVENT_FRAME_SYNC)
return -EINVAL;
/* line number is zero at frame start */
if (sub->id != 0)
return -EINVAL;
return v4l2_event_subscribe(fh, sub, OMAP3ISP_CCDC_NEVENTS, NULL);
}
static int ccdc_unsubscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
return v4l2_event_unsubscribe(fh, sub);
}
/*
* ccdc_set_stream - Enable/Disable streaming on the CCDC module
* @sd: ISP CCDC V4L2 subdevice
* @enable: Enable/disable stream
*
* When writing to memory, the CCDC hardware can't be enabled without a memory
* buffer to write to. As the s_stream operation is called in response to a
* STREAMON call without any buffer queued yet, just update the enabled field
* and return immediately. The CCDC will be enabled in ccdc_isr_buffer().
*
* When not writing to memory enable the CCDC immediately.
*/
static int ccdc_set_stream(struct v4l2_subdev *sd, int enable)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct isp_device *isp = to_isp_device(ccdc);
int ret = 0;
if (ccdc->state == ISP_PIPELINE_STREAM_STOPPED) {
if (enable == ISP_PIPELINE_STREAM_STOPPED)
return 0;
omap3isp_subclk_enable(isp, OMAP3_ISP_SUBCLK_CCDC);
isp_reg_set(isp, OMAP3_ISP_IOMEM_CCDC, ISPCCDC_CFG,
ISPCCDC_CFG_VDLC);
ccdc_configure(ccdc);
ccdc_print_status(ccdc);
}
switch (enable) {
case ISP_PIPELINE_STREAM_CONTINUOUS:
if (ccdc->output & CCDC_OUTPUT_MEMORY)
omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_CCDC_WRITE);
if (ccdc->underrun || !(ccdc->output & CCDC_OUTPUT_MEMORY))
ccdc_enable(ccdc);
ccdc->underrun = 0;
break;
case ISP_PIPELINE_STREAM_SINGLESHOT:
if (ccdc->output & CCDC_OUTPUT_MEMORY &&
ccdc->state != ISP_PIPELINE_STREAM_SINGLESHOT)
omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_CCDC_WRITE);
ccdc_enable(ccdc);
break;
case ISP_PIPELINE_STREAM_STOPPED:
ret = ccdc_disable(ccdc);
if (ccdc->output & CCDC_OUTPUT_MEMORY)
omap3isp_sbl_disable(isp, OMAP3_ISP_SBL_CCDC_WRITE);
omap3isp_subclk_disable(isp, OMAP3_ISP_SUBCLK_CCDC);
ccdc->underrun = 0;
break;
}
ccdc->state = enable;
return ret;
}
static struct v4l2_mbus_framefmt *
__ccdc_get_format(struct isp_ccdc_device *ccdc, struct v4l2_subdev_pad_config *cfg,
unsigned int pad, enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_format(&ccdc->subdev, cfg, pad);
else
return &ccdc->formats[pad];
}
static struct v4l2_rect *
__ccdc_get_crop(struct isp_ccdc_device *ccdc, struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_crop(&ccdc->subdev, cfg, CCDC_PAD_SOURCE_OF);
else
return &ccdc->crop;
}
/*
* ccdc_try_format - Try video format on a pad
* @ccdc: ISP CCDC device
* @cfg : V4L2 subdev pad configuration
* @pad: Pad number
* @fmt: Format
*/
static void
ccdc_try_format(struct isp_ccdc_device *ccdc, struct v4l2_subdev_pad_config *cfg,
unsigned int pad, struct v4l2_mbus_framefmt *fmt,
enum v4l2_subdev_format_whence which)
{
const struct isp_format_info *info;
u32 pixelcode;
unsigned int width = fmt->width;
unsigned int height = fmt->height;
struct v4l2_rect *crop;
enum v4l2_field field;
unsigned int i;
switch (pad) {
case CCDC_PAD_SINK:
for (i = 0; i < ARRAY_SIZE(ccdc_fmts); i++) {
if (fmt->code == ccdc_fmts[i])
break;
}
/* If not found, use SGRBG10 as default */
if (i >= ARRAY_SIZE(ccdc_fmts))
fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10;
/* Clamp the input size. */
fmt->width = clamp_t(u32, width, 32, 4096);
fmt->height = clamp_t(u32, height, 32, 4096);
/* Default to progressive field order. */
if (fmt->field == V4L2_FIELD_ANY)
fmt->field = V4L2_FIELD_NONE;
break;
case CCDC_PAD_SOURCE_OF:
pixelcode = fmt->code;
field = fmt->field;
*fmt = *__ccdc_get_format(ccdc, cfg, CCDC_PAD_SINK, which);
/* In SYNC mode the bridge converts YUV formats from 2X8 to
* 1X16. In BT.656 no such conversion occurs. As we don't know
* at this point whether the source will use SYNC or BT.656 mode
* let's pretend the conversion always occurs. The CCDC will be
* configured to pack bytes in BT.656, hiding the inaccuracy.
* In all cases bytes can be swapped.
*/
if (fmt->code == MEDIA_BUS_FMT_YUYV8_2X8 ||
fmt->code == MEDIA_BUS_FMT_UYVY8_2X8) {
/* Use the user requested format if YUV. */
if (pixelcode == MEDIA_BUS_FMT_YUYV8_2X8 ||
pixelcode == MEDIA_BUS_FMT_UYVY8_2X8 ||
pixelcode == MEDIA_BUS_FMT_YUYV8_1X16 ||
pixelcode == MEDIA_BUS_FMT_UYVY8_1X16)
fmt->code = pixelcode;
if (fmt->code == MEDIA_BUS_FMT_YUYV8_2X8)
fmt->code = MEDIA_BUS_FMT_YUYV8_1X16;
else if (fmt->code == MEDIA_BUS_FMT_UYVY8_2X8)
fmt->code = MEDIA_BUS_FMT_UYVY8_1X16;
}
/* Hardcode the output size to the crop rectangle size. */
crop = __ccdc_get_crop(ccdc, cfg, which);
fmt->width = crop->width;
fmt->height = crop->height;
/* When input format is interlaced with alternating fields the
* CCDC can interleave the fields.
*/
if (fmt->field == V4L2_FIELD_ALTERNATE &&
(field == V4L2_FIELD_INTERLACED_TB ||
field == V4L2_FIELD_INTERLACED_BT)) {
fmt->field = field;
fmt->height *= 2;
}
break;
case CCDC_PAD_SOURCE_VP:
*fmt = *__ccdc_get_format(ccdc, cfg, CCDC_PAD_SINK, which);
/* The video port interface truncates the data to 10 bits. */
info = omap3isp_video_format_info(fmt->code);
fmt->code = info->truncated;
/* YUV formats are not supported by the video port. */
if (fmt->code == MEDIA_BUS_FMT_YUYV8_2X8 ||
fmt->code == MEDIA_BUS_FMT_UYVY8_2X8)
fmt->code = 0;
/* The number of lines that can be clocked out from the video
* port output must be at least one line less than the number
* of input lines.
*/
fmt->width = clamp_t(u32, width, 32, fmt->width);
fmt->height = clamp_t(u32, height, 32, fmt->height - 1);
break;
}
/* Data is written to memory unpacked, each 10-bit or 12-bit pixel is
* stored on 2 bytes.
*/
fmt->colorspace = V4L2_COLORSPACE_SRGB;
}
/*
* ccdc_try_crop - Validate a crop rectangle
* @ccdc: ISP CCDC device
* @sink: format on the sink pad
* @crop: crop rectangle to be validated
*/
static void ccdc_try_crop(struct isp_ccdc_device *ccdc,
const struct v4l2_mbus_framefmt *sink,
struct v4l2_rect *crop)
{
const struct isp_format_info *info;
unsigned int max_width;
/* For Bayer formats, restrict left/top and width/height to even values
* to keep the Bayer pattern.
*/
info = omap3isp_video_format_info(sink->code);
if (info->flavor != MEDIA_BUS_FMT_Y8_1X8) {
crop->left &= ~1;
crop->top &= ~1;
}
crop->left = clamp_t(u32, crop->left, 0, sink->width - CCDC_MIN_WIDTH);
crop->top = clamp_t(u32, crop->top, 0, sink->height - CCDC_MIN_HEIGHT);
/* The data formatter truncates the number of horizontal output pixels
* to a multiple of 16. To avoid clipping data, allow callers to request
* an output size bigger than the input size up to the nearest multiple
* of 16.
*/
max_width = (sink->width - crop->left + 15) & ~15;
crop->width = clamp_t(u32, crop->width, CCDC_MIN_WIDTH, max_width)
& ~15;
crop->height = clamp_t(u32, crop->height, CCDC_MIN_HEIGHT,
sink->height - crop->top);
/* Odd width/height values don't make sense for Bayer formats. */
if (info->flavor != MEDIA_BUS_FMT_Y8_1X8) {
crop->width &= ~1;
crop->height &= ~1;
}
}
/*
* ccdc_enum_mbus_code - Handle pixel format enumeration
* @sd : pointer to v4l2 subdev structure
* @cfg : V4L2 subdev pad configuration
* @code : pointer to v4l2_subdev_mbus_code_enum structure
* return -EINVAL or zero on success
*/
static int ccdc_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
switch (code->pad) {
case CCDC_PAD_SINK:
if (code->index >= ARRAY_SIZE(ccdc_fmts))
return -EINVAL;
code->code = ccdc_fmts[code->index];
break;
case CCDC_PAD_SOURCE_OF:
format = __ccdc_get_format(ccdc, cfg, code->pad,
code->which);
if (format->code == MEDIA_BUS_FMT_YUYV8_2X8 ||
format->code == MEDIA_BUS_FMT_UYVY8_2X8) {
/* In YUV mode the CCDC can swap bytes. */
if (code->index == 0)
code->code = MEDIA_BUS_FMT_YUYV8_1X16;
else if (code->index == 1)
code->code = MEDIA_BUS_FMT_UYVY8_1X16;
else
return -EINVAL;
} else {
/* In raw mode, no configurable format confversion is
* available.
*/
if (code->index == 0)
code->code = format->code;
else
return -EINVAL;
}
break;
case CCDC_PAD_SOURCE_VP:
/* The CCDC supports no configurable format conversion
* compatible with the video port. Enumerate a single output
* format code.
*/
if (code->index != 0)
return -EINVAL;
format = __ccdc_get_format(ccdc, cfg, code->pad,
code->which);
/* A pixel code equal to 0 means that the video port doesn't
* support the input format. Don't enumerate any pixel code.
*/
if (format->code == 0)
return -EINVAL;
code->code = format->code;
break;
default:
return -EINVAL;
}
return 0;
}
static int ccdc_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt format;
if (fse->index != 0)
return -EINVAL;
format.code = fse->code;
format.width = 1;
format.height = 1;
ccdc_try_format(ccdc, cfg, fse->pad, &format, fse->which);
fse->min_width = format.width;
fse->min_height = format.height;
if (format.code != fse->code)
return -EINVAL;
format.code = fse->code;
format.width = -1;
format.height = -1;
ccdc_try_format(ccdc, cfg, fse->pad, &format, fse->which);
fse->max_width = format.width;
fse->max_height = format.height;
return 0;
}
/*
* ccdc_get_selection - Retrieve a selection rectangle on a pad
* @sd: ISP CCDC V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @sel: Selection rectangle
*
* The only supported rectangles are the crop rectangles on the output formatter
* source pad.
*
* Return 0 on success or a negative error code otherwise.
*/
static int ccdc_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
if (sel->pad != CCDC_PAD_SOURCE_OF)
return -EINVAL;
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = INT_MAX;
sel->r.height = INT_MAX;
format = __ccdc_get_format(ccdc, cfg, CCDC_PAD_SINK, sel->which);
ccdc_try_crop(ccdc, format, &sel->r);
break;
case V4L2_SEL_TGT_CROP:
sel->r = *__ccdc_get_crop(ccdc, cfg, sel->which);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* ccdc_set_selection - Set a selection rectangle on a pad
* @sd: ISP CCDC V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @sel: Selection rectangle
*
* The only supported rectangle is the actual crop rectangle on the output
* formatter source pad.
*
* Return 0 on success or a negative error code otherwise.
*/
static int ccdc_set_selection(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
if (sel->target != V4L2_SEL_TGT_CROP ||
sel->pad != CCDC_PAD_SOURCE_OF)
return -EINVAL;
/* The crop rectangle can't be changed while streaming. */
if (ccdc->state != ISP_PIPELINE_STREAM_STOPPED)
return -EBUSY;
/* Modifying the crop rectangle always changes the format on the source
* pad. If the KEEP_CONFIG flag is set, just return the current crop
* rectangle.
*/
if (sel->flags & V4L2_SEL_FLAG_KEEP_CONFIG) {
sel->r = *__ccdc_get_crop(ccdc, cfg, sel->which);
return 0;
}
format = __ccdc_get_format(ccdc, cfg, CCDC_PAD_SINK, sel->which);
ccdc_try_crop(ccdc, format, &sel->r);
*__ccdc_get_crop(ccdc, cfg, sel->which) = sel->r;
/* Update the source format. */
format = __ccdc_get_format(ccdc, cfg, CCDC_PAD_SOURCE_OF, sel->which);
ccdc_try_format(ccdc, cfg, CCDC_PAD_SOURCE_OF, format, sel->which);
return 0;
}
/*
* ccdc_get_format - Retrieve the video format on a pad
* @sd : ISP CCDC V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @fmt: Format
*
* Return 0 on success or -EINVAL if the pad is invalid or doesn't correspond
* to the format type.
*/
static int ccdc_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
format = __ccdc_get_format(ccdc, cfg, fmt->pad, fmt->which);
if (format == NULL)
return -EINVAL;
fmt->format = *format;
return 0;
}
/*
* ccdc_set_format - Set the video format on a pad
* @sd : ISP CCDC V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @fmt: Format
*
* Return 0 on success or -EINVAL if the pad is invalid or doesn't correspond
* to the format type.
*/
static int ccdc_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
format = __ccdc_get_format(ccdc, cfg, fmt->pad, fmt->which);
if (format == NULL)
return -EINVAL;
ccdc_try_format(ccdc, cfg, fmt->pad, &fmt->format, fmt->which);
*format = fmt->format;
/* Propagate the format from sink to source */
if (fmt->pad == CCDC_PAD_SINK) {
/* Reset the crop rectangle. */
crop = __ccdc_get_crop(ccdc, cfg, fmt->which);
crop->left = 0;
crop->top = 0;
crop->width = fmt->format.width;
crop->height = fmt->format.height;
ccdc_try_crop(ccdc, &fmt->format, crop);
/* Update the source formats. */
format = __ccdc_get_format(ccdc, cfg, CCDC_PAD_SOURCE_OF,
fmt->which);
*format = fmt->format;
ccdc_try_format(ccdc, cfg, CCDC_PAD_SOURCE_OF, format,
fmt->which);
format = __ccdc_get_format(ccdc, cfg, CCDC_PAD_SOURCE_VP,
fmt->which);
*format = fmt->format;
ccdc_try_format(ccdc, cfg, CCDC_PAD_SOURCE_VP, format,
fmt->which);
}
return 0;
}
/*
* Decide whether desired output pixel code can be obtained with
* the lane shifter by shifting the input pixel code.
* @in: input pixelcode to shifter
* @out: output pixelcode from shifter
* @additional_shift: # of bits the sensor's LSB is offset from CAMEXT[0]
*
* return true if the combination is possible
* return false otherwise
*/
static bool ccdc_is_shiftable(u32 in, u32 out, unsigned int additional_shift)
{
const struct isp_format_info *in_info, *out_info;
if (in == out)
return true;
in_info = omap3isp_video_format_info(in);
out_info = omap3isp_video_format_info(out);
if ((in_info->flavor == 0) || (out_info->flavor == 0))
return false;
if (in_info->flavor != out_info->flavor)
return false;
return in_info->width - out_info->width + additional_shift <= 6;
}
static int ccdc_link_validate(struct v4l2_subdev *sd,
struct media_link *link,
struct v4l2_subdev_format *source_fmt,
struct v4l2_subdev_format *sink_fmt)
{
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
unsigned long parallel_shift;
/* Check if the two ends match */
if (source_fmt->format.width != sink_fmt->format.width ||
source_fmt->format.height != sink_fmt->format.height)
return -EPIPE;
/* We've got a parallel sensor here. */
if (ccdc->input == CCDC_INPUT_PARALLEL) {
struct isp_parallel_cfg *parcfg =
&((struct isp_bus_cfg *)
media_entity_to_v4l2_subdev(link->source->entity)
->host_priv)->bus.parallel;
parallel_shift = parcfg->data_lane_shift;
} else {
parallel_shift = 0;
}
/* Lane shifter may be used to drop bits on CCDC sink pad */
if (!ccdc_is_shiftable(source_fmt->format.code,
sink_fmt->format.code, parallel_shift))
return -EPIPE;
return 0;
}
/*
* ccdc_init_formats - Initialize formats on all pads
* @sd: ISP CCDC V4L2 subdevice
* @fh: V4L2 subdev file handle
*
* Initialize all pad formats with default values. If fh is not NULL, try
* formats are initialized on the file handle. Otherwise active formats are
* initialized on the device.
*/
static int ccdc_init_formats(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct v4l2_subdev_format format;
memset(&format, 0, sizeof(format));
format.pad = CCDC_PAD_SINK;
format.which = fh ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE;
format.format.code = MEDIA_BUS_FMT_SGRBG10_1X10;
format.format.width = 4096;
format.format.height = 4096;
ccdc_set_format(sd, fh ? fh->pad : NULL, &format);
return 0;
}
/* V4L2 subdev core operations */
static const struct v4l2_subdev_core_ops ccdc_v4l2_core_ops = {
.ioctl = ccdc_ioctl,
.subscribe_event = ccdc_subscribe_event,
.unsubscribe_event = ccdc_unsubscribe_event,
};
/* V4L2 subdev video operations */
static const struct v4l2_subdev_video_ops ccdc_v4l2_video_ops = {
.s_stream = ccdc_set_stream,
};
/* V4L2 subdev pad operations */
static const struct v4l2_subdev_pad_ops ccdc_v4l2_pad_ops = {
.enum_mbus_code = ccdc_enum_mbus_code,
.enum_frame_size = ccdc_enum_frame_size,
.get_fmt = ccdc_get_format,
.set_fmt = ccdc_set_format,
.get_selection = ccdc_get_selection,
.set_selection = ccdc_set_selection,
.link_validate = ccdc_link_validate,
};
/* V4L2 subdev operations */
static const struct v4l2_subdev_ops ccdc_v4l2_ops = {
.core = &ccdc_v4l2_core_ops,
.video = &ccdc_v4l2_video_ops,
.pad = &ccdc_v4l2_pad_ops,
};
/* V4L2 subdev internal operations */
static const struct v4l2_subdev_internal_ops ccdc_v4l2_internal_ops = {
.open = ccdc_init_formats,
};
/* -----------------------------------------------------------------------------
* Media entity operations
*/
/*
* ccdc_link_setup - Setup CCDC connections
* @entity: CCDC media entity
* @local: Pad at the local end of the link
* @remote: Pad at the remote end of the link
* @flags: Link flags
*
* return -EINVAL or zero on success
*/
static int ccdc_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote, u32 flags)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
struct isp_ccdc_device *ccdc = v4l2_get_subdevdata(sd);
struct isp_device *isp = to_isp_device(ccdc);
unsigned int index = local->index;
/* FIXME: this is actually a hack! */
if (is_media_entity_v4l2_subdev(remote->entity))
index |= 2 << 16;
switch (index) {
case CCDC_PAD_SINK | 2 << 16:
/* Read from the sensor (parallel interface), CCP2, CSI2a or
* CSI2c.
*/
if (!(flags & MEDIA_LNK_FL_ENABLED)) {
ccdc->input = CCDC_INPUT_NONE;
break;
}
if (ccdc->input != CCDC_INPUT_NONE)
return -EBUSY;
if (remote->entity == &isp->isp_ccp2.subdev.entity)
ccdc->input = CCDC_INPUT_CCP2B;
else if (remote->entity == &isp->isp_csi2a.subdev.entity)
ccdc->input = CCDC_INPUT_CSI2A;
else if (remote->entity == &isp->isp_csi2c.subdev.entity)
ccdc->input = CCDC_INPUT_CSI2C;
else
ccdc->input = CCDC_INPUT_PARALLEL;
break;
/*
* The ISP core doesn't support pipelines with multiple video outputs.
* Revisit this when it will be implemented, and return -EBUSY for now.
*/
case CCDC_PAD_SOURCE_VP | 2 << 16:
/* Write to preview engine, histogram and H3A. When none of
* those links are active, the video port can be disabled.
*/
if (flags & MEDIA_LNK_FL_ENABLED) {
if (ccdc->output & ~CCDC_OUTPUT_PREVIEW)
return -EBUSY;
ccdc->output |= CCDC_OUTPUT_PREVIEW;
} else {
ccdc->output &= ~CCDC_OUTPUT_PREVIEW;
}
break;
case CCDC_PAD_SOURCE_OF:
/* Write to memory */
if (flags & MEDIA_LNK_FL_ENABLED) {
if (ccdc->output & ~CCDC_OUTPUT_MEMORY)
return -EBUSY;
ccdc->output |= CCDC_OUTPUT_MEMORY;
} else {
ccdc->output &= ~CCDC_OUTPUT_MEMORY;
}
break;
case CCDC_PAD_SOURCE_OF | 2 << 16:
/* Write to resizer */
if (flags & MEDIA_LNK_FL_ENABLED) {
if (ccdc->output & ~CCDC_OUTPUT_RESIZER)
return -EBUSY;
ccdc->output |= CCDC_OUTPUT_RESIZER;
} else {
ccdc->output &= ~CCDC_OUTPUT_RESIZER;
}
break;
default:
return -EINVAL;
}
return 0;
}
/* media operations */
static const struct media_entity_operations ccdc_media_ops = {
.link_setup = ccdc_link_setup,
.link_validate = v4l2_subdev_link_validate,
};
void omap3isp_ccdc_unregister_entities(struct isp_ccdc_device *ccdc)
{
v4l2_device_unregister_subdev(&ccdc->subdev);
omap3isp_video_unregister(&ccdc->video_out);
}
int omap3isp_ccdc_register_entities(struct isp_ccdc_device *ccdc,
struct v4l2_device *vdev)
{
int ret;
/* Register the subdev and video node. */
ccdc->subdev.dev = vdev->mdev->dev;
ret = v4l2_device_register_subdev(vdev, &ccdc->subdev);
if (ret < 0)
goto error;
ret = omap3isp_video_register(&ccdc->video_out, vdev);
if (ret < 0)
goto error;
return 0;
error:
omap3isp_ccdc_unregister_entities(ccdc);
return ret;
}
/* -----------------------------------------------------------------------------
* ISP CCDC initialisation and cleanup
*/
/*
* ccdc_init_entities - Initialize V4L2 subdev and media entity
* @ccdc: ISP CCDC module
*
* Return 0 on success and a negative error code on failure.
*/
static int ccdc_init_entities(struct isp_ccdc_device *ccdc)
{
struct v4l2_subdev *sd = &ccdc->subdev;
struct media_pad *pads = ccdc->pads;
struct media_entity *me = &sd->entity;
int ret;
ccdc->input = CCDC_INPUT_NONE;
v4l2_subdev_init(sd, &ccdc_v4l2_ops);
sd->internal_ops = &ccdc_v4l2_internal_ops;
strlcpy(sd->name, "OMAP3 ISP CCDC", sizeof(sd->name));
sd->grp_id = 1 << 16; /* group ID for isp subdevs */
v4l2_set_subdevdata(sd, ccdc);
sd->flags |= V4L2_SUBDEV_FL_HAS_EVENTS | V4L2_SUBDEV_FL_HAS_DEVNODE;
pads[CCDC_PAD_SINK].flags = MEDIA_PAD_FL_SINK
| MEDIA_PAD_FL_MUST_CONNECT;
pads[CCDC_PAD_SOURCE_VP].flags = MEDIA_PAD_FL_SOURCE;
pads[CCDC_PAD_SOURCE_OF].flags = MEDIA_PAD_FL_SOURCE;
me->ops = &ccdc_media_ops;
ret = media_entity_pads_init(me, CCDC_PADS_NUM, pads);
if (ret < 0)
return ret;
ccdc_init_formats(sd, NULL);
ccdc->video_out.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ccdc->video_out.ops = &ccdc_video_ops;
ccdc->video_out.isp = to_isp_device(ccdc);
ccdc->video_out.capture_mem = PAGE_ALIGN(4096 * 4096) * 3;
ccdc->video_out.bpl_alignment = 32;
ret = omap3isp_video_init(&ccdc->video_out, "CCDC");
if (ret < 0)
goto error;
return 0;
error:
media_entity_cleanup(me);
return ret;
}
/*
* omap3isp_ccdc_init - CCDC module initialization.
* @isp: Device pointer specific to the OMAP3 ISP.
*
* TODO: Get the initialisation values from platform data.
*
* Return 0 on success or a negative error code otherwise.
*/
int omap3isp_ccdc_init(struct isp_device *isp)
{
struct isp_ccdc_device *ccdc = &isp->isp_ccdc;
int ret;
spin_lock_init(&ccdc->lock);
init_waitqueue_head(&ccdc->wait);
mutex_init(&ccdc->ioctl_lock);
ccdc->stopping = CCDC_STOP_NOT_REQUESTED;
INIT_WORK(&ccdc->lsc.table_work, ccdc_lsc_free_table_work);
ccdc->lsc.state = LSC_STATE_STOPPED;
INIT_LIST_HEAD(&ccdc->lsc.free_queue);
spin_lock_init(&ccdc->lsc.req_lock);
ccdc->clamp.oblen = 0;
ccdc->clamp.dcsubval = 0;
ccdc->update = OMAP3ISP_CCDC_BLCLAMP;
ccdc_apply_controls(ccdc);
ret = ccdc_init_entities(ccdc);
if (ret < 0) {
mutex_destroy(&ccdc->ioctl_lock);
return ret;
}
return 0;
}
/*
* omap3isp_ccdc_cleanup - CCDC module cleanup.
* @isp: Device pointer specific to the OMAP3 ISP.
*/
void omap3isp_ccdc_cleanup(struct isp_device *isp)
{
struct isp_ccdc_device *ccdc = &isp->isp_ccdc;
omap3isp_video_cleanup(&ccdc->video_out);
media_entity_cleanup(&ccdc->subdev.entity);
/* Free LSC requests. As the CCDC is stopped there's no active request,
* so only the pending request and the free queue need to be handled.
*/
ccdc_lsc_free_request(ccdc, ccdc->lsc.request);
cancel_work_sync(&ccdc->lsc.table_work);
ccdc_lsc_free_queue(ccdc, &ccdc->lsc.free_queue);
if (ccdc->fpc.addr != NULL)
dma_free_coherent(isp->dev, ccdc->fpc.fpnum * 4, ccdc->fpc.addr,
ccdc->fpc.dma);
mutex_destroy(&ccdc->ioctl_lock);
}