tegrakernel/kernel/kernel-4.9/drivers/media/platform/vivid/vivid-vid-cap.c

1964 lines
54 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* vivid-vid-cap.c - video capture support functions.
*
* Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/videodev2.h>
#include <linux/v4l2-dv-timings.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-rect.h>
#include "vivid-core.h"
#include "vivid-vid-common.h"
#include "vivid-kthread-cap.h"
#include "vivid-vid-cap.h"
/* timeperframe: min/max and default */
static const struct v4l2_fract
tpf_min = {.numerator = 1, .denominator = FPS_MAX},
tpf_max = {.numerator = FPS_MAX, .denominator = 1};
static const struct vivid_fmt formats_ovl[] = {
{
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
.vdownsampling = { 1 },
.bit_depth = { 16 },
.planes = 1,
.buffers = 1,
},
{
.fourcc = V4L2_PIX_FMT_XRGB555, /* gggbbbbb arrrrrgg */
.vdownsampling = { 1 },
.bit_depth = { 16 },
.planes = 1,
.buffers = 1,
},
{
.fourcc = V4L2_PIX_FMT_ARGB555, /* gggbbbbb arrrrrgg */
.vdownsampling = { 1 },
.bit_depth = { 16 },
.planes = 1,
.buffers = 1,
},
};
/* The number of discrete webcam framesizes */
#define VIVID_WEBCAM_SIZES 4
/* The number of discrete webcam frameintervals */
#define VIVID_WEBCAM_IVALS (VIVID_WEBCAM_SIZES * 2)
#define VIVID_HDMI_SIZES 3
/* Sizes must be in increasing order */
static const struct v4l2_frmsize_discrete webcam_sizes[VIVID_WEBCAM_SIZES] = {
{ 320, 180 },
{ 640, 360 },
{ 1280, 720 },
{ 1920, 1080 },
};
/*
* Intervals must be in increasing order and there must be twice as many
* elements in this array as there are in webcam_sizes.
*/
static const struct v4l2_fract webcam_intervals[VIVID_WEBCAM_IVALS] = {
{ 1, 2 },
{ 1, 5 },
{ 1, 10 },
{ 1, 15 },
{ 1, 25 },
{ 1, 30 },
{ 1, 50 },
{ 1, 60 },
};
static const struct v4l2_frmsize_discrete hdmi_sizes[VIVID_HDMI_SIZES] = {
{ 1280, 720 },
{ 1920, 1080 },
{ 3840, 2160 },
};
static const struct v4l2_discrete_probe webcam_probe = {
webcam_sizes,
VIVID_WEBCAM_SIZES
};
static int vid_cap_queue_setup(struct vb2_queue *vq,
unsigned *nbuffers, unsigned *nplanes,
unsigned sizes[], struct device *alloc_devs[])
{
struct vivid_dev *dev = vb2_get_drv_priv(vq);
unsigned buffers = tpg_g_buffers(&dev->tpg);
unsigned p;
if (dev->field_cap == V4L2_FIELD_ALTERNATE) {
/*
* You cannot use read() with FIELD_ALTERNATE since the field
* information (TOP/BOTTOM) cannot be passed back to the user.
*/
if (vb2_fileio_is_active(vq))
return -EINVAL;
}
if (dev->queue_setup_error) {
/*
* Error injection: test what happens if queue_setup() returns
* an error.
*/
dev->queue_setup_error = false;
return -EINVAL;
}
if (*nplanes) {
/*
* Check if the number of requested planes match
* the number of buffers in the current format. You can't mix that.
*/
if (*nplanes != buffers)
return -EINVAL;
for (p = 0; p < buffers; p++) {
if (sizes[p] < tpg_g_line_width(&dev->tpg, p) *
tpg_g_buf_height(&dev->tpg, p) +
dev->fmt_cap->data_offset[p])
return -EINVAL;
}
} else {
for (p = 0; p < buffers; p++) {
sizes[p] = tpg_g_line_width(&dev->tpg, p) *
tpg_g_buf_height(&dev->tpg, p) +
dev->fmt_cap->data_offset[p];
}
}
if (vq->num_buffers + *nbuffers < 2)
*nbuffers = 2 - vq->num_buffers;
*nplanes = buffers;
dprintk(dev, 1, "%s: count=%d\n", __func__, *nbuffers);
for (p = 0; p < buffers; p++)
dprintk(dev, 1, "%s: size[%u]=%u\n", __func__, p, sizes[p]);
return 0;
}
static int vid_cap_buf_prepare(struct vb2_buffer *vb)
{
struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_queue *q = vb->vb2_queue;
unsigned long size;
unsigned buffers = tpg_g_buffers(&dev->tpg);
unsigned p;
int err = 0;
dprintk(dev, 1, "%s\n", __func__);
if (WARN_ON(NULL == dev->fmt_cap))
return -EINVAL;
if (dev->buf_prepare_error) {
/*
* Error injection: test what happens if buf_prepare() returns
* an error.
*/
dev->buf_prepare_error = false;
return -EINVAL;
}
for (p = 0; p < buffers; p++) {
size = tpg_g_line_width(&dev->tpg, p) *
tpg_g_buf_height(&dev->tpg, p) +
dev->fmt_cap->data_offset[p];
if (vb2_plane_size(vb, p) < size) {
dprintk(dev, 1, "%s data will not fit into plane %u (%lu < %lu)\n",
__func__, p, vb2_plane_size(vb, p), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, p, size);
vb->planes[p].data_offset = dev->fmt_cap->data_offset[p];
if (q->memory == V4L2_MEMORY_DMABUF) {
struct dma_buf *dbuf = dma_buf_get(vb->planes[p].m.fd);
enum dma_data_direction dma_dir =
q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
err = dma_buf_begin_cpu_access(dbuf, 0,
vb->planes[p].length, dma_dir);
if (err) {
dprintk(dev, 1, "%s dma buf cpu access for plane %d failed\n",
__func__, p);
return err;
}
}
}
return 0;
}
static void vid_cap_buf_finish(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue);
struct v4l2_timecode *tc = &vbuf->timecode;
unsigned fps = 25;
unsigned seq = vbuf->sequence;
unsigned p;
/*
* DMA mapping invalid during queue cancel and error
* states. Only set up for the CPU copy when streaming.
*/
if (vb->state == VB2_BUF_STATE_DONE) {
for (p = 0; p < tpg_g_buffers(&dev->tpg); p++) {
struct vb2_queue *q = vb->vb2_queue;
if (q->memory == V4L2_MEMORY_DMABUF) {
struct dma_buf *dbuf = dma_buf_get(vb->planes[p].m.fd);
enum dma_data_direction dma_dir =
q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
dma_buf_end_cpu_access(dbuf, 0,
vb->planes[p].length, dma_dir);
}
}
}
vivid_trace_single_msg(dev->v4l2_dev.name,
"buf_dequeue_capture", vb->index);
if (!vivid_is_sdtv_cap(dev))
return;
/*
* Set the timecode. Rarely used, so it is interesting to
* test this.
*/
vbuf->flags |= V4L2_BUF_FLAG_TIMECODE;
if (dev->std_cap & V4L2_STD_525_60)
fps = 30;
tc->type = (fps == 30) ? V4L2_TC_TYPE_30FPS : V4L2_TC_TYPE_25FPS;
tc->flags = 0;
tc->frames = seq % fps;
tc->seconds = (seq / fps) % 60;
tc->minutes = (seq / (60 * fps)) % 60;
tc->hours = (seq / (60 * 60 * fps)) % 24;
}
static void vid_cap_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue);
struct vivid_buffer *buf = container_of(vbuf, struct vivid_buffer, vb);
dprintk(dev, 1, "%s\n", __func__);
spin_lock(&dev->slock);
list_add_tail(&buf->list, &dev->vid_cap_active);
spin_unlock(&dev->slock);
vivid_trace_single_msg(dev->v4l2_dev.name,
"buf_queue_capture", vb->index);
}
static int vid_cap_start_streaming(struct vb2_queue *vq, unsigned count)
{
struct vivid_dev *dev = vb2_get_drv_priv(vq);
unsigned i;
int err;
if (vb2_is_streaming(&dev->vb_vid_out_q))
dev->can_loop_video = vivid_vid_can_loop(dev);
dev->vid_cap_seq_count = 0;
dprintk(dev, 1, "%s\n", __func__);
for (i = 0; i < VIDEO_MAX_FRAME; i++)
dev->must_blank[i] = tpg_g_perc_fill(&dev->tpg) < 100;
if (dev->start_streaming_error) {
dev->start_streaming_error = false;
err = -EINVAL;
} else {
err = vivid_start_generating_vid_cap(dev, &dev->vid_cap_streaming);
}
if (err) {
struct vivid_buffer *buf, *tmp;
list_for_each_entry_safe(buf, tmp, &dev->vid_cap_active, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf,
VB2_BUF_STATE_QUEUED);
}
}
return err;
}
/* abort streaming and wait for last buffer */
static void vid_cap_stop_streaming(struct vb2_queue *vq)
{
struct vivid_dev *dev = vb2_get_drv_priv(vq);
dprintk(dev, 1, "%s\n", __func__);
vivid_stop_generating_vid_cap(dev, &dev->vid_cap_streaming);
dev->can_loop_video = false;
}
const struct vb2_ops vivid_vid_cap_qops = {
.queue_setup = vid_cap_queue_setup,
.buf_prepare = vid_cap_buf_prepare,
.buf_finish = vid_cap_buf_finish,
.buf_queue = vid_cap_buf_queue,
.start_streaming = vid_cap_start_streaming,
.stop_streaming = vid_cap_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
/*
* Determine the 'picture' quality based on the current TV frequency: either
* COLOR for a good 'signal', GRAY (grayscale picture) for a slightly off
* signal or NOISE for no signal.
*/
void vivid_update_quality(struct vivid_dev *dev)
{
unsigned freq_modulus;
if (dev->loop_video && (vivid_is_svid_cap(dev) || vivid_is_hdmi_cap(dev))) {
/*
* The 'noise' will only be replaced by the actual video
* if the output video matches the input video settings.
*/
tpg_s_quality(&dev->tpg, TPG_QUAL_NOISE, 0);
return;
}
if (vivid_is_hdmi_cap(dev) && VIVID_INVALID_SIGNAL(dev->dv_timings_signal_mode)) {
tpg_s_quality(&dev->tpg, TPG_QUAL_NOISE, 0);
return;
}
if (vivid_is_sdtv_cap(dev) && VIVID_INVALID_SIGNAL(dev->std_signal_mode)) {
tpg_s_quality(&dev->tpg, TPG_QUAL_NOISE, 0);
return;
}
if (!vivid_is_tv_cap(dev)) {
tpg_s_quality(&dev->tpg, TPG_QUAL_COLOR, 0);
return;
}
/*
* There is a fake channel every 6 MHz at 49.25, 55.25, etc.
* From +/- 0.25 MHz around the channel there is color, and from
* +/- 1 MHz there is grayscale (chroma is lost).
* Everywhere else it is just noise.
*/
freq_modulus = (dev->tv_freq - 676 /* (43.25-1) * 16 */) % (6 * 16);
if (freq_modulus > 2 * 16) {
tpg_s_quality(&dev->tpg, TPG_QUAL_NOISE,
next_pseudo_random32(dev->tv_freq ^ 0x55) & 0x3f);
return;
}
if (freq_modulus < 12 /*0.75 * 16*/ || freq_modulus > 20 /*1.25 * 16*/)
tpg_s_quality(&dev->tpg, TPG_QUAL_GRAY, 0);
else
tpg_s_quality(&dev->tpg, TPG_QUAL_COLOR, 0);
}
/*
* Get the current picture quality and the associated afc value.
*/
static enum tpg_quality vivid_get_quality(struct vivid_dev *dev, s32 *afc)
{
unsigned freq_modulus;
if (afc)
*afc = 0;
if (tpg_g_quality(&dev->tpg) == TPG_QUAL_COLOR ||
tpg_g_quality(&dev->tpg) == TPG_QUAL_NOISE)
return tpg_g_quality(&dev->tpg);
/*
* There is a fake channel every 6 MHz at 49.25, 55.25, etc.
* From +/- 0.25 MHz around the channel there is color, and from
* +/- 1 MHz there is grayscale (chroma is lost).
* Everywhere else it is just gray.
*/
freq_modulus = (dev->tv_freq - 676 /* (43.25-1) * 16 */) % (6 * 16);
if (afc)
*afc = freq_modulus - 1 * 16;
return TPG_QUAL_GRAY;
}
enum tpg_video_aspect vivid_get_video_aspect(const struct vivid_dev *dev)
{
if (vivid_is_sdtv_cap(dev))
return dev->std_aspect_ratio;
if (vivid_is_hdmi_cap(dev))
return dev->dv_timings_aspect_ratio;
return TPG_VIDEO_ASPECT_IMAGE;
}
static enum tpg_pixel_aspect vivid_get_pixel_aspect(const struct vivid_dev *dev)
{
if (vivid_is_sdtv_cap(dev))
return (dev->std_cap & V4L2_STD_525_60) ?
TPG_PIXEL_ASPECT_NTSC : TPG_PIXEL_ASPECT_PAL;
if (vivid_is_hdmi_cap(dev) &&
dev->src_rect.width == 720 && dev->src_rect.height <= 576)
return dev->src_rect.height == 480 ?
TPG_PIXEL_ASPECT_NTSC : TPG_PIXEL_ASPECT_PAL;
return TPG_PIXEL_ASPECT_SQUARE;
}
void vivid_update_timeperframe(struct vivid_dev *dev, u32 frame_length)
{
struct v4l2_bt_timings *bt = &dev->dv_timings_cap.bt;
unsigned size;
mutex_lock(&dev->mutex_framerate);
size = V4L2_DV_BT_FRAME_WIDTH(bt) * frame_length;
dev->timeperframe_vid_cap = (struct v4l2_fract) {
size / 10000, (u32)bt->pixelclock / 10000
};
if (dev->loop_video) {
dev->timeperframe_vid_out = (struct v4l2_fract) {
size / 10000, (u32)bt->pixelclock / 10000
};
}
mutex_unlock(&dev->mutex_framerate);
}
/*
* Called whenever the format has to be reset which can occur when
* changing inputs, standard, timings, etc.
*/
void vivid_update_format_cap(struct vivid_dev *dev, bool keep_controls)
{
struct v4l2_bt_timings *bt = &dev->dv_timings_cap.bt;
unsigned size;
u64 pixelclock;
switch (dev->input_type[dev->input]) {
case WEBCAM:
default:
dev->src_rect.width = webcam_sizes[dev->webcam_size_idx].width;
dev->src_rect.height = webcam_sizes[dev->webcam_size_idx].height;
dev->timeperframe_vid_cap = webcam_intervals[dev->webcam_ival_idx];
dev->field_cap = V4L2_FIELD_NONE;
tpg_s_rgb_range(&dev->tpg, V4L2_DV_RGB_RANGE_AUTO);
break;
case TV:
case SVID:
dev->field_cap = dev->tv_field_cap;
dev->src_rect.width = 720;
if (dev->std_cap & V4L2_STD_525_60) {
dev->src_rect.height = 480;
dev->timeperframe_vid_cap = (struct v4l2_fract) { 1001, 30000 };
dev->service_set_cap = V4L2_SLICED_CAPTION_525;
} else {
dev->src_rect.height = 576;
dev->timeperframe_vid_cap = (struct v4l2_fract) { 1000, 25000 };
dev->service_set_cap = V4L2_SLICED_WSS_625 | V4L2_SLICED_TELETEXT_B;
}
tpg_s_rgb_range(&dev->tpg, V4L2_DV_RGB_RANGE_AUTO);
break;
case HDMI:
dev->src_rect.width = bt->width;
dev->src_rect.height = bt->height;
size = V4L2_DV_BT_FRAME_WIDTH(bt) * V4L2_DV_BT_FRAME_HEIGHT(bt);
if (dev->reduced_fps && can_reduce_fps(bt)) {
pixelclock = div_u64(bt->pixelclock * 1000, 1001);
bt->flags |= V4L2_DV_FL_REDUCED_FPS;
} else {
pixelclock = bt->pixelclock;
bt->flags &= ~V4L2_DV_FL_REDUCED_FPS;
}
dev->timeperframe_vid_cap = (struct v4l2_fract) {
size / 10000, (u32)bt->pixelclock / 10000
};
if (bt->interlaced)
dev->field_cap = V4L2_FIELD_ALTERNATE;
else
dev->field_cap = V4L2_FIELD_NONE;
/*
* We can be called from within s_ctrl, in that case we can't
* set/get controls. Luckily we don't need to in that case.
*/
if (keep_controls || !dev->colorspace)
break;
if (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) {
if (bt->width == 720 && bt->height <= 576)
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_170M);
else
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_709);
v4l2_ctrl_s_ctrl(dev->real_rgb_range_cap, 1);
} else {
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_SRGB);
v4l2_ctrl_s_ctrl(dev->real_rgb_range_cap, 0);
}
tpg_s_rgb_range(&dev->tpg, v4l2_ctrl_g_ctrl(dev->rgb_range_cap));
break;
}
vfree(dev->bitmap_cap);
dev->bitmap_cap = NULL;
vivid_update_quality(dev);
tpg_reset_source(&dev->tpg, dev->src_rect.width, dev->src_rect.height, dev->field_cap);
dev->crop_cap = dev->src_rect;
dev->crop_bounds_cap = dev->src_rect;
dev->compose_cap = dev->crop_cap;
if (V4L2_FIELD_HAS_T_OR_B(dev->field_cap))
dev->compose_cap.height /= 2;
dev->fmt_cap_rect = dev->compose_cap;
tpg_s_video_aspect(&dev->tpg, vivid_get_video_aspect(dev));
tpg_s_pixel_aspect(&dev->tpg, vivid_get_pixel_aspect(dev));
tpg_update_mv_step(&dev->tpg);
}
/* Map the field to something that is valid for the current input */
static enum v4l2_field vivid_field_cap(struct vivid_dev *dev, enum v4l2_field field)
{
if (vivid_is_sdtv_cap(dev)) {
switch (field) {
case V4L2_FIELD_INTERLACED_TB:
case V4L2_FIELD_INTERLACED_BT:
case V4L2_FIELD_SEQ_TB:
case V4L2_FIELD_SEQ_BT:
case V4L2_FIELD_TOP:
case V4L2_FIELD_BOTTOM:
case V4L2_FIELD_ALTERNATE:
return field;
case V4L2_FIELD_INTERLACED:
default:
return V4L2_FIELD_INTERLACED;
}
}
if (vivid_is_hdmi_cap(dev))
return dev->dv_timings_cap.bt.interlaced ? V4L2_FIELD_ALTERNATE :
V4L2_FIELD_NONE;
return V4L2_FIELD_NONE;
}
static unsigned vivid_colorspace_cap(struct vivid_dev *dev)
{
if (!dev->loop_video || vivid_is_webcam(dev) || vivid_is_tv_cap(dev))
return tpg_g_colorspace(&dev->tpg);
return dev->colorspace_out;
}
static unsigned vivid_xfer_func_cap(struct vivid_dev *dev)
{
if (!dev->loop_video || vivid_is_webcam(dev) || vivid_is_tv_cap(dev))
return tpg_g_xfer_func(&dev->tpg);
return dev->xfer_func_out;
}
static unsigned vivid_ycbcr_enc_cap(struct vivid_dev *dev)
{
if (!dev->loop_video || vivid_is_webcam(dev) || vivid_is_tv_cap(dev))
return tpg_g_ycbcr_enc(&dev->tpg);
return dev->ycbcr_enc_out;
}
static unsigned vivid_quantization_cap(struct vivid_dev *dev)
{
if (!dev->loop_video || vivid_is_webcam(dev) || vivid_is_tv_cap(dev))
return tpg_g_quantization(&dev->tpg);
return dev->quantization_out;
}
int vivid_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
struct v4l2_pix_format_mplane *mp = &f->fmt.pix_mp;
unsigned p;
mp->width = dev->fmt_cap_rect.width;
mp->height = dev->fmt_cap_rect.height;
mp->field = dev->field_cap;
mp->pixelformat = dev->fmt_cap->fourcc;
mp->colorspace = vivid_colorspace_cap(dev);
mp->xfer_func = vivid_xfer_func_cap(dev);
mp->ycbcr_enc = vivid_ycbcr_enc_cap(dev);
mp->quantization = vivid_quantization_cap(dev);
mp->num_planes = tpg_g_planes(&dev->tpg);
mp->metadata_height = dev->embedded_data_height;
for (p = 0; p < mp->num_planes; p++) {
mp->plane_fmt[p].bytesperline =
tpg_g_bytesperline(&dev->tpg, p);
mp->plane_fmt[p].sizeimage =
mp->plane_fmt[p].bytesperline *
tpg_g_buf_height(&dev->tpg, p) +
dev->fmt_cap->data_offset[p];
}
return 0;
}
int vivid_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct v4l2_pix_format_mplane *mp = &f->fmt.pix_mp;
struct v4l2_plane_pix_format *pfmt = mp->plane_fmt;
struct vivid_dev *dev = video_drvdata(file);
const struct vivid_fmt *fmt;
unsigned bytesperline, max_bpl;
unsigned factor = 1;
unsigned w, h;
unsigned p;
unsigned packedpixels;
fmt = vivid_get_format(dev, mp->pixelformat);
if (!fmt) {
dprintk(dev, 1, "Fourcc format (0x%08x) unknown.\n",
mp->pixelformat);
mp->pixelformat = V4L2_PIX_FMT_YUYV;
fmt = vivid_get_format(dev, mp->pixelformat);
}
packedpixels = fmt->packedpixels;
if (!packedpixels)
packedpixels = 1;
mp->field = vivid_field_cap(dev, mp->field);
if (vivid_is_webcam(dev)) {
const struct v4l2_frmsize_discrete *sz =
v4l2_find_nearest_format(&webcam_probe, mp->width, mp->height);
w = sz->width;
h = sz->height;
} else if (vivid_is_sdtv_cap(dev)) {
w = 720;
h = (dev->std_cap & V4L2_STD_525_60) ? 480 : 576;
} else {
w = dev->src_rect.width;
h = dev->src_rect.height;
}
if (V4L2_FIELD_HAS_T_OR_B(mp->field))
factor = 2;
if (vivid_is_webcam(dev) ||
(!dev->has_scaler_cap && !dev->has_crop_cap && !dev->has_compose_cap)) {
mp->width = w;
mp->height = h / factor;
} else {
struct v4l2_rect r = { 0, 0, mp->width, mp->height * factor };
v4l2_rect_set_min_size(&r, &vivid_min_rect);
v4l2_rect_set_max_size(&r, &vivid_max_rect);
if (dev->has_scaler_cap && !dev->has_compose_cap) {
struct v4l2_rect max_r = { 0, 0, MAX_ZOOM * w, MAX_ZOOM * h };
v4l2_rect_set_max_size(&r, &max_r);
} else if (!dev->has_scaler_cap && dev->has_crop_cap && !dev->has_compose_cap) {
v4l2_rect_set_max_size(&r, &dev->src_rect);
} else if (!dev->has_scaler_cap && !dev->has_crop_cap) {
v4l2_rect_set_min_size(&r, &dev->src_rect);
}
mp->width = r.width;
mp->height = r.height / factor;
}
/* clip metadata height maximum value */
if (mp->metadata_height > MAX_METADATA_HEIGHT)
mp->metadata_height = MAX_METADATA_HEIGHT;
/* This driver supports custom bytesperline values */
mp->num_planes = fmt->buffers;
for (p = 0; p < mp->num_planes; p++) {
/* Calculate the minimum supported bytesperline value */
bytesperline = ((mp->width * fmt->bit_depth[p]) >> 3) /
packedpixels;
/* Calculate the maximum supported bytesperline value */
max_bpl = (MAX_ZOOM * MAX_WIDTH * fmt->bit_depth[p]) >> 3;
if (pfmt[p].bytesperline > max_bpl)
pfmt[p].bytesperline = max_bpl;
if (pfmt[p].bytesperline < bytesperline)
pfmt[p].bytesperline = bytesperline;
pfmt[p].sizeimage =
tpg_calc_line_width(&dev->tpg, p, pfmt[p].bytesperline) *
(fmt->is_metadata[p] ? mp->metadata_height : mp->height) +
fmt->data_offset[p];
memset(pfmt[p].reserved, 0, sizeof(pfmt[p].reserved));
}
mp->colorspace = vivid_colorspace_cap(dev);
mp->ycbcr_enc = vivid_ycbcr_enc_cap(dev);
mp->xfer_func = vivid_xfer_func_cap(dev);
mp->quantization = vivid_quantization_cap(dev);
memset(mp->reserved, 0, sizeof(mp->reserved));
return 0;
}
int vivid_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct v4l2_pix_format_mplane *mp = &f->fmt.pix_mp;
struct vivid_dev *dev = video_drvdata(file);
struct v4l2_rect *crop = &dev->crop_cap;
struct v4l2_rect *compose = &dev->compose_cap;
struct vb2_queue *q = &dev->vb_vid_cap_q;
int ret = vivid_try_fmt_vid_cap(file, priv, f);
unsigned factor = 1;
unsigned p;
unsigned i;
if (ret < 0)
return ret;
if (vb2_is_busy(q)) {
dprintk(dev, 1, "%s device busy\n", __func__);
return -EBUSY;
}
if (dev->overlay_cap_owner && dev->fb_cap.fmt.pixelformat != mp->pixelformat) {
dprintk(dev, 1, "overlay is active, can't change pixelformat\n");
return -EBUSY;
}
dev->fmt_cap = vivid_get_format(dev, mp->pixelformat);
if (V4L2_FIELD_HAS_T_OR_B(mp->field))
factor = 2;
/* Note: the webcam input doesn't support scaling, cropping or composing */
if (!vivid_is_webcam(dev) &&
(dev->has_scaler_cap || dev->has_crop_cap || dev->has_compose_cap)) {
struct v4l2_rect r = { 0, 0, mp->width, mp->height };
if (dev->has_scaler_cap) {
if (dev->has_compose_cap)
v4l2_rect_map_inside(compose, &r);
else
*compose = r;
if (dev->has_crop_cap && !dev->has_compose_cap) {
struct v4l2_rect min_r = {
0, 0,
r.width / MAX_ZOOM,
factor * r.height / MAX_ZOOM
};
struct v4l2_rect max_r = {
0, 0,
r.width * MAX_ZOOM,
factor * r.height * MAX_ZOOM
};
v4l2_rect_set_min_size(crop, &min_r);
v4l2_rect_set_max_size(crop, &max_r);
v4l2_rect_map_inside(crop, &dev->crop_bounds_cap);
} else if (dev->has_crop_cap) {
struct v4l2_rect min_r = {
0, 0,
compose->width / MAX_ZOOM,
factor * compose->height / MAX_ZOOM
};
struct v4l2_rect max_r = {
0, 0,
compose->width * MAX_ZOOM,
factor * compose->height * MAX_ZOOM
};
v4l2_rect_set_min_size(crop, &min_r);
v4l2_rect_set_max_size(crop, &max_r);
v4l2_rect_map_inside(crop, &dev->crop_bounds_cap);
}
} else if (dev->has_crop_cap && !dev->has_compose_cap) {
r.height *= factor;
v4l2_rect_set_size_to(crop, &r);
v4l2_rect_map_inside(crop, &dev->crop_bounds_cap);
r = *crop;
r.height /= factor;
v4l2_rect_set_size_to(compose, &r);
} else if (!dev->has_crop_cap) {
v4l2_rect_map_inside(compose, &r);
} else {
r.height *= factor;
v4l2_rect_set_max_size(crop, &r);
v4l2_rect_map_inside(crop, &dev->crop_bounds_cap);
compose->top *= factor;
compose->height *= factor;
v4l2_rect_set_size_to(compose, crop);
v4l2_rect_map_inside(compose, &r);
compose->top /= factor;
compose->height /= factor;
}
} else if (vivid_is_webcam(dev)) {
/* Guaranteed to be a match */
for (i = 0; i < ARRAY_SIZE(webcam_sizes); i++)
if (webcam_sizes[i].width == mp->width &&
webcam_sizes[i].height == mp->height)
break;
dev->webcam_size_idx = i;
if (dev->webcam_ival_idx >= 2 * (VIVID_WEBCAM_SIZES - i))
dev->webcam_ival_idx = 2 * (VIVID_WEBCAM_SIZES - i) - 1;
vivid_update_format_cap(dev, false);
} else {
struct v4l2_rect r = { 0, 0, mp->width, mp->height };
v4l2_rect_set_size_to(compose, &r);
r.height *= factor;
v4l2_rect_set_size_to(crop, &r);
}
dev->fmt_cap_rect.width = mp->width;
dev->fmt_cap_rect.height = mp->height;
tpg_s_fourcc(&dev->tpg, dev->fmt_cap->fourcc, mp->metadata_height);
for (p = 0; p < tpg_g_buffers(&dev->tpg); p++) {
unsigned height = dev->fmt_cap->is_metadata[p] ?
mp->metadata_height : mp->height;
tpg_s_buf_height(&dev->tpg, p, height);
}
dev->embedded_data_height = mp->metadata_height;
for (p = 0; p < tpg_g_buffers(&dev->tpg); p++)
tpg_s_bytesperline(&dev->tpg, p, mp->plane_fmt[p].bytesperline);
dev->field_cap = mp->field;
if (dev->field_cap == V4L2_FIELD_ALTERNATE)
tpg_s_field(&dev->tpg, V4L2_FIELD_TOP, true);
else
tpg_s_field(&dev->tpg, dev->field_cap, false);
tpg_s_crop_compose(&dev->tpg, &dev->crop_cap, &dev->compose_cap);
if (vivid_is_sdtv_cap(dev))
dev->tv_field_cap = mp->field;
tpg_update_mv_step(&dev->tpg);
// update framelength control to control framerate
v4l2_ctrl_s_ctrl(dev->framelength,
V4L2_DV_BT_FRAME_HEIGHT(&dev->dv_timings_cap.bt));
return 0;
}
int vidioc_g_fmt_vid_cap_mplane(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
if (!dev->multiplanar)
return -ENOTTY;
return vivid_g_fmt_vid_cap(file, priv, f);
}
int vidioc_try_fmt_vid_cap_mplane(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
if (!dev->multiplanar)
return -ENOTTY;
return vivid_try_fmt_vid_cap(file, priv, f);
}
int vidioc_s_fmt_vid_cap_mplane(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
if (!dev->multiplanar)
return -ENOTTY;
return vivid_s_fmt_vid_cap(file, priv, f);
}
int vidioc_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
if (dev->multiplanar)
return -ENOTTY;
return fmt_sp2mp_func(file, priv, f, vivid_g_fmt_vid_cap);
}
int vidioc_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
if (dev->multiplanar)
return -ENOTTY;
return fmt_sp2mp_func(file, priv, f, vivid_try_fmt_vid_cap);
}
int vidioc_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
if (dev->multiplanar)
return -ENOTTY;
return fmt_sp2mp_func(file, priv, f, vivid_s_fmt_vid_cap);
}
int vivid_vid_cap_g_selection(struct file *file, void *priv,
struct v4l2_selection *sel)
{
struct vivid_dev *dev = video_drvdata(file);
if (!dev->has_crop_cap && !dev->has_compose_cap)
return -ENOTTY;
if (sel->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (vivid_is_webcam(dev))
return -ENODATA;
sel->r.left = sel->r.top = 0;
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
if (!dev->has_crop_cap)
return -EINVAL;
sel->r = dev->crop_cap;
break;
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
if (!dev->has_crop_cap)
return -EINVAL;
sel->r = dev->src_rect;
break;
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
if (!dev->has_compose_cap)
return -EINVAL;
sel->r = vivid_max_rect;
break;
case V4L2_SEL_TGT_COMPOSE:
if (!dev->has_compose_cap)
return -EINVAL;
sel->r = dev->compose_cap;
break;
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
if (!dev->has_compose_cap)
return -EINVAL;
sel->r = dev->fmt_cap_rect;
break;
default:
return -EINVAL;
}
return 0;
}
int vivid_vid_cap_s_selection(struct file *file, void *fh, struct v4l2_selection *s)
{
struct vivid_dev *dev = video_drvdata(file);
struct v4l2_rect *crop = &dev->crop_cap;
struct v4l2_rect *compose = &dev->compose_cap;
unsigned factor = V4L2_FIELD_HAS_T_OR_B(dev->field_cap) ? 2 : 1;
int ret;
if (!dev->has_crop_cap && !dev->has_compose_cap)
return -ENOTTY;
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (vivid_is_webcam(dev))
return -ENODATA;
switch (s->target) {
case V4L2_SEL_TGT_CROP:
if (!dev->has_crop_cap)
return -EINVAL;
ret = vivid_vid_adjust_sel(s->flags, &s->r);
if (ret)
return ret;
v4l2_rect_set_min_size(&s->r, &vivid_min_rect);
v4l2_rect_set_max_size(&s->r, &dev->src_rect);
v4l2_rect_map_inside(&s->r, &dev->crop_bounds_cap);
s->r.top /= factor;
s->r.height /= factor;
if (dev->has_scaler_cap) {
struct v4l2_rect fmt = dev->fmt_cap_rect;
struct v4l2_rect max_rect = {
0, 0,
s->r.width * MAX_ZOOM,
s->r.height * MAX_ZOOM
};
struct v4l2_rect min_rect = {
0, 0,
s->r.width / MAX_ZOOM,
s->r.height / MAX_ZOOM
};
v4l2_rect_set_min_size(&fmt, &min_rect);
if (!dev->has_compose_cap)
v4l2_rect_set_max_size(&fmt, &max_rect);
if (!v4l2_rect_same_size(&dev->fmt_cap_rect, &fmt) &&
vb2_is_busy(&dev->vb_vid_cap_q))
return -EBUSY;
if (dev->has_compose_cap) {
v4l2_rect_set_min_size(compose, &min_rect);
v4l2_rect_set_max_size(compose, &max_rect);
}
dev->fmt_cap_rect = fmt;
tpg_s_buf_height(&dev->tpg, 0, fmt.height);
} else if (dev->has_compose_cap) {
struct v4l2_rect fmt = dev->fmt_cap_rect;
v4l2_rect_set_min_size(&fmt, &s->r);
if (!v4l2_rect_same_size(&dev->fmt_cap_rect, &fmt) &&
vb2_is_busy(&dev->vb_vid_cap_q))
return -EBUSY;
dev->fmt_cap_rect = fmt;
tpg_s_buf_height(&dev->tpg, 0, fmt.height);
v4l2_rect_set_size_to(compose, &s->r);
v4l2_rect_map_inside(compose, &dev->fmt_cap_rect);
} else {
if (!v4l2_rect_same_size(&s->r, &dev->fmt_cap_rect) &&
vb2_is_busy(&dev->vb_vid_cap_q))
return -EBUSY;
v4l2_rect_set_size_to(&dev->fmt_cap_rect, &s->r);
v4l2_rect_set_size_to(compose, &s->r);
v4l2_rect_map_inside(compose, &dev->fmt_cap_rect);
tpg_s_buf_height(&dev->tpg, 0, dev->fmt_cap_rect.height);
}
s->r.top *= factor;
s->r.height *= factor;
*crop = s->r;
break;
case V4L2_SEL_TGT_COMPOSE:
if (!dev->has_compose_cap)
return -EINVAL;
ret = vivid_vid_adjust_sel(s->flags, &s->r);
if (ret)
return ret;
v4l2_rect_set_min_size(&s->r, &vivid_min_rect);
v4l2_rect_set_max_size(&s->r, &dev->fmt_cap_rect);
if (dev->has_scaler_cap) {
struct v4l2_rect max_rect = {
0, 0,
dev->src_rect.width * MAX_ZOOM,
(dev->src_rect.height / factor) * MAX_ZOOM
};
v4l2_rect_set_max_size(&s->r, &max_rect);
if (dev->has_crop_cap) {
struct v4l2_rect min_rect = {
0, 0,
s->r.width / MAX_ZOOM,
(s->r.height * factor) / MAX_ZOOM
};
struct v4l2_rect max_rect = {
0, 0,
s->r.width * MAX_ZOOM,
(s->r.height * factor) * MAX_ZOOM
};
v4l2_rect_set_min_size(crop, &min_rect);
v4l2_rect_set_max_size(crop, &max_rect);
v4l2_rect_map_inside(crop, &dev->crop_bounds_cap);
}
} else if (dev->has_crop_cap) {
s->r.top *= factor;
s->r.height *= factor;
v4l2_rect_set_max_size(&s->r, &dev->src_rect);
v4l2_rect_set_size_to(crop, &s->r);
v4l2_rect_map_inside(crop, &dev->crop_bounds_cap);
s->r.top /= factor;
s->r.height /= factor;
} else {
v4l2_rect_set_size_to(&s->r, &dev->src_rect);
s->r.height /= factor;
}
v4l2_rect_map_inside(&s->r, &dev->fmt_cap_rect);
if (dev->bitmap_cap && (compose->width != s->r.width ||
compose->height != s->r.height)) {
vfree(dev->bitmap_cap);
dev->bitmap_cap = NULL;
}
*compose = s->r;
break;
default:
return -EINVAL;
}
tpg_s_crop_compose(&dev->tpg, crop, compose);
return 0;
}
int vivid_vid_cap_cropcap(struct file *file, void *priv,
struct v4l2_cropcap *cap)
{
struct vivid_dev *dev = video_drvdata(file);
if (cap->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
switch (vivid_get_pixel_aspect(dev)) {
case TPG_PIXEL_ASPECT_NTSC:
cap->pixelaspect.numerator = 11;
cap->pixelaspect.denominator = 10;
break;
case TPG_PIXEL_ASPECT_PAL:
cap->pixelaspect.numerator = 54;
cap->pixelaspect.denominator = 59;
break;
case TPG_PIXEL_ASPECT_SQUARE:
cap->pixelaspect.numerator = 1;
cap->pixelaspect.denominator = 1;
break;
}
return 0;
}
int vidioc_enum_fmt_vid_overlay(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct vivid_dev *dev = video_drvdata(file);
const struct vivid_fmt *fmt;
if (dev->multiplanar)
return -ENOTTY;
if (f->index >= ARRAY_SIZE(formats_ovl))
return -EINVAL;
fmt = &formats_ovl[f->index];
f->pixelformat = fmt->fourcc;
return 0;
}
int vidioc_g_fmt_vid_overlay(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
const struct v4l2_rect *compose = &dev->compose_cap;
struct v4l2_window *win = &f->fmt.win;
unsigned clipcount = win->clipcount;
if (dev->multiplanar)
return -ENOTTY;
win->w.top = dev->overlay_cap_top;
win->w.left = dev->overlay_cap_left;
win->w.width = compose->width;
win->w.height = compose->height;
win->field = dev->overlay_cap_field;
win->clipcount = dev->clipcount_cap;
if (clipcount > dev->clipcount_cap)
clipcount = dev->clipcount_cap;
if (dev->bitmap_cap == NULL)
win->bitmap = NULL;
else if (win->bitmap) {
if (copy_to_user(win->bitmap, dev->bitmap_cap,
((compose->width + 7) / 8) * compose->height))
return -EFAULT;
}
if (clipcount && win->clips) {
if (copy_to_user(win->clips, dev->clips_cap,
clipcount * sizeof(dev->clips_cap[0])))
return -EFAULT;
}
return 0;
}
int vidioc_try_fmt_vid_overlay(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
const struct v4l2_rect *compose = &dev->compose_cap;
struct v4l2_window *win = &f->fmt.win;
int i, j;
if (dev->multiplanar)
return -ENOTTY;
win->w.left = clamp_t(int, win->w.left,
-dev->fb_cap.fmt.width, dev->fb_cap.fmt.width);
win->w.top = clamp_t(int, win->w.top,
-dev->fb_cap.fmt.height, dev->fb_cap.fmt.height);
win->w.width = compose->width;
win->w.height = compose->height;
if (win->field != V4L2_FIELD_BOTTOM && win->field != V4L2_FIELD_TOP)
win->field = V4L2_FIELD_ANY;
win->chromakey = 0;
win->global_alpha = 0;
if (win->clipcount && !win->clips)
win->clipcount = 0;
if (win->clipcount > MAX_CLIPS)
win->clipcount = MAX_CLIPS;
if (win->clipcount) {
if (copy_from_user(dev->try_clips_cap, win->clips,
win->clipcount * sizeof(dev->clips_cap[0])))
return -EFAULT;
for (i = 0; i < win->clipcount; i++) {
struct v4l2_rect *r = &dev->try_clips_cap[i].c;
r->top = clamp_t(s32, r->top, 0, dev->fb_cap.fmt.height - 1);
r->height = clamp_t(s32, r->height, 1, dev->fb_cap.fmt.height - r->top);
r->left = clamp_t(u32, r->left, 0, dev->fb_cap.fmt.width - 1);
r->width = clamp_t(u32, r->width, 1, dev->fb_cap.fmt.width - r->left);
}
/*
* Yeah, so sue me, it's an O(n^2) algorithm. But n is a small
* number and it's typically a one-time deal.
*/
for (i = 0; i < win->clipcount - 1; i++) {
struct v4l2_rect *r1 = &dev->try_clips_cap[i].c;
for (j = i + 1; j < win->clipcount; j++) {
struct v4l2_rect *r2 = &dev->try_clips_cap[j].c;
if (v4l2_rect_overlap(r1, r2))
return -EINVAL;
}
}
if (copy_to_user(win->clips, dev->try_clips_cap,
win->clipcount * sizeof(dev->clips_cap[0])))
return -EFAULT;
}
return 0;
}
int vidioc_s_fmt_vid_overlay(struct file *file, void *priv,
struct v4l2_format *f)
{
struct vivid_dev *dev = video_drvdata(file);
const struct v4l2_rect *compose = &dev->compose_cap;
struct v4l2_window *win = &f->fmt.win;
int ret = vidioc_try_fmt_vid_overlay(file, priv, f);
unsigned bitmap_size = ((compose->width + 7) / 8) * compose->height;
unsigned clips_size = win->clipcount * sizeof(dev->clips_cap[0]);
void *new_bitmap = NULL;
if (ret)
return ret;
if (win->bitmap) {
new_bitmap = vzalloc(bitmap_size);
if (new_bitmap == NULL)
return -ENOMEM;
if (copy_from_user(new_bitmap, win->bitmap, bitmap_size)) {
vfree(new_bitmap);
return -EFAULT;
}
}
dev->overlay_cap_top = win->w.top;
dev->overlay_cap_left = win->w.left;
dev->overlay_cap_field = win->field;
vfree(dev->bitmap_cap);
dev->bitmap_cap = new_bitmap;
dev->clipcount_cap = win->clipcount;
if (dev->clipcount_cap)
memcpy(dev->clips_cap, dev->try_clips_cap, clips_size);
return 0;
}
int vivid_vid_cap_overlay(struct file *file, void *fh, unsigned i)
{
struct vivid_dev *dev = video_drvdata(file);
if (dev->multiplanar)
return -ENOTTY;
if (i && dev->fb_vbase_cap == NULL)
return -EINVAL;
if (i && dev->fb_cap.fmt.pixelformat != dev->fmt_cap->fourcc) {
dprintk(dev, 1, "mismatch between overlay and video capture pixelformats\n");
return -EINVAL;
}
if (dev->overlay_cap_owner && dev->overlay_cap_owner != fh)
return -EBUSY;
dev->overlay_cap_owner = i ? fh : NULL;
return 0;
}
int vivid_vid_cap_g_fbuf(struct file *file, void *fh,
struct v4l2_framebuffer *a)
{
struct vivid_dev *dev = video_drvdata(file);
if (dev->multiplanar)
return -ENOTTY;
*a = dev->fb_cap;
a->capability = V4L2_FBUF_CAP_BITMAP_CLIPPING |
V4L2_FBUF_CAP_LIST_CLIPPING;
a->flags = V4L2_FBUF_FLAG_PRIMARY;
a->fmt.field = V4L2_FIELD_NONE;
a->fmt.colorspace = V4L2_COLORSPACE_SRGB;
a->fmt.priv = 0;
return 0;
}
int vivid_vid_cap_s_fbuf(struct file *file, void *fh,
const struct v4l2_framebuffer *a)
{
struct vivid_dev *dev = video_drvdata(file);
const struct vivid_fmt *fmt;
if (dev->multiplanar)
return -ENOTTY;
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RAWIO))
return -EPERM;
if (dev->overlay_cap_owner)
return -EBUSY;
if (a->base == NULL) {
dev->fb_cap.base = NULL;
dev->fb_vbase_cap = NULL;
return 0;
}
if (a->fmt.width < 48 || a->fmt.height < 32)
return -EINVAL;
fmt = vivid_get_format(dev, a->fmt.pixelformat);
if (!fmt || !fmt->can_do_overlay)
return -EINVAL;
if (a->fmt.bytesperline < (a->fmt.width * fmt->bit_depth[0]) / 8)
return -EINVAL;
if (a->fmt.height * a->fmt.bytesperline < a->fmt.sizeimage)
return -EINVAL;
dev->fb_vbase_cap = phys_to_virt((unsigned long)a->base);
dev->fb_cap = *a;
dev->overlay_cap_left = clamp_t(int, dev->overlay_cap_left,
-dev->fb_cap.fmt.width, dev->fb_cap.fmt.width);
dev->overlay_cap_top = clamp_t(int, dev->overlay_cap_top,
-dev->fb_cap.fmt.height, dev->fb_cap.fmt.height);
return 0;
}
static const struct v4l2_audio vivid_audio_inputs[] = {
{ 0, "TV", V4L2_AUDCAP_STEREO },
{ 1, "Line-In", V4L2_AUDCAP_STEREO },
};
int vidioc_enum_input(struct file *file, void *priv,
struct v4l2_input *inp)
{
struct vivid_dev *dev = video_drvdata(file);
if (inp->index >= dev->num_inputs)
return -EINVAL;
inp->type = V4L2_INPUT_TYPE_CAMERA;
switch (dev->input_type[inp->index]) {
case WEBCAM:
snprintf(inp->name, sizeof(inp->name), "Webcam %u",
dev->input_name_counter[inp->index]);
inp->capabilities = 0;
break;
case TV:
snprintf(inp->name, sizeof(inp->name), "TV %u",
dev->input_name_counter[inp->index]);
inp->type = V4L2_INPUT_TYPE_TUNER;
inp->std = V4L2_STD_ALL;
if (dev->has_audio_inputs)
inp->audioset = (1 << ARRAY_SIZE(vivid_audio_inputs)) - 1;
inp->capabilities = V4L2_IN_CAP_STD;
break;
case SVID:
snprintf(inp->name, sizeof(inp->name), "S-Video %u",
dev->input_name_counter[inp->index]);
inp->std = V4L2_STD_ALL;
if (dev->has_audio_inputs)
inp->audioset = (1 << ARRAY_SIZE(vivid_audio_inputs)) - 1;
inp->capabilities = V4L2_IN_CAP_STD;
break;
case HDMI:
snprintf(inp->name, sizeof(inp->name), "HDMI %u",
dev->input_name_counter[inp->index]);
inp->capabilities = V4L2_IN_CAP_DV_TIMINGS;
if (dev->edid_blocks == 0 ||
dev->dv_timings_signal_mode == NO_SIGNAL)
inp->status |= V4L2_IN_ST_NO_SIGNAL;
else if (dev->dv_timings_signal_mode == NO_LOCK ||
dev->dv_timings_signal_mode == OUT_OF_RANGE)
inp->status |= V4L2_IN_ST_NO_H_LOCK;
break;
}
if (dev->sensor_hflip)
inp->status |= V4L2_IN_ST_HFLIP;
if (dev->sensor_vflip)
inp->status |= V4L2_IN_ST_VFLIP;
if (dev->input == inp->index && vivid_is_sdtv_cap(dev)) {
if (dev->std_signal_mode == NO_SIGNAL) {
inp->status |= V4L2_IN_ST_NO_SIGNAL;
} else if (dev->std_signal_mode == NO_LOCK) {
inp->status |= V4L2_IN_ST_NO_H_LOCK;
} else if (vivid_is_tv_cap(dev)) {
switch (tpg_g_quality(&dev->tpg)) {
case TPG_QUAL_GRAY:
inp->status |= V4L2_IN_ST_COLOR_KILL;
break;
case TPG_QUAL_NOISE:
inp->status |= V4L2_IN_ST_NO_H_LOCK;
break;
default:
break;
}
}
}
return 0;
}
int vidioc_g_input(struct file *file, void *priv, unsigned *i)
{
struct vivid_dev *dev = video_drvdata(file);
*i = dev->input;
return 0;
}
int vidioc_s_input(struct file *file, void *priv, unsigned i)
{
struct vivid_dev *dev = video_drvdata(file);
struct v4l2_bt_timings *bt = &dev->dv_timings_cap.bt;
unsigned brightness;
if (i >= dev->num_inputs)
return -EINVAL;
if (i == dev->input)
return 0;
if (vb2_is_busy(&dev->vb_vid_cap_q) || vb2_is_busy(&dev->vb_vbi_cap_q))
return -EBUSY;
dev->input = i;
dev->vid_cap_dev.tvnorms = 0;
if (dev->input_type[i] == TV || dev->input_type[i] == SVID) {
dev->tv_audio_input = (dev->input_type[i] == TV) ? 0 : 1;
dev->vid_cap_dev.tvnorms = V4L2_STD_ALL;
}
dev->vbi_cap_dev.tvnorms = dev->vid_cap_dev.tvnorms;
vivid_update_format_cap(dev, false);
if (dev->colorspace) {
switch (dev->input_type[i]) {
case WEBCAM:
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_SRGB);
break;
case TV:
case SVID:
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_170M);
break;
case HDMI:
if (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) {
if (dev->src_rect.width == 720 && dev->src_rect.height <= 576)
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_170M);
else
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_709);
} else {
v4l2_ctrl_s_ctrl(dev->colorspace, VIVID_CS_SRGB);
}
break;
}
}
/*
* Modify the brightness range depending on the input.
* This makes it easy to use vivid to test if applications can
* handle control range modifications and is also how this is
* typically used in practice as different inputs may be hooked
* up to different receivers with different control ranges.
*/
brightness = 128 * i + dev->input_brightness[i];
v4l2_ctrl_modify_range(dev->brightness,
128 * i, 255 + 128 * i, 1, 128 + 128 * i);
v4l2_ctrl_s_ctrl(dev->brightness, brightness);
return 0;
}
int vidioc_enumaudio(struct file *file, void *fh, struct v4l2_audio *vin)
{
if (vin->index >= ARRAY_SIZE(vivid_audio_inputs))
return -EINVAL;
*vin = vivid_audio_inputs[vin->index];
return 0;
}
int vidioc_g_audio(struct file *file, void *fh, struct v4l2_audio *vin)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_sdtv_cap(dev))
return -EINVAL;
*vin = vivid_audio_inputs[dev->tv_audio_input];
return 0;
}
int vidioc_s_audio(struct file *file, void *fh, const struct v4l2_audio *vin)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_sdtv_cap(dev))
return -EINVAL;
if (vin->index >= ARRAY_SIZE(vivid_audio_inputs))
return -EINVAL;
dev->tv_audio_input = vin->index;
return 0;
}
int vivid_video_g_frequency(struct file *file, void *fh, struct v4l2_frequency *vf)
{
struct vivid_dev *dev = video_drvdata(file);
if (vf->tuner != 0)
return -EINVAL;
vf->frequency = dev->tv_freq;
return 0;
}
int vivid_video_s_frequency(struct file *file, void *fh, const struct v4l2_frequency *vf)
{
struct vivid_dev *dev = video_drvdata(file);
if (vf->tuner != 0)
return -EINVAL;
dev->tv_freq = clamp_t(unsigned, vf->frequency, MIN_TV_FREQ, MAX_TV_FREQ);
if (vivid_is_tv_cap(dev))
vivid_update_quality(dev);
return 0;
}
int vivid_video_s_tuner(struct file *file, void *fh, const struct v4l2_tuner *vt)
{
struct vivid_dev *dev = video_drvdata(file);
if (vt->index != 0)
return -EINVAL;
if (vt->audmode > V4L2_TUNER_MODE_LANG1_LANG2)
return -EINVAL;
dev->tv_audmode = vt->audmode;
return 0;
}
int vivid_video_g_tuner(struct file *file, void *fh, struct v4l2_tuner *vt)
{
struct vivid_dev *dev = video_drvdata(file);
enum tpg_quality qual;
if (vt->index != 0)
return -EINVAL;
vt->capability = V4L2_TUNER_CAP_NORM | V4L2_TUNER_CAP_STEREO |
V4L2_TUNER_CAP_LANG1 | V4L2_TUNER_CAP_LANG2;
vt->audmode = dev->tv_audmode;
vt->rangelow = MIN_TV_FREQ;
vt->rangehigh = MAX_TV_FREQ;
qual = vivid_get_quality(dev, &vt->afc);
if (qual == TPG_QUAL_COLOR)
vt->signal = 0xffff;
else if (qual == TPG_QUAL_GRAY)
vt->signal = 0x8000;
else
vt->signal = 0;
if (qual == TPG_QUAL_NOISE) {
vt->rxsubchans = 0;
} else if (qual == TPG_QUAL_GRAY) {
vt->rxsubchans = V4L2_TUNER_SUB_MONO;
} else {
unsigned channel_nr = dev->tv_freq / (6 * 16);
unsigned options = (dev->std_cap & V4L2_STD_NTSC_M) ? 4 : 3;
switch (channel_nr % options) {
case 0:
vt->rxsubchans = V4L2_TUNER_SUB_MONO;
break;
case 1:
vt->rxsubchans = V4L2_TUNER_SUB_STEREO;
break;
case 2:
if (dev->std_cap & V4L2_STD_NTSC_M)
vt->rxsubchans = V4L2_TUNER_SUB_MONO | V4L2_TUNER_SUB_SAP;
else
vt->rxsubchans = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
break;
case 3:
vt->rxsubchans = V4L2_TUNER_SUB_STEREO | V4L2_TUNER_SUB_SAP;
break;
}
}
strlcpy(vt->name, "TV Tuner", sizeof(vt->name));
return 0;
}
/* Must remain in sync with the vivid_ctrl_standard_strings array */
const v4l2_std_id vivid_standard[] = {
V4L2_STD_NTSC_M,
V4L2_STD_NTSC_M_JP,
V4L2_STD_NTSC_M_KR,
V4L2_STD_NTSC_443,
V4L2_STD_PAL_BG | V4L2_STD_PAL_H,
V4L2_STD_PAL_I,
V4L2_STD_PAL_DK,
V4L2_STD_PAL_M,
V4L2_STD_PAL_N,
V4L2_STD_PAL_Nc,
V4L2_STD_PAL_60,
V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H,
V4L2_STD_SECAM_DK,
V4L2_STD_SECAM_L,
V4L2_STD_SECAM_LC,
V4L2_STD_UNKNOWN
};
/* Must remain in sync with the vivid_standard array */
const char * const vivid_ctrl_standard_strings[] = {
"NTSC-M",
"NTSC-M-JP",
"NTSC-M-KR",
"NTSC-443",
"PAL-BGH",
"PAL-I",
"PAL-DK",
"PAL-M",
"PAL-N",
"PAL-Nc",
"PAL-60",
"SECAM-BGH",
"SECAM-DK",
"SECAM-L",
"SECAM-Lc",
NULL,
};
int vidioc_querystd(struct file *file, void *priv, v4l2_std_id *id)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_sdtv_cap(dev))
return -ENODATA;
if (dev->std_signal_mode == NO_SIGNAL ||
dev->std_signal_mode == NO_LOCK) {
*id = V4L2_STD_UNKNOWN;
return 0;
}
if (vivid_is_tv_cap(dev) && tpg_g_quality(&dev->tpg) == TPG_QUAL_NOISE) {
*id = V4L2_STD_UNKNOWN;
} else if (dev->std_signal_mode == CURRENT_STD) {
*id = dev->std_cap;
} else if (dev->std_signal_mode == SELECTED_STD) {
*id = dev->query_std;
} else {
*id = vivid_standard[dev->query_std_last];
dev->query_std_last = (dev->query_std_last + 1) % ARRAY_SIZE(vivid_standard);
}
return 0;
}
int vivid_vid_cap_s_std(struct file *file, void *priv, v4l2_std_id id)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_sdtv_cap(dev))
return -ENODATA;
if (dev->std_cap == id)
return 0;
if (vb2_is_busy(&dev->vb_vid_cap_q) || vb2_is_busy(&dev->vb_vbi_cap_q))
return -EBUSY;
dev->std_cap = id;
vivid_update_format_cap(dev, false);
return 0;
}
static void find_aspect_ratio(u32 width, u32 height,
u32 *num, u32 *denom)
{
if (!(height % 3) && ((height * 4 / 3) == width)) {
*num = 4;
*denom = 3;
} else if (!(height % 9) && ((height * 16 / 9) == width)) {
*num = 16;
*denom = 9;
} else if (!(height % 10) && ((height * 16 / 10) == width)) {
*num = 16;
*denom = 10;
} else if (!(height % 4) && ((height * 5 / 4) == width)) {
*num = 5;
*denom = 4;
} else if (!(height % 9) && ((height * 15 / 9) == width)) {
*num = 15;
*denom = 9;
} else { /* default to 16:9 */
*num = 16;
*denom = 9;
}
}
static bool valid_cvt_gtf_timings(struct v4l2_dv_timings *timings)
{
struct v4l2_bt_timings *bt = &timings->bt;
u32 total_h_pixel;
u32 total_v_lines;
u32 h_freq;
if (!v4l2_valid_dv_timings(timings, &vivid_dv_timings_cap,
NULL, NULL))
return false;
total_h_pixel = V4L2_DV_BT_FRAME_WIDTH(bt);
total_v_lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
h_freq = (u32)bt->pixelclock / total_h_pixel;
if (bt->standards == 0 || (bt->standards & V4L2_DV_BT_STD_CVT)) {
if (v4l2_detect_cvt(total_v_lines, h_freq, bt->vsync, bt->width,
bt->polarities, bt->interlaced, timings))
return true;
}
if (bt->standards == 0 || (bt->standards & V4L2_DV_BT_STD_GTF)) {
struct v4l2_fract aspect_ratio;
find_aspect_ratio(bt->width, bt->height,
&aspect_ratio.numerator,
&aspect_ratio.denominator);
if (v4l2_detect_gtf(total_v_lines, h_freq, bt->vsync,
bt->polarities, bt->interlaced,
aspect_ratio, timings))
return true;
}
return false;
}
int vivid_vid_cap_s_dv_timings(struct file *file, void *_fh,
struct v4l2_dv_timings *timings)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_hdmi_cap(dev))
return -ENODATA;
if (!v4l2_find_dv_timings_cap(timings, &vivid_dv_timings_cap,
0, NULL, NULL) &&
!valid_cvt_gtf_timings(timings))
return -EINVAL;
if (v4l2_match_dv_timings(timings, &dev->dv_timings_cap, 0, false))
return 0;
if (vb2_is_busy(&dev->vb_vid_cap_q))
return -EBUSY;
dev->dv_timings_cap = *timings;
vivid_update_format_cap(dev, false);
// update framelength control to control framerate
v4l2_ctrl_s_ctrl(dev->framelength,
V4L2_DV_BT_FRAME_HEIGHT(&dev->dv_timings_cap.bt));
return 0;
}
int vidioc_query_dv_timings(struct file *file, void *_fh,
struct v4l2_dv_timings *timings)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_hdmi_cap(dev))
return -ENODATA;
if (dev->dv_timings_signal_mode == NO_SIGNAL ||
dev->edid_blocks == 0)
return -ENOLINK;
if (dev->dv_timings_signal_mode == NO_LOCK)
return -ENOLCK;
if (dev->dv_timings_signal_mode == OUT_OF_RANGE) {
timings->bt.pixelclock = vivid_dv_timings_cap.bt.max_pixelclock * 2;
return -ERANGE;
}
if (dev->dv_timings_signal_mode == CURRENT_DV_TIMINGS) {
*timings = dev->dv_timings_cap;
} else if (dev->dv_timings_signal_mode == SELECTED_DV_TIMINGS) {
*timings = v4l2_dv_timings_presets[dev->query_dv_timings];
} else {
*timings = v4l2_dv_timings_presets[dev->query_dv_timings_last];
dev->query_dv_timings_last = (dev->query_dv_timings_last + 1) %
dev->query_dv_timings_size;
}
return 0;
}
int vidioc_s_edid(struct file *file, void *_fh,
struct v4l2_edid *edid)
{
struct vivid_dev *dev = video_drvdata(file);
u16 phys_addr;
unsigned int i;
int ret;
memset(edid->reserved, 0, sizeof(edid->reserved));
if (edid->pad >= dev->num_inputs)
return -EINVAL;
if (dev->input_type[edid->pad] != HDMI || edid->start_block)
return -EINVAL;
if (edid->blocks == 0) {
dev->edid_blocks = 0;
phys_addr = CEC_PHYS_ADDR_INVALID;
goto set_phys_addr;
}
if (edid->blocks > dev->edid_max_blocks) {
edid->blocks = dev->edid_max_blocks;
return -E2BIG;
}
phys_addr = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, NULL);
ret = cec_phys_addr_validate(phys_addr, &phys_addr, NULL);
if (ret)
return ret;
if (vb2_is_busy(&dev->vb_vid_cap_q))
return -EBUSY;
dev->edid_blocks = edid->blocks;
memcpy(dev->edid, edid->edid, edid->blocks * 128);
set_phys_addr:
/* TODO: a proper hotplug detect cycle should be emulated here */
cec_s_phys_addr(dev->cec_rx_adap, phys_addr, false);
for (i = 0; i < MAX_OUTPUTS && dev->cec_tx_adap[i]; i++)
cec_s_phys_addr(dev->cec_tx_adap[i],
cec_phys_addr_for_input(phys_addr, i + 1),
false);
return 0;
}
int vidioc_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct vivid_dev *dev = video_drvdata(file);
if (!vivid_is_webcam(dev) && !dev->has_scaler_cap)
return -EINVAL;
if (vivid_get_format(dev, fsize->pixel_format) == NULL)
return -EINVAL;
if (vivid_is_webcam(dev)) {
if (fsize->index >= ARRAY_SIZE(webcam_sizes))
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete = webcam_sizes[fsize->index];
return 0;
}
if (vivid_is_hdmi_cap(dev)) {
if (fsize->index >= ARRAY_SIZE(hdmi_sizes))
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete = hdmi_sizes[fsize->index];
return 0;
}
if (fsize->index)
return -EINVAL;
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
fsize->stepwise.min_width = MIN_WIDTH;
fsize->stepwise.max_width = MAX_WIDTH * MAX_ZOOM;
fsize->stepwise.step_width = 2;
fsize->stepwise.min_height = MIN_HEIGHT;
fsize->stepwise.max_height = MAX_HEIGHT * MAX_ZOOM;
fsize->stepwise.step_height = 2;
return 0;
}
/* timeperframe is arbitrary and continuous */
int vidioc_enum_frameintervals(struct file *file, void *priv,
struct v4l2_frmivalenum *fival)
{
struct vivid_dev *dev = video_drvdata(file);
const struct vivid_fmt *fmt;
int i;
fmt = vivid_get_format(dev, fival->pixel_format);
if (!fmt)
return -EINVAL;
if (!vivid_is_webcam(dev)) {
if (fival->index)
return -EINVAL;
if (fival->width < MIN_WIDTH || fival->width > MAX_WIDTH * MAX_ZOOM)
return -EINVAL;
if (fival->height < MIN_HEIGHT || fival->height > MAX_HEIGHT * MAX_ZOOM)
return -EINVAL;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = dev->timeperframe_vid_cap;
return 0;
}
for (i = 0; i < ARRAY_SIZE(webcam_sizes); i++)
if (fival->width == webcam_sizes[i].width &&
fival->height == webcam_sizes[i].height)
break;
if (i == ARRAY_SIZE(webcam_sizes))
return -EINVAL;
if (fival->index >= 2 * (VIVID_WEBCAM_SIZES - i))
return -EINVAL;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = webcam_intervals[fival->index];
return 0;
}
int vivid_vid_cap_g_parm(struct file *file, void *priv,
struct v4l2_streamparm *parm)
{
struct vivid_dev *dev = video_drvdata(file);
if (parm->type != (dev->multiplanar ?
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE :
V4L2_BUF_TYPE_VIDEO_CAPTURE))
return -EINVAL;
parm->parm.capture.capability = V4L2_CAP_TIMEPERFRAME;
parm->parm.capture.timeperframe = dev->timeperframe_vid_cap;
parm->parm.capture.readbuffers = 1;
return 0;
}
#define FRACT_CMP(a, OP, b) \
((u64)(a).numerator * (b).denominator OP (u64)(b).numerator * (a).denominator)
int vivid_vid_cap_s_parm(struct file *file, void *priv,
struct v4l2_streamparm *parm)
{
struct vivid_dev *dev = video_drvdata(file);
unsigned ival_sz = 2 * (VIVID_WEBCAM_SIZES - dev->webcam_size_idx);
struct v4l2_fract tpf;
unsigned i;
if (parm->type != (dev->multiplanar ?
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE :
V4L2_BUF_TYPE_VIDEO_CAPTURE))
return -EINVAL;
if (!vivid_is_webcam(dev))
return vivid_vid_cap_g_parm(file, priv, parm);
tpf = parm->parm.capture.timeperframe;
if (tpf.denominator == 0)
tpf = webcam_intervals[ival_sz - 1];
for (i = 0; i < ival_sz; i++)
if (FRACT_CMP(tpf, >=, webcam_intervals[i]))
break;
if (i == ival_sz)
i = ival_sz - 1;
dev->webcam_ival_idx = i;
tpf = webcam_intervals[dev->webcam_ival_idx];
tpf = FRACT_CMP(tpf, <, tpf_min) ? tpf_min : tpf;
tpf = FRACT_CMP(tpf, >, tpf_max) ? tpf_max : tpf;
/* resync the thread's timings */
dev->cap_seq_resync = true;
dev->timeperframe_vid_cap = tpf;
parm->parm.capture.capability = V4L2_CAP_TIMEPERFRAME;
parm->parm.capture.timeperframe = tpf;
parm->parm.capture.readbuffers = 1;
return 0;
}