1906 lines
58 KiB
C
1906 lines
58 KiB
C
|
/*
|
||
|
* drivers/platform/tegra/tegra21_emc_cc_r21012.c
|
||
|
*
|
||
|
* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/of.h>
|
||
|
|
||
|
#include <soc/tegra/tegra_emc.h>
|
||
|
|
||
|
#include "tegra210-emc-reg.h"
|
||
|
|
||
|
#define DVFS_CLOCK_CHANGE_VERSION 21021
|
||
|
#define EMC_PRELOCK_VERSION 2101
|
||
|
|
||
|
#define emc_cc_dbg(t, ...) pr_debug(__VA_ARGS__)
|
||
|
|
||
|
/*
|
||
|
* Enable flags for specifying verbosity.
|
||
|
*/
|
||
|
#define INFO (1 << 0)
|
||
|
#define STEPS (1 << 1)
|
||
|
#define SUB_STEPS (1 << 2)
|
||
|
#define PRELOCK (1 << 3)
|
||
|
#define PRELOCK_STEPS (1 << 4)
|
||
|
#define ACTIVE_EN (1 << 5)
|
||
|
#define PRAMP_UP (1 << 6)
|
||
|
#define PRAMP_DN (1 << 7)
|
||
|
#define EMA_WRITES (1 << 10)
|
||
|
#define EMA_UPDATES (1 << 11)
|
||
|
#define PER_TRAIN (1 << 16)
|
||
|
#define CC_PRINT (1 << 17)
|
||
|
#define CCFIFO (1 << 29)
|
||
|
#define REGS (1 << 30)
|
||
|
#define REG_LISTS (1 << 31)
|
||
|
|
||
|
enum {
|
||
|
DVFS_SEQUENCE = 1,
|
||
|
WRITE_TRAINING_SEQUENCE = 2,
|
||
|
PERIODIC_TRAINING_SEQUENCE = 3,
|
||
|
DVFS_PT1 = 10,
|
||
|
DVFS_UPDATE = 11,
|
||
|
TRAINING_PT1 = 12,
|
||
|
TRAINING_UPDATE = 13,
|
||
|
PERIODIC_TRAINING_UPDATE = 14
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* PTFV defines - basically just indexes into the per table PTFV array.
|
||
|
*/
|
||
|
#define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX 0
|
||
|
#define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX 1
|
||
|
#define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX 2
|
||
|
#define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX 3
|
||
|
#define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX 4
|
||
|
#define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX 5
|
||
|
#define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX 6
|
||
|
#define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX 7
|
||
|
#define PTFV_DVFS_SAMPLES_INDEX 9
|
||
|
#define PTFV_MOVAVG_WEIGHT_INDEX 10
|
||
|
#define PTFV_CONFIG_CTRL_INDEX 11
|
||
|
|
||
|
#define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA (1 << 0)
|
||
|
|
||
|
/*
|
||
|
* Do arithmetic in fixed point.
|
||
|
*/
|
||
|
#define MOVAVG_PRECISION_FACTOR 100
|
||
|
|
||
|
/*
|
||
|
* The division portion of the average operation.
|
||
|
*/
|
||
|
#define __AVERAGE_PTFV(dev) \
|
||
|
({ next_timing->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] = \
|
||
|
next_timing->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \
|
||
|
next_timing->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
|
||
|
|
||
|
/*
|
||
|
* Convert val to fixed point and add it to the temporary average.
|
||
|
*/
|
||
|
#define __INCREMENT_PTFV(dev, val) \
|
||
|
({ next_timing->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] += \
|
||
|
((val) * MOVAVG_PRECISION_FACTOR); })
|
||
|
|
||
|
/*
|
||
|
* Convert a moving average back to integral form and return the value.
|
||
|
*/
|
||
|
#define __MOVAVG_AC(timing, dev) \
|
||
|
((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \
|
||
|
MOVAVG_PRECISION_FACTOR)
|
||
|
|
||
|
/* Weighted update. */
|
||
|
#define __WEIGHTED_UPDATE_PTFV(dev, nval) \
|
||
|
do { \
|
||
|
int w = PTFV_MOVAVG_WEIGHT_INDEX; \
|
||
|
int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX; \
|
||
|
\
|
||
|
next_timing->ptfv_list[dqs] = \
|
||
|
((nval * MOVAVG_PRECISION_FACTOR) + \
|
||
|
(next_timing->ptfv_list[dqs] * \
|
||
|
next_timing->ptfv_list[w])) / \
|
||
|
(next_timing->ptfv_list[w] + 1); \
|
||
|
\
|
||
|
emc_cc_dbg(EMA_UPDATES, "%s: (s=%u) EMA: %u\n", \
|
||
|
__stringify(dev), nval, \
|
||
|
next_timing->ptfv_list[dqs]); \
|
||
|
} while (0)
|
||
|
|
||
|
/* Access a particular average. */
|
||
|
#define __MOVAVG(timing, dev) \
|
||
|
((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX])
|
||
|
|
||
|
static u32 update_clock_tree_delay(struct emc_table *last_timing,
|
||
|
struct emc_table *next_timing,
|
||
|
u32 dram_dev_num, u32 channel_mode, int type)
|
||
|
{
|
||
|
u32 mrr_req = 0, mrr_data = 0;
|
||
|
u32 temp0_0 = 0, temp0_1 = 0, temp1_0 = 0, temp1_1 = 0;
|
||
|
s32 tdel = 0, tmdel = 0, adel = 0;
|
||
|
u32 cval = 0;
|
||
|
u32 last_timing_rate_mhz = last_timing->rate / 1000;
|
||
|
u32 next_timing_rate_mhz = next_timing->rate / 1000;
|
||
|
int dvfs_pt1 = type == DVFS_PT1;
|
||
|
int dvfs_update = type == DVFS_UPDATE;
|
||
|
int periodic_training_update = type == PERIODIC_TRAINING_UPDATE;
|
||
|
|
||
|
/*
|
||
|
* Dev0 MSB.
|
||
|
*/
|
||
|
if (dvfs_pt1 || periodic_training_update) {
|
||
|
mrr_req = (2 << EMC_MRR_DEV_SEL_SHIFT) |
|
||
|
(19 << EMC_MRR_MA_SHIFT);
|
||
|
emc_writel(mrr_req, EMC_MRR);
|
||
|
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC),
|
||
|
"Timed out waiting for MRR 19 (ch=0)\n");
|
||
|
if (channel_mode == DUAL_CHANNEL)
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC1),
|
||
|
"Timed out waiting for MRR 19 (ch=1)\n");
|
||
|
|
||
|
mrr_data = (emc_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
|
||
|
temp0_0 = (mrr_data & 0xff) << 8;
|
||
|
temp0_1 = mrr_data & 0xff00;
|
||
|
|
||
|
if (channel_mode == DUAL_CHANNEL) {
|
||
|
mrr_data = (emc1_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
temp1_0 = (mrr_data & 0xff) << 8;
|
||
|
temp1_1 = mrr_data & 0xff00;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dev0 LSB.
|
||
|
*/
|
||
|
mrr_req = (mrr_req & ~EMC_MRR_MA_MASK) |
|
||
|
(18 << EMC_MRR_MA_SHIFT);
|
||
|
emc_writel(mrr_req, EMC_MRR);
|
||
|
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC),
|
||
|
"Timed out waiting for MRR 18 (ch=0)\n");
|
||
|
if (channel_mode == DUAL_CHANNEL)
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC1),
|
||
|
"Timed out waiting for MRR 18 (ch=1)\n");
|
||
|
|
||
|
mrr_data = (emc_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
|
||
|
temp0_0 |= mrr_data & 0xff;
|
||
|
temp0_1 |= (mrr_data & 0xff00) >> 8;
|
||
|
|
||
|
if (channel_mode == DUAL_CHANNEL) {
|
||
|
mrr_data = (emc1_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
temp1_0 |= (mrr_data & 0xff);
|
||
|
temp1_1 |= (mrr_data & 0xff00) >> 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp0_0);
|
||
|
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C0D0U0, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C0D0U0);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C0D0U0, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c0d0u0 -
|
||
|
__MOVAVG_AC(next_timing, C0D0U0);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
adel = tmdel;
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c0d0u0 =
|
||
|
__MOVAVG_AC(next_timing, C0D0U0);
|
||
|
}
|
||
|
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp0_1);
|
||
|
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C0D0U1, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C0D0U1);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C0D0U1, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c0d0u1 -
|
||
|
__MOVAVG_AC(next_timing, C0D0U1);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c0d0u1 =
|
||
|
__MOVAVG_AC(next_timing, C0D0U1);
|
||
|
}
|
||
|
|
||
|
if (channel_mode == DUAL_CHANNEL) {
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp1_0);
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C1D0U0, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C1D0U0);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C1D0U0, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c1d0u0 -
|
||
|
__MOVAVG_AC(next_timing, C1D0U0);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c1d0u0 =
|
||
|
__MOVAVG_AC(next_timing, C1D0U0);
|
||
|
}
|
||
|
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp1_1);
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C1D0U1, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C1D0U1);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C1D0U1, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c1d0u1 -
|
||
|
__MOVAVG_AC(next_timing, C1D0U1);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c1d0u1 =
|
||
|
__MOVAVG_AC(next_timing, C1D0U1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (dram_dev_num != TWO_RANK)
|
||
|
goto done;
|
||
|
|
||
|
/*
|
||
|
* Dev1 MSB.
|
||
|
*/
|
||
|
if (dvfs_pt1 || periodic_training_update) {
|
||
|
mrr_req = (1 << EMC_MRR_DEV_SEL_SHIFT) |
|
||
|
(19 << EMC_MRR_MA_SHIFT);
|
||
|
emc_writel(mrr_req, EMC_MRR);
|
||
|
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC),
|
||
|
"Timed out waiting for MRR 19 (ch=0)\n");
|
||
|
if (channel_mode == DUAL_CHANNEL)
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC1),
|
||
|
"Timed out waiting for MRR 19 (ch=1)\n");
|
||
|
|
||
|
mrr_data = (emc_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
|
||
|
temp0_0 = (mrr_data & 0xff) << 8;
|
||
|
temp0_1 = mrr_data & 0xff00;
|
||
|
|
||
|
if (channel_mode == DUAL_CHANNEL) {
|
||
|
mrr_data = (emc1_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
temp1_0 = (mrr_data & 0xff) << 8;
|
||
|
temp1_1 = mrr_data & 0xff00;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dev1 LSB.
|
||
|
*/
|
||
|
mrr_req = (mrr_req & ~EMC_MRR_MA_MASK) |
|
||
|
(18 << EMC_MRR_MA_SHIFT);
|
||
|
emc_writel(mrr_req, EMC_MRR);
|
||
|
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC),
|
||
|
"Timed out waiting for MRR 18 (ch=0)\n");
|
||
|
if (channel_mode == DUAL_CHANNEL)
|
||
|
WARN(wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_MRR_DIVLD, 1, REG_EMC1),
|
||
|
"Timed out waiting for MRR 18 (ch=1)\n");
|
||
|
|
||
|
mrr_data = (emc_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
|
||
|
temp0_0 |= mrr_data & 0xff;
|
||
|
temp0_1 |= (mrr_data & 0xff00) >> 8;
|
||
|
|
||
|
if (channel_mode == DUAL_CHANNEL) {
|
||
|
mrr_data = (emc1_readl(EMC_MRR) & EMC_MRR_DATA_MASK) <<
|
||
|
EMC_MRR_DATA_SHIFT;
|
||
|
temp1_0 |= (mrr_data & 0xff);
|
||
|
temp1_1 |= (mrr_data & 0xff00) >> 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp0_0);
|
||
|
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C0D1U0, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C0D1U0);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C0D1U0, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c0d1u0 -
|
||
|
__MOVAVG_AC(next_timing, C0D1U0);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c0d1u0 =
|
||
|
__MOVAVG_AC(next_timing, C0D1U0);
|
||
|
}
|
||
|
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp0_1);
|
||
|
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C0D1U1, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C0D1U1);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C0D1U1, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c0d1u1 -
|
||
|
__MOVAVG_AC(next_timing, C0D1U1);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c0d1u1 =
|
||
|
__MOVAVG_AC(next_timing, C0D1U1);
|
||
|
}
|
||
|
|
||
|
if (channel_mode == DUAL_CHANNEL) {
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp1_0);
|
||
|
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C1D1U0, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C1D1U0);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C1D1U0, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c1d1u0 -
|
||
|
__MOVAVG_AC(next_timing, C1D1U0);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c1d1u0 =
|
||
|
__MOVAVG_AC(next_timing, C1D1U0);
|
||
|
}
|
||
|
|
||
|
if (dvfs_pt1 || periodic_training_update)
|
||
|
cval = (1000000 * tegra210_actual_osc_clocks(
|
||
|
last_timing->run_clocks)) /
|
||
|
(last_timing_rate_mhz * 2 * temp1_1);
|
||
|
|
||
|
if (dvfs_pt1)
|
||
|
__INCREMENT_PTFV(C1D1U1, cval);
|
||
|
else if (dvfs_update)
|
||
|
__AVERAGE_PTFV(C1D1U1);
|
||
|
else if (periodic_training_update)
|
||
|
__WEIGHTED_UPDATE_PTFV(C1D1U1, cval);
|
||
|
|
||
|
if (dvfs_update || periodic_training_update) {
|
||
|
tdel = next_timing->current_dram_clktree_c1d1u1 -
|
||
|
__MOVAVG_AC(next_timing, C1D1U1);
|
||
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
||
|
if (tmdel > adel)
|
||
|
adel = tmdel;
|
||
|
|
||
|
if (tmdel * 128 * next_timing_rate_mhz / 1000000 >
|
||
|
next_timing->tree_margin)
|
||
|
next_timing->current_dram_clktree_c1d1u1 =
|
||
|
__MOVAVG_AC(next_timing, C1D1U1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
return adel;
|
||
|
}
|
||
|
|
||
|
static u32 periodic_compensation_handler(u32 type, u32 dram_dev_num,
|
||
|
u32 channel_mode,
|
||
|
struct emc_table *last_timing,
|
||
|
struct emc_table *next_timing)
|
||
|
{
|
||
|
#define __COPY_EMA(nt, lt, dev) \
|
||
|
({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \
|
||
|
(nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; })
|
||
|
|
||
|
u32 i;
|
||
|
u32 adel = 0;
|
||
|
u32 samples = next_timing->ptfv_list[PTFV_DVFS_SAMPLES_INDEX];
|
||
|
u32 delay = 2 + (1000 * tegra210_actual_osc_clocks(last_timing->run_clocks) /
|
||
|
last_timing->rate);
|
||
|
|
||
|
if (!next_timing->periodic_training)
|
||
|
return 0;
|
||
|
|
||
|
if (type == DVFS_SEQUENCE) {
|
||
|
if (last_timing->periodic_training &&
|
||
|
(next_timing->ptfv_list[PTFV_CONFIG_CTRL_INDEX] &
|
||
|
PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) {
|
||
|
/*
|
||
|
* If the previous frequency was using periodic
|
||
|
* calibration then we can reuse the previous
|
||
|
* frequencies EMA data.
|
||
|
*/
|
||
|
__COPY_EMA(next_timing, last_timing, C0D0U0);
|
||
|
__COPY_EMA(next_timing, last_timing, C0D0U1);
|
||
|
__COPY_EMA(next_timing, last_timing, C1D0U0);
|
||
|
__COPY_EMA(next_timing, last_timing, C1D0U1);
|
||
|
__COPY_EMA(next_timing, last_timing, C0D1U0);
|
||
|
__COPY_EMA(next_timing, last_timing, C0D1U1);
|
||
|
__COPY_EMA(next_timing, last_timing, C1D1U0);
|
||
|
__COPY_EMA(next_timing, last_timing, C1D1U1);
|
||
|
} else {
|
||
|
/* Reset the EMA.*/
|
||
|
__MOVAVG(next_timing, C0D0U0) = 0;
|
||
|
__MOVAVG(next_timing, C0D0U1) = 0;
|
||
|
__MOVAVG(next_timing, C1D0U0) = 0;
|
||
|
__MOVAVG(next_timing, C1D0U1) = 0;
|
||
|
__MOVAVG(next_timing, C0D1U0) = 0;
|
||
|
__MOVAVG(next_timing, C0D1U1) = 0;
|
||
|
__MOVAVG(next_timing, C1D1U0) = 0;
|
||
|
__MOVAVG(next_timing, C1D1U1) = 0;
|
||
|
|
||
|
for (i = 0; i < samples; i++) {
|
||
|
tegra210_start_periodic_compensation();
|
||
|
udelay(delay);
|
||
|
|
||
|
/*
|
||
|
* Generate next sample of data.
|
||
|
*/
|
||
|
adel = update_clock_tree_delay(last_timing,
|
||
|
next_timing,
|
||
|
dram_dev_num,
|
||
|
channel_mode,
|
||
|
DVFS_PT1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Seems like it should be part of the
|
||
|
* 'if (last_timing->periodic_training)' conditional
|
||
|
* since is already done for the else clause. */
|
||
|
adel = update_clock_tree_delay(last_timing, next_timing,
|
||
|
dram_dev_num,
|
||
|
channel_mode,
|
||
|
DVFS_UPDATE);
|
||
|
}
|
||
|
|
||
|
if (type == PERIODIC_TRAINING_SEQUENCE) {
|
||
|
tegra210_start_periodic_compensation();
|
||
|
udelay(delay);
|
||
|
|
||
|
adel = update_clock_tree_delay(last_timing, next_timing,
|
||
|
dram_dev_num,
|
||
|
channel_mode,
|
||
|
PERIODIC_TRAINING_UPDATE);
|
||
|
}
|
||
|
|
||
|
return adel;
|
||
|
}
|
||
|
|
||
|
u32 __do_periodic_emc_compensation_r21021(
|
||
|
struct emc_table *current_timing)
|
||
|
{
|
||
|
u32 dram_dev_num;
|
||
|
u32 channel_mode;
|
||
|
u32 emc_cfg, emc_cfg_o;
|
||
|
u32 emc_dbg_o;
|
||
|
u32 del, i;
|
||
|
u32 list[] = {
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
|
||
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
|
||
|
EMC_DATA_BRLSHFT_0,
|
||
|
EMC_DATA_BRLSHFT_1
|
||
|
};
|
||
|
u32 items = ARRAY_SIZE(list);
|
||
|
u32 emc_cfg_update;
|
||
|
u32 pd_mask = EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK;
|
||
|
|
||
|
if (current_timing->periodic_training) {
|
||
|
channel_mode = !!(current_timing->burst_regs[EMC_FBIO_CFG7_INDEX] &
|
||
|
(1 << 2));
|
||
|
dram_dev_num = 1 + (mc_readl(MC_EMEM_ADR_CFG) & 0x1);
|
||
|
|
||
|
emc_cc_dbg(PER_TRAIN, "Periodic training starting\n");
|
||
|
|
||
|
emc_dbg_o = emc_readl(EMC_DBG);
|
||
|
emc_cfg_o = emc_readl(EMC_CFG);
|
||
|
emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD |
|
||
|
EMC_CFG_DRAM_CLKSTOP_PD |
|
||
|
EMC_CFG_DRAM_CLKSTOP_PD);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* 1. Power optimizations should be off.
|
||
|
*/
|
||
|
emc_writel(emc_cfg, EMC_CFG);
|
||
|
|
||
|
/* Does emc_timing_update() for above changes. */
|
||
|
tegra210_dll_disable(channel_mode);
|
||
|
|
||
|
if (dram_dev_num == ONE_RANK)
|
||
|
pd_mask = 0x10;
|
||
|
|
||
|
wait_for_update(EMC_EMC_STATUS, pd_mask, 0, REG_EMC);
|
||
|
if (channel_mode)
|
||
|
wait_for_update(EMC_EMC_STATUS, pd_mask, 0, REG_EMC1);
|
||
|
|
||
|
wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, 0, REG_EMC);
|
||
|
if (channel_mode)
|
||
|
wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, 0, REG_EMC1);
|
||
|
|
||
|
emc_cfg_update = emc_readl(EMC_CFG_UPDATE);
|
||
|
emc_writel((emc_cfg_update &
|
||
|
~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK) |
|
||
|
(2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT),
|
||
|
EMC_CFG_UPDATE);
|
||
|
|
||
|
/*
|
||
|
* 2. osc kick off - this assumes training and dvfs have set
|
||
|
* correct MR23.
|
||
|
*/
|
||
|
tegra210_start_periodic_compensation();
|
||
|
|
||
|
/*
|
||
|
* 3. Let dram capture its clock tree delays.
|
||
|
*/
|
||
|
udelay((tegra210_actual_osc_clocks(current_timing->run_clocks) * 1000) /
|
||
|
current_timing->rate + 1);
|
||
|
|
||
|
/*
|
||
|
* 4. Check delta wrt previous values (save value if margin
|
||
|
* exceeds what is set in table).
|
||
|
*/
|
||
|
del = periodic_compensation_handler(PERIODIC_TRAINING_SEQUENCE,
|
||
|
dram_dev_num,
|
||
|
channel_mode,
|
||
|
current_timing,
|
||
|
current_timing);
|
||
|
|
||
|
/*
|
||
|
* 5. Apply compensation w.r.t. trained values (if clock tree
|
||
|
* has drifted more than the set margin).
|
||
|
*/
|
||
|
if (current_timing->tree_margin <
|
||
|
((del * 128 * (current_timing->rate / 1000)) / 1000000)) {
|
||
|
for (i = 0; i < items; i++) {
|
||
|
u32 tmp = tegra210_apply_periodic_compensation_trimmer(
|
||
|
current_timing, list[i]);
|
||
|
emc_cc_dbg(EMA_WRITES, "0x%08x <= 0x%08x\n",
|
||
|
list[i], tmp);
|
||
|
emc_writel(tmp, list[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emc_writel(emc_cfg_o, EMC_CFG);
|
||
|
|
||
|
/*
|
||
|
* 6. Timing update actally applies the new trimmers.
|
||
|
*/
|
||
|
emc_timing_update(channel_mode);
|
||
|
|
||
|
/* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */
|
||
|
emc_writel(emc_cfg_update, EMC_CFG_UPDATE);
|
||
|
|
||
|
/* 6.2. Restore the DLL. */
|
||
|
tegra210_dll_enable(channel_mode);
|
||
|
|
||
|
/*
|
||
|
* 7. Copy over the periodic training registers that we updated
|
||
|
* here to the corresponding derated/non-derated table.
|
||
|
*/
|
||
|
tegra210_update_emc_alt_timing(current_timing);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do the clock change sequence.
|
||
|
*/
|
||
|
void emc_set_clock_r21021(struct emc_table *next_timing,
|
||
|
struct emc_table *last_timing,
|
||
|
int training, u32 clksrc)
|
||
|
{
|
||
|
/*
|
||
|
* This is the timing table for the source frequency. It does _not_
|
||
|
* necessarily correspond to the actual timing values in the EMC at the
|
||
|
* moment. If the boot BCT differs from the table then this can happen.
|
||
|
* However, we need it for accessing the dram_timings (which are not
|
||
|
* really registers) array for the current frequency.
|
||
|
*/
|
||
|
struct emc_table *fake_timing;
|
||
|
|
||
|
u32 i, tmp;
|
||
|
|
||
|
u32 cya_allow_ref_cc = 0, ref_b4_sref_en = 0, cya_issue_pc_ref = 0;
|
||
|
|
||
|
u32 zqcal_before_cc_cutoff = 2400; /* In picoseconds */
|
||
|
u32 ref_delay_mult;
|
||
|
u32 ref_delay;
|
||
|
s32 zq_latch_dvfs_wait_time;
|
||
|
s32 tZQCAL_lpddr4_fc_adj;
|
||
|
/* Scaled by x1000 */
|
||
|
u32 tFC_lpddr4 = 1000 * next_timing->dram_timings[T_FC_LPDDR4];
|
||
|
/* u32 tVRCG_lpddr4 = next_timing->dram_timings[T_FC_LPDDR4]; */
|
||
|
u32 tZQCAL_lpddr4 = 1000000;
|
||
|
|
||
|
u32 dram_type, dram_dev_num, shared_zq_resistor;
|
||
|
u32 channel_mode;
|
||
|
u32 is_lpddr3;
|
||
|
|
||
|
u32 emc_cfg, emc_sel_dpd_ctrl, emc_cfg_reg;
|
||
|
|
||
|
u32 emc_dbg;
|
||
|
u32 emc_zcal_interval;
|
||
|
u32 emc_zcal_wait_cnt_old;
|
||
|
u32 emc_zcal_wait_cnt_new;
|
||
|
u32 emc_dbg_active;
|
||
|
u32 zq_op;
|
||
|
u32 zcal_wait_time_clocks;
|
||
|
u32 zcal_wait_time_ps;
|
||
|
|
||
|
u32 emc_auto_cal_config;
|
||
|
u32 auto_cal_en;
|
||
|
|
||
|
u32 mr13_catr_enable;
|
||
|
|
||
|
u32 ramp_up_wait = 0, ramp_down_wait = 0;
|
||
|
|
||
|
/* In picoseconds. */
|
||
|
u32 source_clock_period;
|
||
|
u32 destination_clock_period;
|
||
|
|
||
|
u32 emc_dbg_o;
|
||
|
u32 emc_cfg_pipe_clk_o;
|
||
|
u32 emc_pin_o;
|
||
|
|
||
|
u32 mr13_flip_fspwr;
|
||
|
u32 mr13_flip_fspop;
|
||
|
|
||
|
u32 opt_zcal_en_cc;
|
||
|
u32 opt_do_sw_qrst = 1;
|
||
|
u32 opt_dvfs_mode;
|
||
|
u32 opt_dll_mode;
|
||
|
u32 opt_cc_short_zcal = 1;
|
||
|
u32 opt_short_zcal = 1;
|
||
|
u32 save_restore_clkstop_pd = 1;
|
||
|
|
||
|
u32 prelock_dll_en = 0, dll_out;
|
||
|
|
||
|
int next_push, next_dq_e_ivref, next_dqs_e_ivref;
|
||
|
|
||
|
u32 opt_war_200024907;
|
||
|
u32 zq_wait_long;
|
||
|
u32 zq_wait_short;
|
||
|
|
||
|
u32 bg_regulator_switch_complete_wait_clks;
|
||
|
u32 bg_regulator_mode_change;
|
||
|
u32 enable_bglp_regulator;
|
||
|
u32 enable_bg_regulator;
|
||
|
|
||
|
u32 tRTM;
|
||
|
u32 RP_war;
|
||
|
u32 R2P_war;
|
||
|
u32 TRPab_war;
|
||
|
s32 nRTP;
|
||
|
u32 deltaTWATM;
|
||
|
u32 W2P_war;
|
||
|
u32 tRPST;
|
||
|
|
||
|
u32 mrw_req;
|
||
|
u32 adel = 0, compensate_trimmer_applicable = 0;
|
||
|
u32 next_timing_rate_mhz = next_timing->rate / 1000;
|
||
|
|
||
|
static u32 fsp_for_next_freq;
|
||
|
|
||
|
emc_cc_dbg(INFO, "Running clock change.\n");
|
||
|
|
||
|
fake_timing = get_timing_from_freq(last_timing->rate);
|
||
|
|
||
|
fsp_for_next_freq = !fsp_for_next_freq;
|
||
|
|
||
|
dram_type = emc_readl(EMC_FBIO_CFG5) &
|
||
|
EMC_FBIO_CFG5_DRAM_TYPE_MASK >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT;
|
||
|
shared_zq_resistor = last_timing->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] &
|
||
|
1 << 31; /* needs def */
|
||
|
channel_mode = !!(last_timing->burst_regs[EMC_FBIO_CFG7_INDEX] &
|
||
|
1 << 2); /* needs def */
|
||
|
opt_zcal_en_cc = (next_timing->burst_regs[EMC_ZCAL_INTERVAL_INDEX] &&
|
||
|
!last_timing->burst_regs[EMC_ZCAL_INTERVAL_INDEX]) ||
|
||
|
dram_type == DRAM_TYPE_LPDDR4;
|
||
|
opt_dll_mode = (dram_type == DRAM_TYPE_DDR3) ?
|
||
|
get_dll_state(next_timing) : DLL_OFF;
|
||
|
is_lpddr3 = (dram_type == DRAM_TYPE_LPDDR2) &&
|
||
|
next_timing->burst_regs[EMC_FBIO_CFG5_INDEX] &
|
||
|
1 << 25; /* needs def */
|
||
|
opt_war_200024907 = (dram_type == DRAM_TYPE_LPDDR4);
|
||
|
opt_dvfs_mode = MAN_SR;
|
||
|
dram_dev_num = (mc_readl(MC_EMEM_ADR_CFG) & 0x1) + 1;
|
||
|
|
||
|
emc_cfg_reg = emc_readl(EMC_CFG);
|
||
|
emc_auto_cal_config = emc_readl(EMC_AUTO_CAL_CONFIG);
|
||
|
|
||
|
source_clock_period = 1000000000 / last_timing->rate;
|
||
|
destination_clock_period = 1000000000 / next_timing->rate;
|
||
|
|
||
|
tZQCAL_lpddr4_fc_adj = (destination_clock_period >
|
||
|
zqcal_before_cc_cutoff) ?
|
||
|
tZQCAL_lpddr4 / destination_clock_period :
|
||
|
(tZQCAL_lpddr4 - tFC_lpddr4) / destination_clock_period;
|
||
|
emc_dbg_o = emc_readl(EMC_DBG);
|
||
|
emc_pin_o = emc_readl(EMC_PIN);
|
||
|
emc_cfg_pipe_clk_o = emc_readl(EMC_CFG_PIPE_CLK);
|
||
|
emc_dbg = emc_dbg_o;
|
||
|
|
||
|
emc_cfg = next_timing->burst_regs[EMC_CFG_INDEX];
|
||
|
emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD |
|
||
|
EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD);
|
||
|
emc_sel_dpd_ctrl = next_timing->emc_sel_dpd_ctrl;
|
||
|
emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN |
|
||
|
EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN |
|
||
|
EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN |
|
||
|
EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN |
|
||
|
EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN);
|
||
|
|
||
|
emc_cc_dbg(INFO, "Clock change version: %d\n",
|
||
|
DVFS_CLOCK_CHANGE_VERSION);
|
||
|
emc_cc_dbg(INFO, "DRAM type = %d\n", dram_type);
|
||
|
emc_cc_dbg(INFO, "DRAM dev #: %d\n", dram_dev_num);
|
||
|
emc_cc_dbg(INFO, "Next EMC clksrc: 0x%08x\n", clksrc);
|
||
|
emc_cc_dbg(INFO, "DLL clksrc: 0x%08x\n", next_timing->dll_clk_src);
|
||
|
emc_cc_dbg(INFO, "last rate: %u, next rate %u\n", last_timing->rate,
|
||
|
next_timing->rate);
|
||
|
emc_cc_dbg(INFO, "last period: %u, next period: %u\n",
|
||
|
source_clock_period, destination_clock_period);
|
||
|
emc_cc_dbg(INFO, " shared_zq_resistor: %d\n", !!shared_zq_resistor);
|
||
|
emc_cc_dbg(INFO, " channel_mode: %d\n", channel_mode);
|
||
|
emc_cc_dbg(INFO, " opt_dll_mode: %d\n", opt_dll_mode);
|
||
|
|
||
|
/* Step 1:
|
||
|
* Pre DVFS SW sequence.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 1\n");
|
||
|
emc_cc_dbg(STEPS, "Step 1.1: Disable DLL temporarily.\n");
|
||
|
tmp = emc_readl(EMC_CFG_DIG_DLL);
|
||
|
tmp &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
|
||
|
emc_writel(tmp, EMC_CFG_DIG_DLL);
|
||
|
|
||
|
emc_timing_update(channel_mode);
|
||
|
wait_for_update(EMC_CFG_DIG_DLL,
|
||
|
EMC_CFG_DIG_DLL_CFG_DLL_EN, 0, REG_EMC);
|
||
|
if (channel_mode)
|
||
|
wait_for_update(EMC_CFG_DIG_DLL,
|
||
|
EMC_CFG_DIG_DLL_CFG_DLL_EN, 0, REG_EMC1);
|
||
|
|
||
|
emc_cc_dbg(STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n");
|
||
|
emc_auto_cal_config = next_timing->emc_auto_cal_config;
|
||
|
auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE;
|
||
|
emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START;
|
||
|
emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL;
|
||
|
emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL;
|
||
|
emc_auto_cal_config |= auto_cal_en;
|
||
|
emc_writel(emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
|
||
|
emc_readl(EMC_AUTO_CAL_CONFIG); /* Flush write. */
|
||
|
|
||
|
emc_cc_dbg(STEPS, "Step 1.3: Disable other power features.\n");
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
emc_writel(emc_cfg, EMC_CFG);
|
||
|
emc_writel(emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
|
||
|
if (next_timing->periodic_training) {
|
||
|
u32 pd_mask = EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK;
|
||
|
|
||
|
tegra210_reset_dram_clktree_values(next_timing);
|
||
|
|
||
|
if (dram_dev_num == ONE_RANK)
|
||
|
pd_mask = 0x10;
|
||
|
|
||
|
wait_for_update(EMC_EMC_STATUS, pd_mask, 0, REG_EMC);
|
||
|
if (channel_mode)
|
||
|
wait_for_update(EMC_EMC_STATUS, pd_mask, 0, REG_EMC1);
|
||
|
|
||
|
wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, 0, REG_EMC);
|
||
|
if (channel_mode)
|
||
|
wait_for_update(EMC_EMC_STATUS,
|
||
|
EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, 0, REG_EMC1);
|
||
|
|
||
|
tegra210_start_periodic_compensation();
|
||
|
|
||
|
udelay(((1000 * tegra210_actual_osc_clocks(last_timing->run_clocks)) /
|
||
|
last_timing->rate) + 2);
|
||
|
adel = periodic_compensation_handler(DVFS_SEQUENCE,
|
||
|
dram_dev_num,
|
||
|
channel_mode,
|
||
|
fake_timing, next_timing);
|
||
|
compensate_trimmer_applicable =
|
||
|
next_timing->periodic_training &&
|
||
|
((adel * 128 * next_timing_rate_mhz) / 1000000) >
|
||
|
next_timing->tree_margin;
|
||
|
}
|
||
|
|
||
|
emc_writel(EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS);
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
emc_writel(emc_cfg, EMC_CFG);
|
||
|
emc_writel(emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
|
||
|
emc_writel(emc_cfg_pipe_clk_o | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON,
|
||
|
EMC_CFG_PIPE_CLK);
|
||
|
emc_writel(next_timing->emc_fdpd_ctrl_cmd_no_ramp &
|
||
|
~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE,
|
||
|
EMC_FDPD_CTRL_CMD_NO_RAMP);
|
||
|
|
||
|
bg_regulator_mode_change =
|
||
|
((next_timing->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^
|
||
|
(last_timing->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) ||
|
||
|
((next_timing->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^
|
||
|
(last_timing->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD));
|
||
|
enable_bglp_regulator =
|
||
|
(next_timing->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0;
|
||
|
enable_bg_regulator =
|
||
|
(next_timing->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0;
|
||
|
|
||
|
if (bg_regulator_mode_change) {
|
||
|
if (enable_bg_regulator)
|
||
|
emc_writel(last_timing->burst_regs
|
||
|
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0);
|
||
|
else
|
||
|
emc_writel(last_timing->burst_regs
|
||
|
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0);
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Check if we need to turn on VREF generator. */
|
||
|
if ((!(last_timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) &&
|
||
|
(next_timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF)) ||
|
||
|
(!(last_timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) &&
|
||
|
(next_timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] &
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF))) {
|
||
|
u32 pad_tx_ctrl =
|
||
|
next_timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
|
||
|
u32 last_pad_tx_ctrl =
|
||
|
last_timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX];
|
||
|
|
||
|
next_dqs_e_ivref = pad_tx_ctrl &
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF;
|
||
|
next_dq_e_ivref = pad_tx_ctrl &
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF;
|
||
|
next_push = (last_pad_tx_ctrl &
|
||
|
~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF &
|
||
|
~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) |
|
||
|
next_dq_e_ivref | next_dqs_e_ivref;
|
||
|
emc_writel(next_push, EMC_PMACRO_DATA_PAD_TX_CTRL);
|
||
|
udelay(1);
|
||
|
} else if (bg_regulator_mode_change) {
|
||
|
udelay(1);
|
||
|
}
|
||
|
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
|
||
|
/* Step 2:
|
||
|
* Prelock the DLL.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 2\n");
|
||
|
if (next_timing->burst_regs[EMC_CFG_DIG_DLL_INDEX] &
|
||
|
EMC_CFG_DIG_DLL_CFG_DLL_EN) {
|
||
|
emc_cc_dbg(INFO, "Prelock enabled for target frequency.\n");
|
||
|
dll_out = tegra210_dll_prelock(next_timing, 0, clksrc);
|
||
|
emc_cc_dbg(INFO, "DLL out: 0x%03x\n", dll_out);
|
||
|
prelock_dll_en = 1;
|
||
|
} else {
|
||
|
emc_cc_dbg(INFO, "Disabling DLL for target frequency.\n");
|
||
|
tegra210_dll_disable(channel_mode);
|
||
|
}
|
||
|
|
||
|
/* Step 3:
|
||
|
* Prepare autocal for the clock change.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 3\n");
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
emc_writel(next_timing->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2);
|
||
|
emc_writel(next_timing->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3);
|
||
|
emc_writel(next_timing->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4);
|
||
|
emc_writel(next_timing->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5);
|
||
|
emc_writel(next_timing->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6);
|
||
|
emc_writel(next_timing->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7);
|
||
|
emc_writel(next_timing->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
|
||
|
emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START |
|
||
|
auto_cal_en);
|
||
|
emc_writel(emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
|
||
|
|
||
|
/* Step 4:
|
||
|
* Update EMC_CFG. (??)
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 4\n");
|
||
|
if (source_clock_period > 50000 && dram_type == DRAM_TYPE_LPDDR4)
|
||
|
ccfifo_writel(1, EMC_SELF_REF, 0);
|
||
|
else
|
||
|
emc_writel(next_timing->emc_cfg_2, EMC_CFG_2);
|
||
|
|
||
|
/* Step 5:
|
||
|
* Prepare reference variables for ZQCAL regs.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 5\n");
|
||
|
emc_zcal_interval = 0;
|
||
|
emc_zcal_wait_cnt_old =
|
||
|
last_timing->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX];
|
||
|
emc_zcal_wait_cnt_new =
|
||
|
next_timing->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX];
|
||
|
emc_zcal_wait_cnt_old &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK;
|
||
|
emc_zcal_wait_cnt_new &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK;
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4)
|
||
|
zq_wait_long = max((u32)1,
|
||
|
div_o3(1000000, destination_clock_period));
|
||
|
else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3)
|
||
|
zq_wait_long = max(next_timing->min_mrs_wait,
|
||
|
div_o3(360000, destination_clock_period)) + 4;
|
||
|
else if (dram_type == DRAM_TYPE_DDR3)
|
||
|
zq_wait_long = max((u32)256,
|
||
|
div_o3(320000, destination_clock_period) + 2);
|
||
|
else
|
||
|
zq_wait_long = 0;
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3)
|
||
|
zq_wait_short = max(max(next_timing->min_mrs_wait, (u32)6),
|
||
|
div_o3(90000, destination_clock_period)) + 4;
|
||
|
else if (dram_type == DRAM_TYPE_DDR3)
|
||
|
zq_wait_short = max((u32)64,
|
||
|
div_o3(80000, destination_clock_period)) + 2;
|
||
|
else
|
||
|
zq_wait_short = 0;
|
||
|
|
||
|
/* Step 6:
|
||
|
* Training code - removed.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 6\n");
|
||
|
|
||
|
/* Step 7:
|
||
|
* Program FSP reference registers and send MRWs to new FSPWR.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 7\n");
|
||
|
emc_cc_dbg(SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P");
|
||
|
if (opt_war_200024907) {
|
||
|
nRTP = 16;
|
||
|
if (source_clock_period >= 1000000/1866) /* 535.91 ps */
|
||
|
nRTP = 14;
|
||
|
if (source_clock_period >= 1000000/1600) /* 625.00 ps */
|
||
|
nRTP = 12;
|
||
|
if (source_clock_period >= 1000000/1333) /* 750.19 ps */
|
||
|
nRTP = 10;
|
||
|
if (source_clock_period >= 1000000/1066) /* 938.09 ps */
|
||
|
nRTP = 8;
|
||
|
|
||
|
deltaTWATM = max_t(u32, div_o3(7500, source_clock_period), 8);
|
||
|
|
||
|
/*
|
||
|
* Originally there was a + .5 in the tRPST calculation.
|
||
|
* However since we can't do FP in the kernel and the tRTM
|
||
|
* computation was in a floating point ceiling function, adding
|
||
|
* one to tRTP should be ok. There is no other source of non
|
||
|
* integer values, so the result was always going to be
|
||
|
* something for the form: f_ceil(N + .5) = N + 1;
|
||
|
*/
|
||
|
tRPST = ((last_timing->emc_mrw & 0x80) >> 7);
|
||
|
tRTM = fake_timing->dram_timings[RL] +
|
||
|
div_o3(3600, source_clock_period) +
|
||
|
max_t(u32, div_o3(7500, source_clock_period), 8) +
|
||
|
tRPST + 1 + nRTP;
|
||
|
|
||
|
emc_cc_dbg(INFO, "tRTM = %u, EMC_RP = %u\n", tRTM,
|
||
|
next_timing->burst_regs[EMC_RP_INDEX]);
|
||
|
|
||
|
if (last_timing->burst_regs[EMC_RP_INDEX] < tRTM) {
|
||
|
if (tRTM > (last_timing->burst_regs[EMC_R2P_INDEX] +
|
||
|
last_timing->burst_regs[EMC_RP_INDEX])) {
|
||
|
R2P_war = tRTM -
|
||
|
last_timing->burst_regs[EMC_RP_INDEX];
|
||
|
RP_war = last_timing->burst_regs[EMC_RP_INDEX];
|
||
|
TRPab_war =
|
||
|
last_timing->burst_regs[EMC_TRPAB_INDEX];
|
||
|
if (R2P_war > 63) {
|
||
|
RP_war = R2P_war +
|
||
|
last_timing->burst_regs
|
||
|
[EMC_RP_INDEX] - 63;
|
||
|
if (TRPab_war < RP_war)
|
||
|
TRPab_war = RP_war;
|
||
|
R2P_war = 63;
|
||
|
}
|
||
|
} else {
|
||
|
R2P_war = last_timing->
|
||
|
burst_regs[EMC_R2P_INDEX];
|
||
|
RP_war = last_timing->burst_regs[EMC_RP_INDEX];
|
||
|
TRPab_war =
|
||
|
last_timing->burst_regs[EMC_TRPAB_INDEX];
|
||
|
}
|
||
|
|
||
|
if (RP_war < deltaTWATM) {
|
||
|
W2P_war = last_timing->burst_regs[EMC_W2P_INDEX]
|
||
|
+ deltaTWATM - RP_war;
|
||
|
if (W2P_war > 63) {
|
||
|
RP_war = RP_war + W2P_war - 63;
|
||
|
if (TRPab_war < RP_war)
|
||
|
TRPab_war = RP_war;
|
||
|
W2P_war = 63;
|
||
|
}
|
||
|
} else {
|
||
|
W2P_war =
|
||
|
last_timing->burst_regs[EMC_W2P_INDEX];
|
||
|
}
|
||
|
|
||
|
if ((last_timing->burst_regs[EMC_W2P_INDEX] ^
|
||
|
W2P_war) ||
|
||
|
(last_timing->burst_regs[EMC_R2P_INDEX] ^
|
||
|
R2P_war) ||
|
||
|
(last_timing->burst_regs[EMC_RP_INDEX] ^
|
||
|
RP_war) ||
|
||
|
(last_timing->burst_regs[EMC_TRPAB_INDEX] ^
|
||
|
TRPab_war)) {
|
||
|
emc_writel(RP_war, EMC_RP);
|
||
|
emc_writel(R2P_war, EMC_R2P);
|
||
|
emc_writel(W2P_war, EMC_W2P);
|
||
|
emc_writel(TRPab_war, EMC_TRPAB);
|
||
|
}
|
||
|
emc_timing_update(DUAL_CHANNEL);
|
||
|
} else {
|
||
|
emc_cc_dbg(INFO, "Skipped WAR for bug 200024907\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!fsp_for_next_freq) {
|
||
|
mr13_flip_fspwr = (next_timing->emc_mrw3 & 0xffffff3f) | 0x80;
|
||
|
mr13_flip_fspop = (next_timing->emc_mrw3 & 0xffffff3f) | 0x00;
|
||
|
} else {
|
||
|
mr13_flip_fspwr = (next_timing->emc_mrw3 & 0xffffff3f) | 0x40;
|
||
|
mr13_flip_fspop = (next_timing->emc_mrw3 & 0xffffff3f) | 0xc0;
|
||
|
}
|
||
|
|
||
|
mr13_catr_enable = (mr13_flip_fspwr & 0xFFFFFFFE) | 0x01;
|
||
|
if (dram_dev_num == TWO_RANK)
|
||
|
mr13_catr_enable =
|
||
|
(mr13_catr_enable & 0x3fffffff) | 0x80000000;
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
emc_writel(mr13_flip_fspwr, EMC_MRW3);
|
||
|
emc_writel(next_timing->emc_mrw, EMC_MRW);
|
||
|
emc_writel(next_timing->emc_mrw2, EMC_MRW2);
|
||
|
}
|
||
|
|
||
|
/* Step 8:
|
||
|
* Program the shadow registers.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 8\n");
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing burst_regs\n");
|
||
|
for (i = 0; i < next_timing->num_burst; i++) {
|
||
|
u32 var;
|
||
|
u32 wval;
|
||
|
|
||
|
if (!burst_regs_off[i])
|
||
|
continue;
|
||
|
|
||
|
var = burst_regs_off[i];
|
||
|
wval = next_timing->burst_regs[i];
|
||
|
|
||
|
if (dram_type != DRAM_TYPE_LPDDR4 &&
|
||
|
(var == EMC_MRW6 || var == EMC_MRW7 ||
|
||
|
var == EMC_MRW8 || var == EMC_MRW9 ||
|
||
|
var == EMC_MRW10 || var == EMC_MRW11 ||
|
||
|
var == EMC_MRW12 || var == EMC_MRW13 ||
|
||
|
var == EMC_MRW14 || var == EMC_MRW15 ||
|
||
|
var == EMC_TRAINING_CTRL))
|
||
|
continue;
|
||
|
|
||
|
/* Pain... And suffering. */
|
||
|
if (var == EMC_CFG) {
|
||
|
wval &= ~EMC_CFG_DRAM_ACPD;
|
||
|
wval &= ~EMC_CFG_DYN_SELF_REF;
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
wval &= ~EMC_CFG_DRAM_CLKSTOP_SR;
|
||
|
wval &= ~EMC_CFG_DRAM_CLKSTOP_PD;
|
||
|
}
|
||
|
} else if (var == EMC_MRS_WAIT_CNT &&
|
||
|
dram_type == DRAM_TYPE_LPDDR2 &&
|
||
|
opt_zcal_en_cc && !opt_cc_short_zcal &&
|
||
|
opt_short_zcal) {
|
||
|
wval = (wval & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK <<
|
||
|
EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) |
|
||
|
((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) <<
|
||
|
EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
|
||
|
} else if (var == EMC_ZCAL_WAIT_CNT &&
|
||
|
dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc &&
|
||
|
!opt_cc_short_zcal && opt_short_zcal) {
|
||
|
wval = (wval & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK <<
|
||
|
EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) |
|
||
|
((zq_wait_long &
|
||
|
EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) <<
|
||
|
EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT);
|
||
|
} else if (var == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) {
|
||
|
wval = 0; /* EMC_ZCAL_INTERVAL reset value. */
|
||
|
} else if (var == EMC_PMACRO_AUTOCAL_CFG_COMMON) {
|
||
|
wval |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS;
|
||
|
} else if (var == EMC_PMACRO_DATA_PAD_TX_CTRL) {
|
||
|
wval &=
|
||
|
~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC |
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC |
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC |
|
||
|
EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC);
|
||
|
} else if (var == EMC_PMACRO_CMD_PAD_TX_CTRL) {
|
||
|
wval |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON;
|
||
|
wval &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC |
|
||
|
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC |
|
||
|
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC |
|
||
|
EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC);
|
||
|
} else if (var == EMC_PMACRO_BRICK_CTRL_RFU1) {
|
||
|
wval &= 0xf800f800;
|
||
|
} else if (var == EMC_PMACRO_COMMON_PAD_TX_CTRL) {
|
||
|
wval &= 0xfffffff0;
|
||
|
}
|
||
|
|
||
|
emc_writel(wval, var);
|
||
|
}
|
||
|
|
||
|
/* SW addition: do EMC refresh adjustment here. */
|
||
|
set_over_temp_timing(next_timing, dram_over_temp_state);
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
mrw_req = (23 << EMC_MRW_MRW_MA_SHIFT) |
|
||
|
(next_timing->run_clocks & EMC_MRW_MRW_OP_MASK);
|
||
|
emc_writel(mrw_req, EMC_MRW);
|
||
|
}
|
||
|
|
||
|
/* Per channel burst registers. */
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing burst_regs_per_ch\n");
|
||
|
for (i = 0; i < next_timing->num_burst_per_ch; i++) {
|
||
|
if (!burst_regs_per_ch_off[i])
|
||
|
continue;
|
||
|
|
||
|
if (dram_type != DRAM_TYPE_LPDDR4 &&
|
||
|
(burst_regs_per_ch_off[i] == EMC_MRW6 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW7 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW8 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW9 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW10 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW11 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW12 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW13 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW14 ||
|
||
|
burst_regs_per_ch_off[i] == EMC_MRW15))
|
||
|
continue;
|
||
|
|
||
|
/* Filter out second channel if not in DUAL_CHANNEL mode. */
|
||
|
if (channel_mode != DUAL_CHANNEL &&
|
||
|
burst_regs_per_ch_type[i] >= REG_EMC1)
|
||
|
continue;
|
||
|
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, next_timing->burst_reg_per_ch[i],
|
||
|
burst_regs_per_ch_off[i]);
|
||
|
emc_writel_per_ch(next_timing->burst_reg_per_ch[i],
|
||
|
burst_regs_per_ch_type[i], burst_regs_per_ch_off[i]);
|
||
|
}
|
||
|
|
||
|
/* Vref regs. */
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing vref_regs\n");
|
||
|
for (i = 0; i < next_timing->vref_num; i++) {
|
||
|
if (!vref_regs_per_ch_off[i])
|
||
|
continue;
|
||
|
|
||
|
if (channel_mode != DUAL_CHANNEL &&
|
||
|
vref_regs_per_ch_type[i] >= REG_EMC1)
|
||
|
continue;
|
||
|
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, next_timing->vref_perch_regs[i],
|
||
|
vref_regs_per_ch_off[i]);
|
||
|
emc_writel_per_ch(next_timing->vref_perch_regs[i],
|
||
|
vref_regs_per_ch_type[i],
|
||
|
vref_regs_per_ch_off[i]);
|
||
|
}
|
||
|
|
||
|
/* Trimmers. */
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing trim_regs\n");
|
||
|
for (i = 0; i < next_timing->num_trim; i++) {
|
||
|
u64 trim_reg;
|
||
|
|
||
|
if (!trim_regs_off[i])
|
||
|
continue;
|
||
|
|
||
|
trim_reg = trim_regs_off[i];
|
||
|
if (compensate_trimmer_applicable &&
|
||
|
(trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
|
||
|
trim_reg == EMC_DATA_BRLSHFT_0 ||
|
||
|
trim_reg == EMC_DATA_BRLSHFT_1)) {
|
||
|
u32 reg =
|
||
|
tegra210_apply_periodic_compensation_trimmer(next_timing,
|
||
|
trim_reg);
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, reg,
|
||
|
trim_regs_off[i]);
|
||
|
emc_cc_dbg(EMA_WRITES, "0x%08x <= 0x%08x\n",
|
||
|
(u32)(u64)trim_regs_off[i], reg);
|
||
|
emc_writel(reg, trim_regs_off[i]);
|
||
|
} else {
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, next_timing->trim_regs[i],
|
||
|
trim_regs_off[i]);
|
||
|
emc_writel(next_timing->trim_regs[i],
|
||
|
trim_regs_off[i]);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/* Per channel trimmers. */
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing trim_regs_per_ch\n");
|
||
|
for (i = 0; i < next_timing->num_trim_per_ch; i++) {
|
||
|
u32 trim_reg;
|
||
|
|
||
|
if (!trim_regs_per_ch_off[i])
|
||
|
continue;
|
||
|
|
||
|
if (channel_mode != DUAL_CHANNEL &&
|
||
|
trim_regs_per_ch_type[i] >= REG_EMC1)
|
||
|
continue;
|
||
|
|
||
|
trim_reg = trim_regs_per_ch_off[i];
|
||
|
if (compensate_trimmer_applicable &&
|
||
|
(trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
|
||
|
trim_reg == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
|
||
|
trim_reg == EMC_DATA_BRLSHFT_0 ||
|
||
|
trim_reg == EMC_DATA_BRLSHFT_1)) {
|
||
|
u32 reg =
|
||
|
tegra210_apply_periodic_compensation_trimmer(next_timing,
|
||
|
trim_reg);
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, reg, trim_regs_per_ch_off[i]);
|
||
|
emc_cc_dbg(EMA_WRITES, "0x%08x <= 0x%08x\n",
|
||
|
trim_regs_per_ch_off[i], reg);
|
||
|
emc_writel_per_ch(reg, trim_regs_per_ch_type[i],
|
||
|
trim_regs_per_ch_off[i]);
|
||
|
} else {
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, next_timing->trim_perch_regs[i],
|
||
|
trim_regs_per_ch_off[i]);
|
||
|
emc_writel_per_ch(next_timing->trim_perch_regs[i],
|
||
|
trim_regs_per_ch_type[i],
|
||
|
trim_regs_per_ch_off[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing burst_mc_regs\n");
|
||
|
for (i = 0; i < next_timing->num_mc_regs; i++) {
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, next_timing->burst_mc_regs[i],
|
||
|
burst_mc_regs_off[i]);
|
||
|
mc_writel(next_timing->burst_mc_regs[i],
|
||
|
burst_mc_regs_off[i]);
|
||
|
}
|
||
|
|
||
|
/* Registers to be programmed on the faster clock. */
|
||
|
if (next_timing->rate < last_timing->rate) {
|
||
|
emc_cc_dbg(SUB_STEPS, "Writing la_scale_regs\n");
|
||
|
for (i = 0; i < next_timing->num_up_down; i++) {
|
||
|
emc_cc_dbg(REG_LISTS, "(%u) 0x%08x => 0x%08x\n",
|
||
|
i, next_timing->la_scale_regs[i],
|
||
|
la_scale_regs_off[i]);
|
||
|
mc_writel(next_timing->la_scale_regs[i],
|
||
|
la_scale_regs_off[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Flush all the burst register writes. */
|
||
|
wmb();
|
||
|
|
||
|
/* Step 9:
|
||
|
* LPDDR4 section A.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 9\n");
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
emc_writel(emc_zcal_interval, EMC_ZCAL_INTERVAL);
|
||
|
emc_writel(emc_zcal_wait_cnt_new, EMC_ZCAL_WAIT_CNT);
|
||
|
|
||
|
emc_dbg |= (EMC_DBG_WRITE_MUX_ACTIVE |
|
||
|
EMC_DBG_WRITE_ACTIVE_ONLY);
|
||
|
|
||
|
emc_writel(emc_dbg, EMC_DBG);
|
||
|
emc_writel(emc_zcal_interval, EMC_ZCAL_INTERVAL);
|
||
|
emc_writel(emc_dbg_o, EMC_DBG);
|
||
|
}
|
||
|
|
||
|
/* Step 10:
|
||
|
* LPDDR4 and DDR3 common section.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 10\n");
|
||
|
if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4)
|
||
|
ccfifo_writel(0x101, EMC_SELF_REF, 0);
|
||
|
else
|
||
|
ccfifo_writel(0x1, EMC_SELF_REF, 0);
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4 &&
|
||
|
destination_clock_period <= zqcal_before_cc_cutoff) {
|
||
|
ccfifo_writel(mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0);
|
||
|
ccfifo_writel((next_timing->burst_regs[EMC_MRW6_INDEX] &
|
||
|
0xFFFF3F3F) |
|
||
|
(last_timing->burst_regs[EMC_MRW6_INDEX] &
|
||
|
0x0000C0C0), EMC_MRW6, 0);
|
||
|
ccfifo_writel(
|
||
|
(next_timing->burst_regs[EMC_MRW14_INDEX] &
|
||
|
0xFFFF0707) |
|
||
|
(last_timing->burst_regs[EMC_MRW14_INDEX] &
|
||
|
0x00003838), EMC_MRW14, 0);
|
||
|
|
||
|
if (dram_dev_num == TWO_RANK) {
|
||
|
ccfifo_writel(
|
||
|
(next_timing->burst_regs[EMC_MRW7_INDEX] &
|
||
|
0xFFFF3F3F) |
|
||
|
(last_timing->burst_regs[EMC_MRW7_INDEX] &
|
||
|
0x0000C0C0), EMC_MRW7, 0);
|
||
|
ccfifo_writel(
|
||
|
(next_timing->burst_regs[EMC_MRW15_INDEX] &
|
||
|
0xFFFF0707) |
|
||
|
(last_timing->burst_regs[EMC_MRW15_INDEX] &
|
||
|
0x00003838), EMC_MRW15, 0);
|
||
|
}
|
||
|
if (opt_zcal_en_cc) {
|
||
|
if (dram_dev_num == ONE_RANK)
|
||
|
ccfifo_writel(
|
||
|
2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_CAL_CMD,
|
||
|
EMC_ZQ_CAL, 0);
|
||
|
else if (shared_zq_resistor)
|
||
|
ccfifo_writel(
|
||
|
2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_CAL_CMD,
|
||
|
EMC_ZQ_CAL, 0);
|
||
|
else
|
||
|
ccfifo_writel(EMC_ZQ_CAL_ZQ_CAL_CMD,
|
||
|
EMC_ZQ_CAL, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emc_dbg = emc_dbg_o;
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
ccfifo_writel(mr13_flip_fspop | 0x8, EMC_MRW3,
|
||
|
(1000 * fake_timing->dram_timings[T_RP]) /
|
||
|
source_clock_period);
|
||
|
ccfifo_writel(0, 0, tFC_lpddr4 / source_clock_period);
|
||
|
}
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) {
|
||
|
u32 t = 30 + (cya_allow_ref_cc ?
|
||
|
(4000 * fake_timing->dram_timings[T_RFC]) +
|
||
|
((1000 * fake_timing->dram_timings[T_RP]) /
|
||
|
source_clock_period) : 0);
|
||
|
|
||
|
ccfifo_writel(emc_pin_o & ~(EMC_PIN_PIN_CKE_PER_DEV |
|
||
|
EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE),
|
||
|
EMC_PIN, t);
|
||
|
}
|
||
|
|
||
|
ref_delay_mult = 1;
|
||
|
ref_b4_sref_en = 0;
|
||
|
cya_issue_pc_ref = 0;
|
||
|
|
||
|
ref_delay_mult += ref_b4_sref_en ? 1 : 0;
|
||
|
ref_delay_mult += cya_allow_ref_cc ? 1 : 0;
|
||
|
ref_delay_mult += cya_issue_pc_ref ? 1 : 0;
|
||
|
ref_delay = ref_delay_mult *
|
||
|
((1000 * fake_timing->dram_timings[T_RP]
|
||
|
/ source_clock_period) +
|
||
|
(1000 * fake_timing->dram_timings[T_RFC] /
|
||
|
source_clock_period)) + 20;
|
||
|
|
||
|
/* Step 11:
|
||
|
* Ramp down.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 11\n");
|
||
|
ccfifo_writel(0x0, EMC_CFG_SYNC,
|
||
|
dram_type == DRAM_TYPE_LPDDR4 ? 0 : ref_delay);
|
||
|
|
||
|
emc_dbg_active = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE | /* Redundant. */
|
||
|
EMC_DBG_WRITE_ACTIVE_ONLY);
|
||
|
ccfifo_writel(emc_dbg_active, EMC_DBG, 0);
|
||
|
|
||
|
/* Todo: implement do_dvfs_power_ramp_down */
|
||
|
ramp_down_wait = tegra210_dvfs_power_ramp_down(source_clock_period, 0,
|
||
|
last_timing, next_timing);
|
||
|
|
||
|
/* Step 12:
|
||
|
* And finally - trigger the clock change.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 12\n");
|
||
|
ccfifo_writel(1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0);
|
||
|
emc_dbg_active &= ~EMC_DBG_WRITE_ACTIVE_ONLY;
|
||
|
ccfifo_writel(emc_dbg_active, EMC_DBG, 0);
|
||
|
|
||
|
/* Step 13:
|
||
|
* Ramp up.
|
||
|
*/
|
||
|
/* Todo: implement do_dvfs_power_ramp_up(). */
|
||
|
emc_cc_dbg(STEPS, "Step 13\n");
|
||
|
ramp_up_wait = tegra210_dvfs_power_ramp_up(destination_clock_period, 0,
|
||
|
last_timing, next_timing);
|
||
|
ccfifo_writel(emc_dbg, EMC_DBG, 0);
|
||
|
|
||
|
/* Step 14:
|
||
|
* Bringup CKE pins.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 14\n");
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
u32 r = emc_pin_o | EMC_PIN_PIN_CKE;
|
||
|
if (dram_dev_num == TWO_RANK)
|
||
|
ccfifo_writel(r | EMC_PIN_PIN_CKEB |
|
||
|
EMC_PIN_PIN_CKE_PER_DEV, EMC_PIN,
|
||
|
0);
|
||
|
else
|
||
|
ccfifo_writel(r & ~(EMC_PIN_PIN_CKEB |
|
||
|
EMC_PIN_PIN_CKE_PER_DEV),
|
||
|
EMC_PIN, 0);
|
||
|
}
|
||
|
|
||
|
/* Step 15: (two step 15s ??)
|
||
|
* Calculate zqlatch wait time; has dependency on ramping times.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 15\n");
|
||
|
|
||
|
if (destination_clock_period <= zqcal_before_cc_cutoff) {
|
||
|
s32 t = (s32)(ramp_up_wait + ramp_down_wait) /
|
||
|
(s32)destination_clock_period;
|
||
|
zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t;
|
||
|
} else {
|
||
|
zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj -
|
||
|
div_o3(1000 * next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period);
|
||
|
}
|
||
|
|
||
|
emc_cc_dbg(INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj);
|
||
|
emc_cc_dbg(INFO, "destination_clock_period = %u\n",
|
||
|
destination_clock_period);
|
||
|
emc_cc_dbg(INFO, "next_timing->dram_timings[T_PDEX] = %u\n",
|
||
|
next_timing->dram_timings[T_PDEX]);
|
||
|
emc_cc_dbg(INFO, "zq_latch_dvfs_wait_time = %d\n",
|
||
|
max_t(s32, 0, zq_latch_dvfs_wait_time));
|
||
|
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) {
|
||
|
if (dram_dev_num == ONE_RANK) {
|
||
|
if (destination_clock_period > zqcal_before_cc_cutoff)
|
||
|
ccfifo_writel(2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
|
||
|
div_o3(1000 *
|
||
|
next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period));
|
||
|
ccfifo_writel((mr13_flip_fspop & 0xFFFFFFF7) |
|
||
|
0x0C000000, EMC_MRW3,
|
||
|
div_o3(1000 *
|
||
|
next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period));
|
||
|
ccfifo_writel(0, EMC_SELF_REF, 0);
|
||
|
ccfifo_writel(0, EMC_REF, 0);
|
||
|
ccfifo_writel(2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_LATCH_CMD,
|
||
|
EMC_ZQ_CAL,
|
||
|
max_t(s32, 0, zq_latch_dvfs_wait_time));
|
||
|
} else if (shared_zq_resistor) {
|
||
|
if (destination_clock_period > zqcal_before_cc_cutoff)
|
||
|
ccfifo_writel(2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
|
||
|
div_o3(1000 *
|
||
|
next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period));
|
||
|
|
||
|
ccfifo_writel(2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
|
||
|
max_t(s32, 0, zq_latch_dvfs_wait_time) +
|
||
|
div_o3(1000 *
|
||
|
next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period));
|
||
|
ccfifo_writel(1 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_LATCH_CMD,
|
||
|
EMC_ZQ_CAL, 0);
|
||
|
|
||
|
ccfifo_writel((mr13_flip_fspop & 0xfffffff7) |
|
||
|
0x0c000000, EMC_MRW3, 0);
|
||
|
ccfifo_writel(0, EMC_SELF_REF, 0);
|
||
|
ccfifo_writel(0, EMC_REF, 0);
|
||
|
|
||
|
ccfifo_writel(1 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
|
||
|
tZQCAL_lpddr4 / destination_clock_period);
|
||
|
} else {
|
||
|
if (destination_clock_period > zqcal_before_cc_cutoff) {
|
||
|
ccfifo_writel(EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL,
|
||
|
div_o3(1000 *
|
||
|
next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period));
|
||
|
}
|
||
|
|
||
|
ccfifo_writel((mr13_flip_fspop & 0xfffffff7) |
|
||
|
0x0c000000, EMC_MRW3,
|
||
|
div_o3(1000 *
|
||
|
next_timing->dram_timings[T_PDEX],
|
||
|
destination_clock_period));
|
||
|
ccfifo_writel(0, EMC_SELF_REF, 0);
|
||
|
ccfifo_writel(0, EMC_REF, 0);
|
||
|
|
||
|
ccfifo_writel(EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL,
|
||
|
max_t(s32, 0, zq_latch_dvfs_wait_time));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* WAR: delay for zqlatch */
|
||
|
ccfifo_writel(0, 0, 10);
|
||
|
|
||
|
/* Step 16:
|
||
|
* LPDDR4 Conditional Training Kickoff. Removed.
|
||
|
*/
|
||
|
|
||
|
/* Step 17:
|
||
|
* MANSR exit self refresh.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 17\n");
|
||
|
if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4)
|
||
|
ccfifo_writel(0, EMC_SELF_REF, 0);
|
||
|
|
||
|
/* Step 18:
|
||
|
* Send MRWs to LPDDR3/DDR3.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 18\n");
|
||
|
if (dram_type == DRAM_TYPE_LPDDR2) {
|
||
|
ccfifo_writel(next_timing->emc_mrw2, EMC_MRW2, 0);
|
||
|
ccfifo_writel(next_timing->emc_mrw, EMC_MRW, 0);
|
||
|
if (is_lpddr3)
|
||
|
ccfifo_writel(next_timing->emc_mrw4, EMC_MRW4, 0);
|
||
|
} else if (dram_type == DRAM_TYPE_DDR3) {
|
||
|
if (opt_dll_mode == DLL_ON)
|
||
|
ccfifo_writel(next_timing->emc_emrs &
|
||
|
~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0);
|
||
|
ccfifo_writel(next_timing->emc_emrs2 &
|
||
|
~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0);
|
||
|
ccfifo_writel(next_timing->emc_mrs |
|
||
|
EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0);
|
||
|
}
|
||
|
|
||
|
/* Step 19:
|
||
|
* ZQCAL for LPDDR3/DDR3
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 19\n");
|
||
|
if (opt_zcal_en_cc) {
|
||
|
if (dram_type == DRAM_TYPE_LPDDR2) {
|
||
|
u32 r;
|
||
|
|
||
|
zq_op = opt_cc_short_zcal ? 0x56 : 0xAB;
|
||
|
zcal_wait_time_ps = opt_cc_short_zcal ? 90000 : 360000;
|
||
|
zcal_wait_time_clocks = div_o3(zcal_wait_time_ps,
|
||
|
destination_clock_period);
|
||
|
r = zcal_wait_time_clocks <<
|
||
|
EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT |
|
||
|
zcal_wait_time_clocks <<
|
||
|
EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT;
|
||
|
ccfifo_writel(r, EMC_MRS_WAIT_CNT2, 0);
|
||
|
ccfifo_writel(2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
|
||
|
EMC_MRW_USE_MRW_EXT_CNT |
|
||
|
10 << EMC_MRW_MRW_MA_SHIFT |
|
||
|
zq_op << EMC_MRW_MRW_OP_SHIFT,
|
||
|
EMC_MRW, 0);
|
||
|
if (dram_dev_num == TWO_RANK) {
|
||
|
r = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT |
|
||
|
EMC_MRW_USE_MRW_EXT_CNT |
|
||
|
10 << EMC_MRW_MRW_MA_SHIFT |
|
||
|
zq_op << EMC_MRW_MRW_OP_SHIFT;
|
||
|
ccfifo_writel(r, EMC_MRW, 0);
|
||
|
}
|
||
|
} else if (dram_type == DRAM_TYPE_DDR3) {
|
||
|
zq_op = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG;
|
||
|
ccfifo_writel(zq_op | 2 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, 0);
|
||
|
if (dram_dev_num == TWO_RANK)
|
||
|
ccfifo_writel(zq_op |
|
||
|
1 << EMC_ZQ_CAL_DEV_SEL_SHIFT |
|
||
|
EMC_ZQ_CAL_ZQ_CAL_CMD,
|
||
|
EMC_ZQ_CAL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (bg_regulator_mode_change) {
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
bg_regulator_switch_complete_wait_clks =
|
||
|
ramp_up_wait > 1250000 ? 0 :
|
||
|
(1250000 - ramp_up_wait) / destination_clock_period;
|
||
|
ccfifo_writel(next_timing->burst_regs
|
||
|
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX],
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0,
|
||
|
bg_regulator_switch_complete_wait_clks);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
}
|
||
|
|
||
|
/* Step 20:
|
||
|
* Issue ref and optional QRST.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 20\n");
|
||
|
if (dram_type != DRAM_TYPE_LPDDR4)
|
||
|
ccfifo_writel(0, EMC_REF, 0);
|
||
|
|
||
|
if (opt_do_sw_qrst) {
|
||
|
ccfifo_writel(1, EMC_ISSUE_QRST, 0);
|
||
|
ccfifo_writel(0, EMC_ISSUE_QRST, 2);
|
||
|
}
|
||
|
|
||
|
/* Step 21:
|
||
|
* Restore ZCAL and ZCAL interval.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 21\n");
|
||
|
if (save_restore_clkstop_pd || opt_zcal_en_cc) {
|
||
|
ccfifo_writel(emc_dbg_o | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG, 0);
|
||
|
if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4)
|
||
|
ccfifo_writel(next_timing->
|
||
|
burst_regs[EMC_ZCAL_INTERVAL_INDEX],
|
||
|
EMC_ZCAL_INTERVAL, 0);
|
||
|
|
||
|
if (save_restore_clkstop_pd)
|
||
|
ccfifo_writel(next_timing->burst_regs[EMC_CFG_INDEX] &
|
||
|
~EMC_CFG_DYN_SELF_REF, EMC_CFG, 0);
|
||
|
ccfifo_writel(emc_dbg_o, EMC_DBG, 0);
|
||
|
}
|
||
|
|
||
|
/* Step 22:
|
||
|
* Restore EMC_CFG_PIPE_CLK.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 22\n");
|
||
|
ccfifo_writel(emc_cfg_pipe_clk_o, EMC_CFG_PIPE_CLK, 0);
|
||
|
|
||
|
if (bg_regulator_mode_change) {
|
||
|
if (enable_bg_regulator)
|
||
|
emc_writel(next_timing->burst_regs
|
||
|
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD,
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0);
|
||
|
else
|
||
|
emc_writel(next_timing->burst_regs
|
||
|
[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] &
|
||
|
~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD,
|
||
|
EMC_PMACRO_BG_BIAS_CTRL_0);
|
||
|
}
|
||
|
|
||
|
/* Step 23:
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 23\n");
|
||
|
|
||
|
/* Fix: rename tmp to something meaningful. */
|
||
|
tmp = emc_readl(EMC_CFG_DIG_DLL);
|
||
|
tmp |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
|
||
|
tmp &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
|
||
|
tmp &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
|
||
|
tmp &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN;
|
||
|
tmp = (tmp & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
|
||
|
(2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
|
||
|
emc_writel(tmp, EMC_CFG_DIG_DLL);
|
||
|
|
||
|
/* Clock change. Woot. BUG()s out if something fails. */
|
||
|
do_clock_change(clksrc);
|
||
|
|
||
|
/* Step 24:
|
||
|
* Save training results. Removed.
|
||
|
*/
|
||
|
|
||
|
/* Step 25:
|
||
|
* Program MC updown registers.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 25\n");
|
||
|
|
||
|
if (next_timing->rate > last_timing->rate) {
|
||
|
for (i = 0; i < next_timing->num_up_down; i++)
|
||
|
mc_writel(next_timing->la_scale_regs[i],
|
||
|
la_scale_regs_off[i]);
|
||
|
emc_timing_update(channel_mode);
|
||
|
}
|
||
|
|
||
|
/* Step 26:
|
||
|
* Restore ZCAL registers.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 26\n");
|
||
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
emc_writel(next_timing->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
|
||
|
EMC_ZCAL_WAIT_CNT);
|
||
|
emc_writel(next_timing->burst_regs[EMC_ZCAL_INTERVAL_INDEX],
|
||
|
EMC_ZCAL_INTERVAL);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
}
|
||
|
|
||
|
if (dram_type != DRAM_TYPE_LPDDR4 &&
|
||
|
opt_zcal_en_cc && !opt_short_zcal && opt_cc_short_zcal) {
|
||
|
udelay(2);
|
||
|
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
if (dram_type == DRAM_TYPE_LPDDR2)
|
||
|
emc_writel(next_timing->
|
||
|
burst_regs[EMC_MRS_WAIT_CNT_INDEX],
|
||
|
EMC_MRS_WAIT_CNT);
|
||
|
else if (dram_type == DRAM_TYPE_DDR3)
|
||
|
emc_writel(next_timing->
|
||
|
burst_regs[EMC_ZCAL_WAIT_CNT_INDEX],
|
||
|
EMC_ZCAL_WAIT_CNT);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
}
|
||
|
|
||
|
/* Step 27:
|
||
|
* Restore EMC_CFG, FDPD registers.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 27\n");
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
emc_writel(next_timing->burst_regs[EMC_CFG_INDEX], EMC_CFG);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
emc_writel(next_timing->emc_fdpd_ctrl_cmd_no_ramp,
|
||
|
EMC_FDPD_CTRL_CMD_NO_RAMP);
|
||
|
emc_writel(next_timing->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL);
|
||
|
|
||
|
/* Step 28:
|
||
|
* Training recover. Removed.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 28\n");
|
||
|
|
||
|
emc_set_shadow_bypass(ACTIVE);
|
||
|
emc_writel(next_timing->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX],
|
||
|
EMC_PMACRO_AUTOCAL_CFG_COMMON);
|
||
|
emc_set_shadow_bypass(ASSEMBLY);
|
||
|
|
||
|
/* Step 29:
|
||
|
* Power fix WAR.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 29\n");
|
||
|
emc_writel(EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 |
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7,
|
||
|
EMC_PMACRO_CFG_PM_GLOBAL_0);
|
||
|
emc_writel(EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR,
|
||
|
EMC_PMACRO_TRAINING_CTRL_0);
|
||
|
emc_writel(EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR,
|
||
|
EMC_PMACRO_TRAINING_CTRL_1);
|
||
|
emc_writel(0, EMC_PMACRO_CFG_PM_GLOBAL_0);
|
||
|
|
||
|
/* Step 30:
|
||
|
* Re-enable autocal.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 30: Re-enable DLL and AUTOCAL\n");
|
||
|
if (next_timing->burst_regs[EMC_CFG_DIG_DLL_INDEX] &
|
||
|
EMC_CFG_DIG_DLL_CFG_DLL_EN) {
|
||
|
tmp = emc_readl(EMC_CFG_DIG_DLL);
|
||
|
tmp |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC;
|
||
|
tmp |= EMC_CFG_DIG_DLL_CFG_DLL_EN;
|
||
|
tmp &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK;
|
||
|
tmp &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK;
|
||
|
tmp = (tmp & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) |
|
||
|
(2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT);
|
||
|
emc_writel(tmp, EMC_CFG_DIG_DLL);
|
||
|
emc_timing_update(channel_mode);
|
||
|
}
|
||
|
|
||
|
emc_auto_cal_config = next_timing->emc_auto_cal_config;
|
||
|
emc_writel(emc_auto_cal_config, EMC_AUTO_CAL_CONFIG);
|
||
|
|
||
|
/* Step 31:
|
||
|
* Restore FSP to account for switch back. Only needed in training.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 31\n");
|
||
|
|
||
|
/* Step 32:
|
||
|
* [SW] Update the alternative timing (derated vs normal) table with
|
||
|
* the periodic training values computed during the clock change
|
||
|
* pre-amble.
|
||
|
*/
|
||
|
emc_cc_dbg(STEPS, "Step 32: Update alt timing\n");
|
||
|
tegra210_update_emc_alt_timing(next_timing);
|
||
|
|
||
|
/* Done! Yay. */
|
||
|
}
|