585 lines
12 KiB
C
585 lines
12 KiB
C
|
/******************************************************************************
|
||
|
*
|
||
|
* (C)Copyright 1998,1999 SysKonnect,
|
||
|
* a business unit of Schneider & Koch & Co. Datensysteme GmbH.
|
||
|
*
|
||
|
* See the file "skfddi.c" for further information.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* The information in this file is provided "AS IS" without warranty.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* FBI board dependent Driver for SMT and LLC
|
||
|
*/
|
||
|
|
||
|
#include "h/types.h"
|
||
|
#include "h/fddi.h"
|
||
|
#include "h/smc.h"
|
||
|
#include "h/supern_2.h"
|
||
|
#include "h/skfbiinc.h"
|
||
|
#include <linux/bitrev.h>
|
||
|
|
||
|
#ifndef lint
|
||
|
static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* PCM active state
|
||
|
*/
|
||
|
#define PC8_ACTIVE 8
|
||
|
|
||
|
#define LED_Y_ON 0x11 /* Used for ring up/down indication */
|
||
|
#define LED_Y_OFF 0x10
|
||
|
|
||
|
|
||
|
#define MS2BCLK(x) ((x)*12500L)
|
||
|
|
||
|
/*
|
||
|
* valid configuration values are:
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* xPOS_ID:xxxx
|
||
|
* | \ /
|
||
|
* | \/
|
||
|
* | --------------------- the patched POS_ID of the Adapter
|
||
|
* | xxxx = (Vendor ID low byte,
|
||
|
* | Vendor ID high byte,
|
||
|
* | Device ID low byte,
|
||
|
* | Device ID high byte)
|
||
|
* +------------------------------ the patched oem_id must be
|
||
|
* 'S' for SK or 'I' for IBM
|
||
|
* this is a short id for the driver.
|
||
|
*/
|
||
|
#ifndef MULT_OEM
|
||
|
#ifndef OEM_CONCEPT
|
||
|
const u_char oem_id[] = "xPOS_ID:xxxx" ;
|
||
|
#else /* OEM_CONCEPT */
|
||
|
const u_char oem_id[] = OEM_ID ;
|
||
|
#endif /* OEM_CONCEPT */
|
||
|
#define ID_BYTE0 8
|
||
|
#define OEMID(smc,i) oem_id[ID_BYTE0 + i]
|
||
|
#else /* MULT_OEM */
|
||
|
const struct s_oem_ids oem_ids[] = {
|
||
|
#include "oemids.h"
|
||
|
{0}
|
||
|
};
|
||
|
#define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
|
||
|
#endif /* MULT_OEM */
|
||
|
|
||
|
/* Prototypes of external functions */
|
||
|
#ifdef AIX
|
||
|
extern int AIX_vpdReadByte() ;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Prototype of a local function. */
|
||
|
static void smt_stop_watchdog(struct s_smc *smc);
|
||
|
|
||
|
/*
|
||
|
* FDDI card reset
|
||
|
*/
|
||
|
static void card_start(struct s_smc *smc)
|
||
|
{
|
||
|
int i ;
|
||
|
#ifdef PCI
|
||
|
u_char rev_id ;
|
||
|
u_short word;
|
||
|
#endif
|
||
|
|
||
|
smt_stop_watchdog(smc) ;
|
||
|
|
||
|
#ifdef PCI
|
||
|
/*
|
||
|
* make sure no transfer activity is pending
|
||
|
*/
|
||
|
outpw(FM_A(FM_MDREG1),FM_MINIT) ;
|
||
|
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
|
||
|
hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
|
||
|
/*
|
||
|
* now reset everything
|
||
|
*/
|
||
|
outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
|
||
|
i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */
|
||
|
SK_UNUSED(i) ; /* Make LINT happy. */
|
||
|
outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
|
||
|
|
||
|
/*
|
||
|
* Reset all bits in the PCI STATUS register
|
||
|
*/
|
||
|
outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */
|
||
|
word = inpw(PCI_C(PCI_STATUS)) ;
|
||
|
outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
|
||
|
outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */
|
||
|
|
||
|
/*
|
||
|
* Release the reset of all the State machines
|
||
|
* Release Master_Reset
|
||
|
* Release HPI_SM_Reset
|
||
|
*/
|
||
|
outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
|
||
|
|
||
|
/*
|
||
|
* determine the adapter type
|
||
|
* Note: Do it here, because some drivers may call card_start() once
|
||
|
* at very first before any other initialization functions is
|
||
|
* executed.
|
||
|
*/
|
||
|
rev_id = inp(PCI_C(PCI_REV_ID)) ;
|
||
|
if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
|
||
|
smc->hw.hw_is_64bit = TRUE ;
|
||
|
} else {
|
||
|
smc->hw.hw_is_64bit = FALSE ;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Watermark initialization
|
||
|
*/
|
||
|
if (!smc->hw.hw_is_64bit) {
|
||
|
outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
|
||
|
outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
|
||
|
outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
|
||
|
}
|
||
|
|
||
|
outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */
|
||
|
outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
|
||
|
|
||
|
/* init the timer value for the watch dog 2,5 minutes */
|
||
|
outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
|
||
|
|
||
|
/* initialize the ISR mask */
|
||
|
smc->hw.is_imask = ISR_MASK ;
|
||
|
smc->hw.hw_state = STOPPED ;
|
||
|
#endif
|
||
|
GET_PAGE(0) ; /* necessary for BOOT */
|
||
|
}
|
||
|
|
||
|
void card_stop(struct s_smc *smc)
|
||
|
{
|
||
|
smt_stop_watchdog(smc) ;
|
||
|
smc->hw.mac_ring_is_up = 0 ; /* ring down */
|
||
|
|
||
|
#ifdef PCI
|
||
|
/*
|
||
|
* make sure no transfer activity is pending
|
||
|
*/
|
||
|
outpw(FM_A(FM_MDREG1),FM_MINIT) ;
|
||
|
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
|
||
|
hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
|
||
|
/*
|
||
|
* now reset everything
|
||
|
*/
|
||
|
outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
|
||
|
outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */
|
||
|
outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
|
||
|
smc->hw.hw_state = STOPPED ;
|
||
|
#endif
|
||
|
}
|
||
|
/*--------------------------- ISR handling ----------------------------------*/
|
||
|
|
||
|
void mac1_irq(struct s_smc *smc, u_short stu, u_short stl)
|
||
|
{
|
||
|
int restart_tx = 0 ;
|
||
|
again:
|
||
|
|
||
|
/*
|
||
|
* parity error: note encoding error is not possible in tag mode
|
||
|
*/
|
||
|
if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/
|
||
|
FM_SPCEPDA0 | /* parity err. a.q.0 */
|
||
|
FM_SPCEPDA1)) { /* parity err. a.q.1 */
|
||
|
SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
|
||
|
}
|
||
|
/*
|
||
|
* buffer underrun: can only occur if a tx threshold is specified
|
||
|
*/
|
||
|
if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
|
||
|
FM_STBURA0 | /* tx buffer underrun a.q.0 */
|
||
|
FM_STBURA1)) { /* tx buffer underrun a.q.2 */
|
||
|
SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
|
||
|
}
|
||
|
|
||
|
if ( (stu & (FM_SXMTABT | /* transmit abort */
|
||
|
FM_STXABRS | /* syn. tx abort */
|
||
|
FM_STXABRA0)) || /* asyn. tx abort */
|
||
|
(stl & (FM_SQLCKS | /* lock for syn. q. */
|
||
|
FM_SQLCKA0)) ) { /* lock for asyn. q. */
|
||
|
formac_tx_restart(smc) ; /* init tx */
|
||
|
restart_tx = 1 ;
|
||
|
stu = inpw(FM_A(FM_ST1U)) ;
|
||
|
stl = inpw(FM_A(FM_ST1L)) ;
|
||
|
stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
|
||
|
if (stu || stl)
|
||
|
goto again ;
|
||
|
}
|
||
|
|
||
|
if (stu & (FM_STEFRMA0 | /* end of asyn tx */
|
||
|
FM_STEFRMS)) { /* end of sync tx */
|
||
|
restart_tx = 1 ;
|
||
|
}
|
||
|
|
||
|
if (restart_tx)
|
||
|
llc_restart_tx(smc) ;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* interrupt source= plc1
|
||
|
* this function is called in nwfbisr.asm
|
||
|
*/
|
||
|
void plc1_irq(struct s_smc *smc)
|
||
|
{
|
||
|
u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ;
|
||
|
|
||
|
plc_irq(smc,PB,st) ;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* interrupt source= plc2
|
||
|
* this function is called in nwfbisr.asm
|
||
|
*/
|
||
|
void plc2_irq(struct s_smc *smc)
|
||
|
{
|
||
|
u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ;
|
||
|
|
||
|
plc_irq(smc,PA,st) ;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* interrupt source= timer
|
||
|
*/
|
||
|
void timer_irq(struct s_smc *smc)
|
||
|
{
|
||
|
hwt_restart(smc);
|
||
|
smc->hw.t_stop = smc->hw.t_start;
|
||
|
smt_timer_done(smc) ;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* return S-port (PA or PB)
|
||
|
*/
|
||
|
int pcm_get_s_port(struct s_smc *smc)
|
||
|
{
|
||
|
SK_UNUSED(smc) ;
|
||
|
return PS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Station Label = "FDDI-XYZ" where
|
||
|
*
|
||
|
* X = connector type
|
||
|
* Y = PMD type
|
||
|
* Z = port type
|
||
|
*/
|
||
|
#define STATION_LABEL_CONNECTOR_OFFSET 5
|
||
|
#define STATION_LABEL_PMD_OFFSET 6
|
||
|
#define STATION_LABEL_PORT_OFFSET 7
|
||
|
|
||
|
void read_address(struct s_smc *smc, u_char *mac_addr)
|
||
|
{
|
||
|
char ConnectorType ;
|
||
|
char PmdType ;
|
||
|
int i ;
|
||
|
|
||
|
#ifdef PCI
|
||
|
for (i = 0; i < 6; i++) { /* read mac address from board */
|
||
|
smc->hw.fddi_phys_addr.a[i] =
|
||
|
bitrev8(inp(ADDR(B2_MAC_0+i)));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
|
||
|
PmdType = inp(ADDR(B2_PMD_TYP)) ;
|
||
|
|
||
|
smc->y[PA].pmd_type[PMD_SK_CONN] =
|
||
|
smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
|
||
|
smc->y[PA].pmd_type[PMD_SK_PMD ] =
|
||
|
smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
|
||
|
|
||
|
if (mac_addr) {
|
||
|
for (i = 0; i < 6 ;i++) {
|
||
|
smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
|
||
|
smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]);
|
||
|
}
|
||
|
return ;
|
||
|
}
|
||
|
smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
|
||
|
|
||
|
for (i = 0; i < 6 ;i++) {
|
||
|
smc->hw.fddi_canon_addr.a[i] =
|
||
|
bitrev8(smc->hw.fddi_phys_addr.a[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* FDDI card soft reset
|
||
|
*/
|
||
|
void init_board(struct s_smc *smc, u_char *mac_addr)
|
||
|
{
|
||
|
card_start(smc) ;
|
||
|
read_address(smc,mac_addr) ;
|
||
|
|
||
|
if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
|
||
|
smc->s.sas = SMT_SAS ; /* Single att. station */
|
||
|
else
|
||
|
smc->s.sas = SMT_DAS ; /* Dual att. station */
|
||
|
|
||
|
if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
|
||
|
smc->mib.fddiSMTBypassPresent = 0 ;
|
||
|
/* without opt. bypass */
|
||
|
else
|
||
|
smc->mib.fddiSMTBypassPresent = 1 ;
|
||
|
/* with opt. bypass */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* insert or deinsert optical bypass (called by ECM)
|
||
|
*/
|
||
|
void sm_pm_bypass_req(struct s_smc *smc, int mode)
|
||
|
{
|
||
|
DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
|
||
|
"BP_INSERT" : "BP_DEINSERT",0) ;
|
||
|
|
||
|
if (smc->s.sas != SMT_DAS)
|
||
|
return ;
|
||
|
|
||
|
#ifdef PCI
|
||
|
switch(mode) {
|
||
|
case BP_INSERT :
|
||
|
outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */
|
||
|
break ;
|
||
|
case BP_DEINSERT :
|
||
|
outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */
|
||
|
break ;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* check if bypass connected
|
||
|
*/
|
||
|
int sm_pm_bypass_present(struct s_smc *smc)
|
||
|
{
|
||
|
return (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE : FALSE;
|
||
|
}
|
||
|
|
||
|
void plc_clear_irq(struct s_smc *smc, int p)
|
||
|
{
|
||
|
SK_UNUSED(p) ;
|
||
|
|
||
|
SK_UNUSED(smc) ;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* led_indication called by rmt_indication() and
|
||
|
* pcm_state_change()
|
||
|
*
|
||
|
* Input:
|
||
|
* smc: SMT context
|
||
|
* led_event:
|
||
|
* 0 Only switch green LEDs according to their respective PCM state
|
||
|
* LED_Y_OFF just switch yellow LED off
|
||
|
* LED_Y_ON just switch yello LED on
|
||
|
*/
|
||
|
static void led_indication(struct s_smc *smc, int led_event)
|
||
|
{
|
||
|
/* use smc->hw.mac_ring_is_up == TRUE
|
||
|
* as indication for Ring Operational
|
||
|
*/
|
||
|
u_short led_state ;
|
||
|
struct s_phy *phy ;
|
||
|
struct fddi_mib_p *mib_a ;
|
||
|
struct fddi_mib_p *mib_b ;
|
||
|
|
||
|
phy = &smc->y[PA] ;
|
||
|
mib_a = phy->mib ;
|
||
|
phy = &smc->y[PB] ;
|
||
|
mib_b = phy->mib ;
|
||
|
|
||
|
#ifdef PCI
|
||
|
led_state = 0 ;
|
||
|
|
||
|
/* Ring up = yellow led OFF*/
|
||
|
if (led_event == LED_Y_ON) {
|
||
|
led_state |= LED_MY_ON ;
|
||
|
}
|
||
|
else if (led_event == LED_Y_OFF) {
|
||
|
led_state |= LED_MY_OFF ;
|
||
|
}
|
||
|
else { /* PCM state changed */
|
||
|
/* Link at Port A/S = green led A ON */
|
||
|
if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
|
||
|
led_state |= LED_GA_ON ;
|
||
|
}
|
||
|
else {
|
||
|
led_state |= LED_GA_OFF ;
|
||
|
}
|
||
|
|
||
|
/* Link at Port B = green led B ON */
|
||
|
if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
|
||
|
led_state |= LED_GB_ON ;
|
||
|
}
|
||
|
else {
|
||
|
led_state |= LED_GB_OFF ;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
outp(ADDR(B0_LED), led_state) ;
|
||
|
#endif /* PCI */
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void pcm_state_change(struct s_smc *smc, int plc, int p_state)
|
||
|
{
|
||
|
/*
|
||
|
* the current implementation of pcm_state_change() in the driver
|
||
|
* parts must be renamed to drv_pcm_state_change() which will be called
|
||
|
* now after led_indication.
|
||
|
*/
|
||
|
DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
|
||
|
|
||
|
led_indication(smc,0) ;
|
||
|
}
|
||
|
|
||
|
|
||
|
void rmt_indication(struct s_smc *smc, int i)
|
||
|
{
|
||
|
/* Call a driver special function if defined */
|
||
|
DRV_RMT_INDICATION(smc,i) ;
|
||
|
|
||
|
led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* llc_recover_tx called by init_tx (fplus.c)
|
||
|
*/
|
||
|
void llc_recover_tx(struct s_smc *smc)
|
||
|
{
|
||
|
#ifdef LOAD_GEN
|
||
|
extern int load_gen_flag ;
|
||
|
|
||
|
load_gen_flag = 0 ;
|
||
|
#endif
|
||
|
#ifndef SYNC
|
||
|
smc->hw.n_a_send= 0 ;
|
||
|
#else
|
||
|
SK_UNUSED(smc) ;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#ifdef MULT_OEM
|
||
|
static int is_equal_num(char comp1[], char comp2[], int num)
|
||
|
{
|
||
|
int i ;
|
||
|
|
||
|
for (i = 0 ; i < num ; i++) {
|
||
|
if (comp1[i] != comp2[i])
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
} /* is_equal_num */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* set the OEM ID defaults, and test the contents of the OEM data base
|
||
|
* The default OEM is the first ACTIVE entry in the OEM data base
|
||
|
*
|
||
|
* returns: 0 success
|
||
|
* 1 error in data base
|
||
|
* 2 data base empty
|
||
|
* 3 no active entry
|
||
|
*/
|
||
|
int set_oi_id_def(struct s_smc *smc)
|
||
|
{
|
||
|
int sel_id ;
|
||
|
int i ;
|
||
|
int act_entries ;
|
||
|
|
||
|
i = 0 ;
|
||
|
sel_id = -1 ;
|
||
|
act_entries = FALSE ;
|
||
|
smc->hw.oem_id = 0 ;
|
||
|
smc->hw.oem_min_status = OI_STAT_ACTIVE ;
|
||
|
|
||
|
/* check OEM data base */
|
||
|
while (oem_ids[i].oi_status) {
|
||
|
switch (oem_ids[i].oi_status) {
|
||
|
case OI_STAT_ACTIVE:
|
||
|
act_entries = TRUE ; /* we have active IDs */
|
||
|
if (sel_id == -1)
|
||
|
sel_id = i ; /* save the first active ID */
|
||
|
case OI_STAT_VALID:
|
||
|
case OI_STAT_PRESENT:
|
||
|
i++ ;
|
||
|
break ; /* entry ok */
|
||
|
default:
|
||
|
return 1; /* invalid oi_status */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (i == 0)
|
||
|
return 2;
|
||
|
if (!act_entries)
|
||
|
return 3;
|
||
|
|
||
|
/* ok, we have a valid OEM data base with an active entry */
|
||
|
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ;
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* MULT_OEM */
|
||
|
|
||
|
void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr)
|
||
|
{
|
||
|
int i ;
|
||
|
|
||
|
for (i = 0 ; i < 6 ; i++)
|
||
|
bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]);
|
||
|
}
|
||
|
|
||
|
void smt_start_watchdog(struct s_smc *smc)
|
||
|
{
|
||
|
SK_UNUSED(smc) ; /* Make LINT happy. */
|
||
|
|
||
|
#ifndef DEBUG
|
||
|
|
||
|
#ifdef PCI
|
||
|
if (smc->hw.wdog_used) {
|
||
|
outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* DEBUG */
|
||
|
}
|
||
|
|
||
|
static void smt_stop_watchdog(struct s_smc *smc)
|
||
|
{
|
||
|
SK_UNUSED(smc) ; /* Make LINT happy. */
|
||
|
#ifndef DEBUG
|
||
|
|
||
|
#ifdef PCI
|
||
|
if (smc->hw.wdog_used) {
|
||
|
outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* DEBUG */
|
||
|
}
|
||
|
|
||
|
#ifdef PCI
|
||
|
|
||
|
void mac_do_pci_fix(struct s_smc *smc)
|
||
|
{
|
||
|
SK_UNUSED(smc) ;
|
||
|
}
|
||
|
#endif /* PCI */
|
||
|
|