tegrakernel/kernel/kernel-4.9/drivers/net/wireless/broadcom/b43/lo.c

1017 lines
27 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
Broadcom B43 wireless driver
G PHY LO (LocalOscillator) Measuring and Control routines
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005, 2006 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2007 Michael Buesch <m@bues.ch>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43.h"
#include "lo.h"
#include "phy_g.h"
#include "main.h"
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
static struct b43_lo_calib *b43_find_lo_calib(struct b43_txpower_lo_control *lo,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt)
{
struct b43_lo_calib *c;
list_for_each_entry(c, &lo->calib_list, list) {
if (!b43_compare_bbatt(&c->bbatt, bbatt))
continue;
if (!b43_compare_rfatt(&c->rfatt, rfatt))
continue;
return c;
}
return NULL;
}
/* Write the LocalOscillator Control (adjust) value-pair. */
static void b43_lo_write(struct b43_wldev *dev, struct b43_loctl *control)
{
struct b43_phy *phy = &dev->phy;
u16 value;
if (B43_DEBUG) {
if (unlikely(abs(control->i) > 16 || abs(control->q) > 16)) {
b43dbg(dev->wl, "Invalid LO control pair "
"(I: %d, Q: %d)\n", control->i, control->q);
dump_stack();
return;
}
}
B43_WARN_ON(phy->type != B43_PHYTYPE_G);
value = (u8) (control->q);
value |= ((u8) (control->i)) << 8;
b43_phy_write(dev, B43_PHY_LO_CTL, value);
}
static u16 lo_measure_feedthrough(struct b43_wldev *dev,
u16 lna, u16 pga, u16 trsw_rx)
{
struct b43_phy *phy = &dev->phy;
u16 rfover;
u16 feedthrough;
if (phy->gmode) {
lna <<= B43_PHY_RFOVERVAL_LNA_SHIFT;
pga <<= B43_PHY_RFOVERVAL_PGA_SHIFT;
B43_WARN_ON(lna & ~B43_PHY_RFOVERVAL_LNA);
B43_WARN_ON(pga & ~B43_PHY_RFOVERVAL_PGA);
/*FIXME This assertion fails B43_WARN_ON(trsw_rx & ~(B43_PHY_RFOVERVAL_TRSWRX |
B43_PHY_RFOVERVAL_BW));
*/
trsw_rx &= (B43_PHY_RFOVERVAL_TRSWRX | B43_PHY_RFOVERVAL_BW);
/* Construct the RF Override Value */
rfover = B43_PHY_RFOVERVAL_UNK;
rfover |= pga;
rfover |= lna;
rfover |= trsw_rx;
if ((dev->dev->bus_sprom->boardflags_lo & B43_BFL_EXTLNA)
&& phy->rev > 6)
rfover |= B43_PHY_RFOVERVAL_EXTLNA;
b43_phy_write(dev, B43_PHY_PGACTL, 0xE300);
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfover);
udelay(10);
rfover |= B43_PHY_RFOVERVAL_BW_LBW;
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfover);
udelay(10);
rfover |= B43_PHY_RFOVERVAL_BW_LPF;
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfover);
udelay(10);
b43_phy_write(dev, B43_PHY_PGACTL, 0xF300);
} else {
pga |= B43_PHY_PGACTL_UNKNOWN;
b43_phy_write(dev, B43_PHY_PGACTL, pga);
udelay(10);
pga |= B43_PHY_PGACTL_LOWBANDW;
b43_phy_write(dev, B43_PHY_PGACTL, pga);
udelay(10);
pga |= B43_PHY_PGACTL_LPF;
b43_phy_write(dev, B43_PHY_PGACTL, pga);
}
udelay(21);
feedthrough = b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
/* This is a good place to check if we need to relax a bit,
* as this is the main function called regularly
* in the LO calibration. */
cond_resched();
return feedthrough;
}
/* TXCTL Register and Value Table.
* Returns the "TXCTL Register".
* "value" is the "TXCTL Value".
* "pad_mix_gain" is the PAD Mixer Gain.
*/
static u16 lo_txctl_register_table(struct b43_wldev *dev,
u16 *value, u16 *pad_mix_gain)
{
struct b43_phy *phy = &dev->phy;
u16 reg, v, padmix;
if (phy->type == B43_PHYTYPE_B) {
v = 0x30;
if (phy->radio_rev <= 5) {
reg = 0x43;
padmix = 0;
} else {
reg = 0x52;
padmix = 5;
}
} else {
if (phy->rev >= 2 && phy->radio_rev == 8) {
reg = 0x43;
v = 0x10;
padmix = 2;
} else {
reg = 0x52;
v = 0x30;
padmix = 5;
}
}
if (value)
*value = v;
if (pad_mix_gain)
*pad_mix_gain = padmix;
return reg;
}
static void lo_measure_txctl_values(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 reg, mask;
u16 trsw_rx, pga;
u16 radio_pctl_reg;
static const u8 tx_bias_values[] = {
0x09, 0x08, 0x0A, 0x01, 0x00,
0x02, 0x05, 0x04, 0x06,
};
static const u8 tx_magn_values[] = {
0x70, 0x40,
};
if (!has_loopback_gain(phy)) {
radio_pctl_reg = 6;
trsw_rx = 2;
pga = 0;
} else {
int lb_gain; /* Loopback gain (in dB) */
trsw_rx = 0;
lb_gain = gphy->max_lb_gain / 2;
if (lb_gain > 10) {
radio_pctl_reg = 0;
pga = abs(10 - lb_gain) / 6;
pga = clamp_val(pga, 0, 15);
} else {
int cmp_val;
int tmp;
pga = 0;
cmp_val = 0x24;
if ((phy->rev >= 2) &&
(phy->radio_ver == 0x2050) && (phy->radio_rev == 8))
cmp_val = 0x3C;
tmp = lb_gain;
if ((10 - lb_gain) < cmp_val)
tmp = (10 - lb_gain);
if (tmp < 0)
tmp += 6;
else
tmp += 3;
cmp_val /= 4;
tmp /= 4;
if (tmp >= cmp_val)
radio_pctl_reg = cmp_val;
else
radio_pctl_reg = tmp;
}
}
b43_radio_maskset(dev, 0x43, 0xFFF0, radio_pctl_reg);
b43_gphy_set_baseband_attenuation(dev, 2);
reg = lo_txctl_register_table(dev, &mask, NULL);
mask = ~mask;
b43_radio_mask(dev, reg, mask);
if (has_tx_magnification(phy)) {
int i, j;
int feedthrough;
int min_feedth = 0xFFFF;
u8 tx_magn, tx_bias;
for (i = 0; i < ARRAY_SIZE(tx_magn_values); i++) {
tx_magn = tx_magn_values[i];
b43_radio_maskset(dev, 0x52, 0xFF0F, tx_magn);
for (j = 0; j < ARRAY_SIZE(tx_bias_values); j++) {
tx_bias = tx_bias_values[j];
b43_radio_maskset(dev, 0x52, 0xFFF0, tx_bias);
feedthrough =
lo_measure_feedthrough(dev, 0, pga,
trsw_rx);
if (feedthrough < min_feedth) {
lo->tx_bias = tx_bias;
lo->tx_magn = tx_magn;
min_feedth = feedthrough;
}
if (lo->tx_bias == 0)
break;
}
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52)
& 0xFF00) | lo->tx_bias | lo->
tx_magn);
}
} else {
lo->tx_magn = 0;
lo->tx_bias = 0;
b43_radio_mask(dev, 0x52, 0xFFF0); /* TX bias == 0 */
}
lo->txctl_measured_time = jiffies;
}
static void lo_read_power_vector(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
int i;
u64 tmp;
u64 power_vector = 0;
for (i = 0; i < 8; i += 2) {
tmp = b43_shm_read16(dev, B43_SHM_SHARED, 0x310 + i);
power_vector |= (tmp << (i * 8));
/* Clear the vector on the device. */
b43_shm_write16(dev, B43_SHM_SHARED, 0x310 + i, 0);
}
if (power_vector)
lo->power_vector = power_vector;
lo->pwr_vec_read_time = jiffies;
}
/* 802.11/LO/GPHY/MeasuringGains */
static void lo_measure_gain_values(struct b43_wldev *dev,
s16 max_rx_gain, int use_trsw_rx)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
if (max_rx_gain < 0)
max_rx_gain = 0;
if (has_loopback_gain(phy)) {
int trsw_rx_gain;
if (use_trsw_rx) {
trsw_rx_gain = gphy->trsw_rx_gain / 2;
if (max_rx_gain >= trsw_rx_gain) {
trsw_rx_gain = max_rx_gain - trsw_rx_gain;
}
} else
trsw_rx_gain = max_rx_gain;
if (trsw_rx_gain < 9) {
gphy->lna_lod_gain = 0;
} else {
gphy->lna_lod_gain = 1;
trsw_rx_gain -= 8;
}
trsw_rx_gain = clamp_val(trsw_rx_gain, 0, 0x2D);
gphy->pga_gain = trsw_rx_gain / 3;
if (gphy->pga_gain >= 5) {
gphy->pga_gain -= 5;
gphy->lna_gain = 2;
} else
gphy->lna_gain = 0;
} else {
gphy->lna_gain = 0;
gphy->trsw_rx_gain = 0x20;
if (max_rx_gain >= 0x14) {
gphy->lna_lod_gain = 1;
gphy->pga_gain = 2;
} else if (max_rx_gain >= 0x12) {
gphy->lna_lod_gain = 1;
gphy->pga_gain = 1;
} else if (max_rx_gain >= 0xF) {
gphy->lna_lod_gain = 1;
gphy->pga_gain = 0;
} else {
gphy->lna_lod_gain = 0;
gphy->pga_gain = 0;
}
}
tmp = b43_radio_read16(dev, 0x7A);
if (gphy->lna_lod_gain == 0)
tmp &= ~0x0008;
else
tmp |= 0x0008;
b43_radio_write16(dev, 0x7A, tmp);
}
struct lo_g_saved_values {
u8 old_channel;
/* Core registers */
u16 reg_3F4;
u16 reg_3E2;
/* PHY registers */
u16 phy_lo_mask;
u16 phy_extg_01;
u16 phy_dacctl_hwpctl;
u16 phy_dacctl;
u16 phy_cck_14;
u16 phy_hpwr_tssictl;
u16 phy_analogover;
u16 phy_analogoverval;
u16 phy_rfover;
u16 phy_rfoverval;
u16 phy_classctl;
u16 phy_cck_3E;
u16 phy_crs0;
u16 phy_pgactl;
u16 phy_cck_2A;
u16 phy_syncctl;
u16 phy_cck_30;
u16 phy_cck_06;
/* Radio registers */
u16 radio_43;
u16 radio_7A;
u16 radio_52;
};
static void lo_measure_setup(struct b43_wldev *dev,
struct lo_g_saved_values *sav)
{
struct ssb_sprom *sprom = dev->dev->bus_sprom;
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
u16 tmp;
if (b43_has_hardware_pctl(dev)) {
sav->phy_lo_mask = b43_phy_read(dev, B43_PHY_LO_MASK);
sav->phy_extg_01 = b43_phy_read(dev, B43_PHY_EXTG(0x01));
sav->phy_dacctl_hwpctl = b43_phy_read(dev, B43_PHY_DACCTL);
sav->phy_cck_14 = b43_phy_read(dev, B43_PHY_CCK(0x14));
sav->phy_hpwr_tssictl = b43_phy_read(dev, B43_PHY_HPWR_TSSICTL);
b43_phy_set(dev, B43_PHY_HPWR_TSSICTL, 0x100);
b43_phy_set(dev, B43_PHY_EXTG(0x01), 0x40);
b43_phy_set(dev, B43_PHY_DACCTL, 0x40);
b43_phy_set(dev, B43_PHY_CCK(0x14), 0x200);
}
if (phy->type == B43_PHYTYPE_B &&
phy->radio_ver == 0x2050 && phy->radio_rev < 6) {
b43_phy_write(dev, B43_PHY_CCK(0x16), 0x410);
b43_phy_write(dev, B43_PHY_CCK(0x17), 0x820);
}
if (phy->rev >= 2) {
sav->phy_analogover = b43_phy_read(dev, B43_PHY_ANALOGOVER);
sav->phy_analogoverval =
b43_phy_read(dev, B43_PHY_ANALOGOVERVAL);
sav->phy_rfover = b43_phy_read(dev, B43_PHY_RFOVER);
sav->phy_rfoverval = b43_phy_read(dev, B43_PHY_RFOVERVAL);
sav->phy_classctl = b43_phy_read(dev, B43_PHY_CLASSCTL);
sav->phy_cck_3E = b43_phy_read(dev, B43_PHY_CCK(0x3E));
sav->phy_crs0 = b43_phy_read(dev, B43_PHY_CRS0);
b43_phy_mask(dev, B43_PHY_CLASSCTL, 0xFFFC);
b43_phy_mask(dev, B43_PHY_CRS0, 0x7FFF);
b43_phy_set(dev, B43_PHY_ANALOGOVER, 0x0003);
b43_phy_mask(dev, B43_PHY_ANALOGOVERVAL, 0xFFFC);
if (phy->type == B43_PHYTYPE_G) {
if ((phy->rev >= 7) &&
(sprom->boardflags_lo & B43_BFL_EXTLNA)) {
b43_phy_write(dev, B43_PHY_RFOVER, 0x933);
} else {
b43_phy_write(dev, B43_PHY_RFOVER, 0x133);
}
} else {
b43_phy_write(dev, B43_PHY_RFOVER, 0);
}
b43_phy_write(dev, B43_PHY_CCK(0x3E), 0);
}
sav->reg_3F4 = b43_read16(dev, 0x3F4);
sav->reg_3E2 = b43_read16(dev, 0x3E2);
sav->radio_43 = b43_radio_read16(dev, 0x43);
sav->radio_7A = b43_radio_read16(dev, 0x7A);
sav->phy_pgactl = b43_phy_read(dev, B43_PHY_PGACTL);
sav->phy_cck_2A = b43_phy_read(dev, B43_PHY_CCK(0x2A));
sav->phy_syncctl = b43_phy_read(dev, B43_PHY_SYNCCTL);
sav->phy_dacctl = b43_phy_read(dev, B43_PHY_DACCTL);
if (!has_tx_magnification(phy)) {
sav->radio_52 = b43_radio_read16(dev, 0x52);
sav->radio_52 &= 0x00F0;
}
if (phy->type == B43_PHYTYPE_B) {
sav->phy_cck_30 = b43_phy_read(dev, B43_PHY_CCK(0x30));
sav->phy_cck_06 = b43_phy_read(dev, B43_PHY_CCK(0x06));
b43_phy_write(dev, B43_PHY_CCK(0x30), 0x00FF);
b43_phy_write(dev, B43_PHY_CCK(0x06), 0x3F3F);
} else {
b43_write16(dev, 0x3E2, b43_read16(dev, 0x3E2)
| 0x8000);
}
b43_write16(dev, 0x3F4, b43_read16(dev, 0x3F4)
& 0xF000);
tmp =
(phy->type == B43_PHYTYPE_G) ? B43_PHY_LO_MASK : B43_PHY_CCK(0x2E);
b43_phy_write(dev, tmp, 0x007F);
tmp = sav->phy_syncctl;
b43_phy_write(dev, B43_PHY_SYNCCTL, tmp & 0xFF7F);
tmp = sav->radio_7A;
b43_radio_write16(dev, 0x007A, tmp & 0xFFF0);
b43_phy_write(dev, B43_PHY_CCK(0x2A), 0x8A3);
if (phy->type == B43_PHYTYPE_G ||
(phy->type == B43_PHYTYPE_B &&
phy->radio_ver == 0x2050 && phy->radio_rev >= 6)) {
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x1003);
} else
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x0802);
if (phy->rev >= 2)
b43_dummy_transmission(dev, false, true);
b43_gphy_channel_switch(dev, 6, 0);
b43_radio_read16(dev, 0x51); /* dummy read */
if (phy->type == B43_PHYTYPE_G)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0);
/* Re-measure the txctl values, if needed. */
if (time_before(lo->txctl_measured_time,
jiffies - B43_LO_TXCTL_EXPIRE))
lo_measure_txctl_values(dev);
if (phy->type == B43_PHYTYPE_G && phy->rev >= 3) {
b43_phy_write(dev, B43_PHY_LO_MASK, 0xC078);
} else {
if (phy->type == B43_PHYTYPE_B)
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x8078);
else
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8078);
}
}
static void lo_measure_restore(struct b43_wldev *dev,
struct lo_g_saved_values *sav)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
u16 tmp;
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_PGACTL, 0xE300);
tmp = (gphy->pga_gain << 8);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA0);
udelay(5);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA2);
udelay(2);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA3);
} else {
tmp = (gphy->pga_gain | 0xEFA0);
b43_phy_write(dev, B43_PHY_PGACTL, tmp);
}
if (phy->type == B43_PHYTYPE_G) {
if (phy->rev >= 3)
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0xC078);
else
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x8078);
if (phy->rev >= 2)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x0202);
else
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x0101);
}
b43_write16(dev, 0x3F4, sav->reg_3F4);
b43_phy_write(dev, B43_PHY_PGACTL, sav->phy_pgactl);
b43_phy_write(dev, B43_PHY_CCK(0x2A), sav->phy_cck_2A);
b43_phy_write(dev, B43_PHY_SYNCCTL, sav->phy_syncctl);
b43_phy_write(dev, B43_PHY_DACCTL, sav->phy_dacctl);
b43_radio_write16(dev, 0x43, sav->radio_43);
b43_radio_write16(dev, 0x7A, sav->radio_7A);
if (!has_tx_magnification(phy)) {
tmp = sav->radio_52;
b43_radio_maskset(dev, 0x52, 0xFF0F, tmp);
}
b43_write16(dev, 0x3E2, sav->reg_3E2);
if (phy->type == B43_PHYTYPE_B &&
phy->radio_ver == 0x2050 && phy->radio_rev <= 5) {
b43_phy_write(dev, B43_PHY_CCK(0x30), sav->phy_cck_30);
b43_phy_write(dev, B43_PHY_CCK(0x06), sav->phy_cck_06);
}
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_ANALOGOVER, sav->phy_analogover);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
sav->phy_analogoverval);
b43_phy_write(dev, B43_PHY_CLASSCTL, sav->phy_classctl);
b43_phy_write(dev, B43_PHY_RFOVER, sav->phy_rfover);
b43_phy_write(dev, B43_PHY_RFOVERVAL, sav->phy_rfoverval);
b43_phy_write(dev, B43_PHY_CCK(0x3E), sav->phy_cck_3E);
b43_phy_write(dev, B43_PHY_CRS0, sav->phy_crs0);
}
if (b43_has_hardware_pctl(dev)) {
tmp = (sav->phy_lo_mask & 0xBFFF);
b43_phy_write(dev, B43_PHY_LO_MASK, tmp);
b43_phy_write(dev, B43_PHY_EXTG(0x01), sav->phy_extg_01);
b43_phy_write(dev, B43_PHY_DACCTL, sav->phy_dacctl_hwpctl);
b43_phy_write(dev, B43_PHY_CCK(0x14), sav->phy_cck_14);
b43_phy_write(dev, B43_PHY_HPWR_TSSICTL, sav->phy_hpwr_tssictl);
}
b43_gphy_channel_switch(dev, sav->old_channel, 1);
}
struct b43_lo_g_statemachine {
int current_state;
int nr_measured;
int state_val_multiplier;
u16 lowest_feedth;
struct b43_loctl min_loctl;
};
/* Loop over each possible value in this state. */
static int lo_probe_possible_loctls(struct b43_wldev *dev,
struct b43_loctl *probe_loctl,
struct b43_lo_g_statemachine *d)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_loctl test_loctl;
struct b43_loctl orig_loctl;
struct b43_loctl prev_loctl = {
.i = -100,
.q = -100,
};
int i;
int begin, end;
int found_lower = 0;
u16 feedth;
static const struct b43_loctl modifiers[] = {
{.i = 1,.q = 1,},
{.i = 1,.q = 0,},
{.i = 1,.q = -1,},
{.i = 0,.q = -1,},
{.i = -1,.q = -1,},
{.i = -1,.q = 0,},
{.i = -1,.q = 1,},
{.i = 0,.q = 1,},
};
if (d->current_state == 0) {
begin = 1;
end = 8;
} else if (d->current_state % 2 == 0) {
begin = d->current_state - 1;
end = d->current_state + 1;
} else {
begin = d->current_state - 2;
end = d->current_state + 2;
}
if (begin < 1)
begin += 8;
if (end > 8)
end -= 8;
memcpy(&orig_loctl, probe_loctl, sizeof(struct b43_loctl));
i = begin;
d->current_state = i;
while (1) {
B43_WARN_ON(!(i >= 1 && i <= 8));
memcpy(&test_loctl, &orig_loctl, sizeof(struct b43_loctl));
test_loctl.i += modifiers[i - 1].i * d->state_val_multiplier;
test_loctl.q += modifiers[i - 1].q * d->state_val_multiplier;
if ((test_loctl.i != prev_loctl.i ||
test_loctl.q != prev_loctl.q) &&
(abs(test_loctl.i) <= 16 && abs(test_loctl.q) <= 16)) {
b43_lo_write(dev, &test_loctl);
feedth = lo_measure_feedthrough(dev, gphy->lna_gain,
gphy->pga_gain,
gphy->trsw_rx_gain);
if (feedth < d->lowest_feedth) {
memcpy(probe_loctl, &test_loctl,
sizeof(struct b43_loctl));
found_lower = 1;
d->lowest_feedth = feedth;
if ((d->nr_measured < 2) &&
!has_loopback_gain(phy))
break;
}
}
memcpy(&prev_loctl, &test_loctl, sizeof(prev_loctl));
if (i == end)
break;
if (i == 8)
i = 1;
else
i++;
d->current_state = i;
}
return found_lower;
}
static void lo_probe_loctls_statemachine(struct b43_wldev *dev,
struct b43_loctl *loctl,
int *max_rx_gain)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_lo_g_statemachine d;
u16 feedth;
int found_lower;
struct b43_loctl probe_loctl;
int max_repeat = 1, repeat_cnt = 0;
d.nr_measured = 0;
d.state_val_multiplier = 1;
if (has_loopback_gain(phy))
d.state_val_multiplier = 3;
memcpy(&d.min_loctl, loctl, sizeof(struct b43_loctl));
if (has_loopback_gain(phy))
max_repeat = 4;
do {
b43_lo_write(dev, &d.min_loctl);
feedth = lo_measure_feedthrough(dev, gphy->lna_gain,
gphy->pga_gain,
gphy->trsw_rx_gain);
if (feedth < 0x258) {
if (feedth >= 0x12C)
*max_rx_gain += 6;
else
*max_rx_gain += 3;
feedth = lo_measure_feedthrough(dev, gphy->lna_gain,
gphy->pga_gain,
gphy->trsw_rx_gain);
}
d.lowest_feedth = feedth;
d.current_state = 0;
do {
B43_WARN_ON(!
(d.current_state >= 0
&& d.current_state <= 8));
memcpy(&probe_loctl, &d.min_loctl,
sizeof(struct b43_loctl));
found_lower =
lo_probe_possible_loctls(dev, &probe_loctl, &d);
if (!found_lower)
break;
if ((probe_loctl.i == d.min_loctl.i) &&
(probe_loctl.q == d.min_loctl.q))
break;
memcpy(&d.min_loctl, &probe_loctl,
sizeof(struct b43_loctl));
d.nr_measured++;
} while (d.nr_measured < 24);
memcpy(loctl, &d.min_loctl, sizeof(struct b43_loctl));
if (has_loopback_gain(phy)) {
if (d.lowest_feedth > 0x1194)
*max_rx_gain -= 6;
else if (d.lowest_feedth < 0x5DC)
*max_rx_gain += 3;
if (repeat_cnt == 0) {
if (d.lowest_feedth <= 0x5DC) {
d.state_val_multiplier = 1;
repeat_cnt++;
} else
d.state_val_multiplier = 2;
} else if (repeat_cnt == 2)
d.state_val_multiplier = 1;
}
lo_measure_gain_values(dev, *max_rx_gain,
has_loopback_gain(phy));
} while (++repeat_cnt < max_repeat);
}
static
struct b43_lo_calib *b43_calibrate_lo_setting(struct b43_wldev *dev,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_loctl loctl = {
.i = 0,
.q = 0,
};
int max_rx_gain;
struct b43_lo_calib *cal;
struct lo_g_saved_values uninitialized_var(saved_regs);
/* Values from the "TXCTL Register and Value Table" */
u16 txctl_reg;
u16 txctl_value;
u16 pad_mix_gain;
saved_regs.old_channel = phy->channel;
b43_mac_suspend(dev);
lo_measure_setup(dev, &saved_regs);
txctl_reg = lo_txctl_register_table(dev, &txctl_value, &pad_mix_gain);
b43_radio_maskset(dev, 0x43, 0xFFF0, rfatt->att);
b43_radio_maskset(dev, txctl_reg, ~txctl_value, (rfatt->with_padmix ? txctl_value :0));
max_rx_gain = rfatt->att * 2;
max_rx_gain += bbatt->att / 2;
if (rfatt->with_padmix)
max_rx_gain -= pad_mix_gain;
if (has_loopback_gain(phy))
max_rx_gain += gphy->max_lb_gain;
lo_measure_gain_values(dev, max_rx_gain,
has_loopback_gain(phy));
b43_gphy_set_baseband_attenuation(dev, bbatt->att);
lo_probe_loctls_statemachine(dev, &loctl, &max_rx_gain);
lo_measure_restore(dev, &saved_regs);
b43_mac_enable(dev);
if (b43_debug(dev, B43_DBG_LO)) {
b43dbg(dev->wl, "LO: Calibrated for BB(%u), RF(%u,%u) "
"=> I=%d Q=%d\n",
bbatt->att, rfatt->att, rfatt->with_padmix,
loctl.i, loctl.q);
}
cal = kmalloc(sizeof(*cal), GFP_KERNEL);
if (!cal) {
b43warn(dev->wl, "LO calib: out of memory\n");
return NULL;
}
memcpy(&cal->bbatt, bbatt, sizeof(*bbatt));
memcpy(&cal->rfatt, rfatt, sizeof(*rfatt));
memcpy(&cal->ctl, &loctl, sizeof(loctl));
cal->calib_time = jiffies;
INIT_LIST_HEAD(&cal->list);
return cal;
}
/* Get a calibrated LO setting for the given attenuation values.
* Might return a NULL pointer under OOM! */
static
struct b43_lo_calib *b43_get_calib_lo_settings(struct b43_wldev *dev,
const struct b43_bbatt *bbatt,
const struct b43_rfatt *rfatt)
{
struct b43_txpower_lo_control *lo = dev->phy.g->lo_control;
struct b43_lo_calib *c;
c = b43_find_lo_calib(lo, bbatt, rfatt);
if (c)
return c;
/* Not in the list of calibrated LO settings.
* Calibrate it now. */
c = b43_calibrate_lo_setting(dev, bbatt, rfatt);
if (!c)
return NULL;
list_add(&c->list, &lo->calib_list);
return c;
}
void b43_gphy_dc_lt_init(struct b43_wldev *dev, bool update_all)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
int i;
int rf_offset, bb_offset;
const struct b43_rfatt *rfatt;
const struct b43_bbatt *bbatt;
u64 power_vector;
bool table_changed = false;
BUILD_BUG_ON(B43_DC_LT_SIZE != 32);
B43_WARN_ON(lo->rfatt_list.len * lo->bbatt_list.len > 64);
power_vector = lo->power_vector;
if (!update_all && !power_vector)
return; /* Nothing to do. */
/* Suspend the MAC now to avoid continuous suspend/enable
* cycles in the loop. */
b43_mac_suspend(dev);
for (i = 0; i < B43_DC_LT_SIZE * 2; i++) {
struct b43_lo_calib *cal;
int idx;
u16 val;
if (!update_all && !(power_vector & (((u64)1ULL) << i)))
continue;
/* Update the table entry for this power_vector bit.
* The table rows are RFatt entries and columns are BBatt. */
bb_offset = i / lo->rfatt_list.len;
rf_offset = i % lo->rfatt_list.len;
bbatt = &(lo->bbatt_list.list[bb_offset]);
rfatt = &(lo->rfatt_list.list[rf_offset]);
cal = b43_calibrate_lo_setting(dev, bbatt, rfatt);
if (!cal) {
b43warn(dev->wl, "LO: Could not "
"calibrate DC table entry\n");
continue;
}
/*FIXME: Is Q really in the low nibble? */
val = (u8)(cal->ctl.q);
val |= ((u8)(cal->ctl.i)) << 4;
kfree(cal);
/* Get the index into the hardware DC LT. */
idx = i / 2;
/* Change the table in memory. */
if (i % 2) {
/* Change the high byte. */
lo->dc_lt[idx] = (lo->dc_lt[idx] & 0x00FF)
| ((val & 0x00FF) << 8);
} else {
/* Change the low byte. */
lo->dc_lt[idx] = (lo->dc_lt[idx] & 0xFF00)
| (val & 0x00FF);
}
table_changed = true;
}
if (table_changed) {
/* The table changed in memory. Update the hardware table. */
for (i = 0; i < B43_DC_LT_SIZE; i++)
b43_phy_write(dev, 0x3A0 + i, lo->dc_lt[i]);
}
b43_mac_enable(dev);
}
/* Fixup the RF attenuation value for the case where we are
* using the PAD mixer. */
static inline void b43_lo_fixup_rfatt(struct b43_rfatt *rf)
{
if (!rf->with_padmix)
return;
if ((rf->att != 1) && (rf->att != 2) && (rf->att != 3))
rf->att = 4;
}
void b43_lo_g_adjust(struct b43_wldev *dev)
{
struct b43_phy_g *gphy = dev->phy.g;
struct b43_lo_calib *cal;
struct b43_rfatt rf;
memcpy(&rf, &gphy->rfatt, sizeof(rf));
b43_lo_fixup_rfatt(&rf);
cal = b43_get_calib_lo_settings(dev, &gphy->bbatt, &rf);
if (!cal)
return;
b43_lo_write(dev, &cal->ctl);
}
void b43_lo_g_adjust_to(struct b43_wldev *dev,
u16 rfatt, u16 bbatt, u16 tx_control)
{
struct b43_rfatt rf;
struct b43_bbatt bb;
struct b43_lo_calib *cal;
memset(&rf, 0, sizeof(rf));
memset(&bb, 0, sizeof(bb));
rf.att = rfatt;
bb.att = bbatt;
b43_lo_fixup_rfatt(&rf);
cal = b43_get_calib_lo_settings(dev, &bb, &rf);
if (!cal)
return;
b43_lo_write(dev, &cal->ctl);
}
/* Periodic LO maintenance work */
void b43_lo_g_maintenance_work(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_phy_g *gphy = phy->g;
struct b43_txpower_lo_control *lo = gphy->lo_control;
unsigned long now;
unsigned long expire;
struct b43_lo_calib *cal, *tmp;
bool current_item_expired = false;
bool hwpctl;
if (!lo)
return;
now = jiffies;
hwpctl = b43_has_hardware_pctl(dev);
if (hwpctl) {
/* Read the power vector and update it, if needed. */
expire = now - B43_LO_PWRVEC_EXPIRE;
if (time_before(lo->pwr_vec_read_time, expire)) {
lo_read_power_vector(dev);
b43_gphy_dc_lt_init(dev, 0);
}
//FIXME Recalc the whole DC table from time to time?
}
if (hwpctl)
return;
/* Search for expired LO settings. Remove them.
* Recalibrate the current setting, if expired. */
expire = now - B43_LO_CALIB_EXPIRE;
list_for_each_entry_safe(cal, tmp, &lo->calib_list, list) {
if (!time_before(cal->calib_time, expire))
continue;
/* This item expired. */
if (b43_compare_bbatt(&cal->bbatt, &gphy->bbatt) &&
b43_compare_rfatt(&cal->rfatt, &gphy->rfatt)) {
B43_WARN_ON(current_item_expired);
current_item_expired = true;
}
if (b43_debug(dev, B43_DBG_LO)) {
b43dbg(dev->wl, "LO: Item BB(%u), RF(%u,%u), "
"I=%d, Q=%d expired\n",
cal->bbatt.att, cal->rfatt.att,
cal->rfatt.with_padmix,
cal->ctl.i, cal->ctl.q);
}
list_del(&cal->list);
kfree(cal);
}
if (current_item_expired || unlikely(list_empty(&lo->calib_list))) {
/* Recalibrate currently used LO setting. */
if (b43_debug(dev, B43_DBG_LO))
b43dbg(dev->wl, "LO: Recalibrating current LO setting\n");
cal = b43_calibrate_lo_setting(dev, &gphy->bbatt, &gphy->rfatt);
if (cal) {
list_add(&cal->list, &lo->calib_list);
b43_lo_write(dev, &cal->ctl);
} else
b43warn(dev->wl, "Failed to recalibrate current LO setting\n");
}
}
void b43_lo_g_cleanup(struct b43_wldev *dev)
{
struct b43_txpower_lo_control *lo = dev->phy.g->lo_control;
struct b43_lo_calib *cal, *tmp;
if (!lo)
return;
list_for_each_entry_safe(cal, tmp, &lo->calib_list, list) {
list_del(&cal->list);
kfree(cal);
}
}
/* LO Initialization */
void b43_lo_g_init(struct b43_wldev *dev)
{
if (b43_has_hardware_pctl(dev)) {
lo_read_power_vector(dev);
b43_gphy_dc_lt_init(dev, 1);
}
}