tegrakernel/kernel/kernel-4.9/drivers/net/wireless/broadcom/brcm80211/brcmsmac/ampdu.c

1145 lines
33 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <net/mac80211.h>
#include "rate.h"
#include "scb.h"
#include "phy/phy_hal.h"
#include "antsel.h"
#include "main.h"
#include "ampdu.h"
#include "debug.h"
#include "brcms_trace_events.h"
/* max number of mpdus in an ampdu */
#define AMPDU_MAX_MPDU 32
/* max number of mpdus in an ampdu to a legacy */
#define AMPDU_NUM_MPDU_LEGACY 16
/* max Tx ba window size (in pdu) */
#define AMPDU_TX_BA_MAX_WSIZE 64
/* default Tx ba window size (in pdu) */
#define AMPDU_TX_BA_DEF_WSIZE 64
/* default Rx ba window size (in pdu) */
#define AMPDU_RX_BA_DEF_WSIZE 64
/* max Rx ba window size (in pdu) */
#define AMPDU_RX_BA_MAX_WSIZE 64
/* max dur of tx ampdu (in msec) */
#define AMPDU_MAX_DUR 5
/* default tx retry limit */
#define AMPDU_DEF_RETRY_LIMIT 5
/* default tx retry limit at reg rate */
#define AMPDU_DEF_RR_RETRY_LIMIT 2
/* default ffpld reserved bytes */
#define AMPDU_DEF_FFPLD_RSVD 2048
/* # of inis to be freed on detach */
#define AMPDU_INI_FREE 10
/* max # of mpdus released at a time */
#define AMPDU_SCB_MAX_RELEASE 20
#define NUM_FFPLD_FIFO 4 /* number of fifo concerned by pre-loading */
#define FFPLD_TX_MAX_UNFL 200 /* default value of the average number of ampdu
* without underflows
*/
#define FFPLD_MPDU_SIZE 1800 /* estimate of maximum mpdu size */
#define FFPLD_MAX_MCS 23 /* we don't deal with mcs 32 */
#define FFPLD_PLD_INCR 1000 /* increments in bytes */
#define FFPLD_MAX_AMPDU_CNT 5000 /* maximum number of ampdu we
* accumulate between resets.
*/
#define AMPDU_DELIMITER_LEN 4
/* max allowed number of mpdus in an ampdu (2 streams) */
#define AMPDU_NUM_MPDU 16
#define TX_SEQ_TO_INDEX(seq) ((seq) % AMPDU_TX_BA_MAX_WSIZE)
/* max possible overhead per mpdu in the ampdu; 3 is for roundup if needed */
#define AMPDU_MAX_MPDU_OVERHEAD (FCS_LEN + DOT11_ICV_AES_LEN +\
AMPDU_DELIMITER_LEN + 3\
+ DOT11_A4_HDR_LEN + DOT11_QOS_LEN + DOT11_IV_MAX_LEN)
/* modulo add/sub, bound = 2^k */
#define MODADD_POW2(x, y, bound) (((x) + (y)) & ((bound) - 1))
#define MODSUB_POW2(x, y, bound) (((x) - (y)) & ((bound) - 1))
/* structure to hold tx fifo information and pre-loading state
* counters specific to tx underflows of ampdus
* some counters might be redundant with the ones in wlc or ampdu structures.
* This allows to maintain a specific state independently of
* how often and/or when the wlc counters are updated.
*
* ampdu_pld_size: number of bytes to be pre-loaded
* mcs2ampdu_table: per-mcs max # of mpdus in an ampdu
* prev_txfunfl: num of underflows last read from the HW macstats counter
* accum_txfunfl: num of underflows since we modified pld params
* accum_txampdu: num of tx ampdu since we modified pld params
* prev_txampdu: previous reading of tx ampdu
* dmaxferrate: estimated dma avg xfer rate in kbits/sec
*/
struct brcms_fifo_info {
u16 ampdu_pld_size;
u8 mcs2ampdu_table[FFPLD_MAX_MCS + 1];
u16 prev_txfunfl;
u32 accum_txfunfl;
u32 accum_txampdu;
u32 prev_txampdu;
u32 dmaxferrate;
};
/* AMPDU module specific state
*
* wlc: pointer to main wlc structure
* scb_handle: scb cubby handle to retrieve data from scb
* ini_enable: per-tid initiator enable/disable of ampdu
* ba_tx_wsize: Tx ba window size (in pdu)
* ba_rx_wsize: Rx ba window size (in pdu)
* retry_limit: mpdu transmit retry limit
* rr_retry_limit: mpdu transmit retry limit at regular rate
* retry_limit_tid: per-tid mpdu transmit retry limit
* rr_retry_limit_tid: per-tid mpdu transmit retry limit at regular rate
* mpdu_density: min mpdu spacing (0-7) ==> 2^(x-1)/8 usec
* max_pdu: max pdus allowed in ampdu
* dur: max duration of an ampdu (in msec)
* rx_factor: maximum rx ampdu factor (0-3) ==> 2^(13+x) bytes
* ffpld_rsvd: number of bytes to reserve for preload
* max_txlen: max size of ampdu per mcs, bw and sgi
* mfbr: enable multiple fallback rate
* tx_max_funl: underflows should be kept such that
* (tx_max_funfl*underflows) < tx frames
* fifo_tb: table of fifo infos
*/
struct ampdu_info {
struct brcms_c_info *wlc;
int scb_handle;
u8 ini_enable[AMPDU_MAX_SCB_TID];
u8 ba_tx_wsize;
u8 ba_rx_wsize;
u8 retry_limit;
u8 rr_retry_limit;
u8 retry_limit_tid[AMPDU_MAX_SCB_TID];
u8 rr_retry_limit_tid[AMPDU_MAX_SCB_TID];
u8 mpdu_density;
s8 max_pdu;
u8 dur;
u8 rx_factor;
u32 ffpld_rsvd;
u32 max_txlen[MCS_TABLE_SIZE][2][2];
bool mfbr;
u32 tx_max_funl;
struct brcms_fifo_info fifo_tb[NUM_FFPLD_FIFO];
};
/* used for flushing ampdu packets */
struct cb_del_ampdu_pars {
struct ieee80211_sta *sta;
u16 tid;
};
static void brcms_c_scb_ampdu_update_max_txlen(struct ampdu_info *ampdu, u8 dur)
{
u32 rate, mcs;
for (mcs = 0; mcs < MCS_TABLE_SIZE; mcs++) {
/* rate is in Kbps; dur is in msec ==> len = (rate * dur) / 8 */
/* 20MHz, No SGI */
rate = mcs_2_rate(mcs, false, false);
ampdu->max_txlen[mcs][0][0] = (rate * dur) >> 3;
/* 40 MHz, No SGI */
rate = mcs_2_rate(mcs, true, false);
ampdu->max_txlen[mcs][1][0] = (rate * dur) >> 3;
/* 20MHz, SGI */
rate = mcs_2_rate(mcs, false, true);
ampdu->max_txlen[mcs][0][1] = (rate * dur) >> 3;
/* 40 MHz, SGI */
rate = mcs_2_rate(mcs, true, true);
ampdu->max_txlen[mcs][1][1] = (rate * dur) >> 3;
}
}
static bool brcms_c_ampdu_cap(struct ampdu_info *ampdu)
{
if (BRCMS_PHY_11N_CAP(ampdu->wlc->band))
return true;
else
return false;
}
static int brcms_c_ampdu_set(struct ampdu_info *ampdu, bool on)
{
struct brcms_c_info *wlc = ampdu->wlc;
struct bcma_device *core = wlc->hw->d11core;
wlc->pub->_ampdu = false;
if (on) {
if (!(wlc->pub->_n_enab & SUPPORT_11N)) {
brcms_err(core, "wl%d: driver not nmode enabled\n",
wlc->pub->unit);
return -ENOTSUPP;
}
if (!brcms_c_ampdu_cap(ampdu)) {
brcms_err(core, "wl%d: device not ampdu capable\n",
wlc->pub->unit);
return -ENOTSUPP;
}
wlc->pub->_ampdu = on;
}
return 0;
}
static void brcms_c_ffpld_init(struct ampdu_info *ampdu)
{
int i, j;
struct brcms_fifo_info *fifo;
for (j = 0; j < NUM_FFPLD_FIFO; j++) {
fifo = (ampdu->fifo_tb + j);
fifo->ampdu_pld_size = 0;
for (i = 0; i <= FFPLD_MAX_MCS; i++)
fifo->mcs2ampdu_table[i] = 255;
fifo->dmaxferrate = 0;
fifo->accum_txampdu = 0;
fifo->prev_txfunfl = 0;
fifo->accum_txfunfl = 0;
}
}
struct ampdu_info *brcms_c_ampdu_attach(struct brcms_c_info *wlc)
{
struct ampdu_info *ampdu;
int i;
ampdu = kzalloc(sizeof(struct ampdu_info), GFP_ATOMIC);
if (!ampdu)
return NULL;
ampdu->wlc = wlc;
for (i = 0; i < AMPDU_MAX_SCB_TID; i++)
ampdu->ini_enable[i] = true;
/* Disable ampdu for VO by default */
ampdu->ini_enable[PRIO_8021D_VO] = false;
ampdu->ini_enable[PRIO_8021D_NC] = false;
/* Disable ampdu for BK by default since not enough fifo space */
ampdu->ini_enable[PRIO_8021D_NONE] = false;
ampdu->ini_enable[PRIO_8021D_BK] = false;
ampdu->ba_tx_wsize = AMPDU_TX_BA_DEF_WSIZE;
ampdu->ba_rx_wsize = AMPDU_RX_BA_DEF_WSIZE;
ampdu->mpdu_density = AMPDU_DEF_MPDU_DENSITY;
ampdu->max_pdu = AUTO;
ampdu->dur = AMPDU_MAX_DUR;
ampdu->ffpld_rsvd = AMPDU_DEF_FFPLD_RSVD;
/*
* bump max ampdu rcv size to 64k for all 11n
* devices except 4321A0 and 4321A1
*/
if (BRCMS_ISNPHY(wlc->band) && NREV_LT(wlc->band->phyrev, 2))
ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_32K;
else
ampdu->rx_factor = IEEE80211_HT_MAX_AMPDU_64K;
ampdu->retry_limit = AMPDU_DEF_RETRY_LIMIT;
ampdu->rr_retry_limit = AMPDU_DEF_RR_RETRY_LIMIT;
for (i = 0; i < AMPDU_MAX_SCB_TID; i++) {
ampdu->retry_limit_tid[i] = ampdu->retry_limit;
ampdu->rr_retry_limit_tid[i] = ampdu->rr_retry_limit;
}
brcms_c_scb_ampdu_update_max_txlen(ampdu, ampdu->dur);
ampdu->mfbr = false;
/* try to set ampdu to the default value */
brcms_c_ampdu_set(ampdu, wlc->pub->_ampdu);
ampdu->tx_max_funl = FFPLD_TX_MAX_UNFL;
brcms_c_ffpld_init(ampdu);
return ampdu;
}
void brcms_c_ampdu_detach(struct ampdu_info *ampdu)
{
kfree(ampdu);
}
static void brcms_c_scb_ampdu_update_config(struct ampdu_info *ampdu,
struct scb *scb)
{
struct scb_ampdu *scb_ampdu = &scb->scb_ampdu;
int i;
scb_ampdu->max_pdu = AMPDU_NUM_MPDU;
/* go back to legacy size if some preloading is occurring */
for (i = 0; i < NUM_FFPLD_FIFO; i++) {
if (ampdu->fifo_tb[i].ampdu_pld_size > FFPLD_PLD_INCR)
scb_ampdu->max_pdu = AMPDU_NUM_MPDU_LEGACY;
}
/* apply user override */
if (ampdu->max_pdu != AUTO)
scb_ampdu->max_pdu = (u8) ampdu->max_pdu;
scb_ampdu->release = min_t(u8, scb_ampdu->max_pdu,
AMPDU_SCB_MAX_RELEASE);
if (scb_ampdu->max_rx_ampdu_bytes)
scb_ampdu->release = min_t(u8, scb_ampdu->release,
scb_ampdu->max_rx_ampdu_bytes / 1600);
scb_ampdu->release = min(scb_ampdu->release,
ampdu->fifo_tb[TX_AC_BE_FIFO].
mcs2ampdu_table[FFPLD_MAX_MCS]);
}
static void brcms_c_scb_ampdu_update_config_all(struct ampdu_info *ampdu)
{
brcms_c_scb_ampdu_update_config(ampdu, &ampdu->wlc->pri_scb);
}
static void brcms_c_ffpld_calc_mcs2ampdu_table(struct ampdu_info *ampdu, int f)
{
int i;
u32 phy_rate, dma_rate, tmp;
u8 max_mpdu;
struct brcms_fifo_info *fifo = (ampdu->fifo_tb + f);
/* recompute the dma rate */
/* note : we divide/multiply by 100 to avoid integer overflows */
max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS],
AMPDU_NUM_MPDU_LEGACY);
phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false);
dma_rate =
(((phy_rate / 100) *
(max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size))
/ (max_mpdu * FFPLD_MPDU_SIZE)) * 100;
fifo->dmaxferrate = dma_rate;
/* fill up the mcs2ampdu table; do not recalc the last mcs */
dma_rate = dma_rate >> 7;
for (i = 0; i < FFPLD_MAX_MCS; i++) {
/* shifting to keep it within integer range */
phy_rate = mcs_2_rate(i, true, false) >> 7;
if (phy_rate > dma_rate) {
tmp = ((fifo->ampdu_pld_size * phy_rate) /
((phy_rate - dma_rate) * FFPLD_MPDU_SIZE)) + 1;
tmp = min_t(u32, tmp, 255);
fifo->mcs2ampdu_table[i] = (u8) tmp;
}
}
}
/* evaluate the dma transfer rate using the tx underflows as feedback.
* If necessary, increase tx fifo preloading. If not enough,
* decrease maximum ampdu size for each mcs till underflows stop
* Return 1 if pre-loading not active, -1 if not an underflow event,
* 0 if pre-loading module took care of the event.
*/
static int brcms_c_ffpld_check_txfunfl(struct brcms_c_info *wlc, int fid)
{
struct ampdu_info *ampdu = wlc->ampdu;
u32 phy_rate = mcs_2_rate(FFPLD_MAX_MCS, true, false);
u32 txunfl_ratio;
u8 max_mpdu;
u32 current_ampdu_cnt = 0;
u16 max_pld_size;
u32 new_txunfl;
struct brcms_fifo_info *fifo = (ampdu->fifo_tb + fid);
uint xmtfifo_sz;
u16 cur_txunfl;
/* return if we got here for a different reason than underflows */
cur_txunfl = brcms_b_read_shm(wlc->hw,
M_UCODE_MACSTAT +
offsetof(struct macstat, txfunfl[fid]));
new_txunfl = (u16) (cur_txunfl - fifo->prev_txfunfl);
if (new_txunfl == 0) {
brcms_dbg_ht(wlc->hw->d11core,
"TX status FRAG set but no tx underflows\n");
return -1;
}
fifo->prev_txfunfl = cur_txunfl;
if (!ampdu->tx_max_funl)
return 1;
/* check if fifo is big enough */
if (brcms_b_xmtfifo_sz_get(wlc->hw, fid, &xmtfifo_sz))
return -1;
if ((TXFIFO_SIZE_UNIT * (u32) xmtfifo_sz) <= ampdu->ffpld_rsvd)
return 1;
max_pld_size = TXFIFO_SIZE_UNIT * xmtfifo_sz - ampdu->ffpld_rsvd;
fifo->accum_txfunfl += new_txunfl;
/* we need to wait for at least 10 underflows */
if (fifo->accum_txfunfl < 10)
return 0;
brcms_dbg_ht(wlc->hw->d11core, "ampdu_count %d tx_underflows %d\n",
current_ampdu_cnt, fifo->accum_txfunfl);
/*
compute the current ratio of tx unfl per ampdu.
When the current ampdu count becomes too
big while the ratio remains small, we reset
the current count in order to not
introduce too big of a latency in detecting a
large amount of tx underflows later.
*/
txunfl_ratio = current_ampdu_cnt / fifo->accum_txfunfl;
if (txunfl_ratio > ampdu->tx_max_funl) {
if (current_ampdu_cnt >= FFPLD_MAX_AMPDU_CNT)
fifo->accum_txfunfl = 0;
return 0;
}
max_mpdu = min_t(u8, fifo->mcs2ampdu_table[FFPLD_MAX_MCS],
AMPDU_NUM_MPDU_LEGACY);
/* In case max value max_pdu is already lower than
the fifo depth, there is nothing more we can do.
*/
if (fifo->ampdu_pld_size >= max_mpdu * FFPLD_MPDU_SIZE) {
fifo->accum_txfunfl = 0;
return 0;
}
if (fifo->ampdu_pld_size < max_pld_size) {
/* increment by TX_FIFO_PLD_INC bytes */
fifo->ampdu_pld_size += FFPLD_PLD_INCR;
if (fifo->ampdu_pld_size > max_pld_size)
fifo->ampdu_pld_size = max_pld_size;
/* update scb release size */
brcms_c_scb_ampdu_update_config_all(ampdu);
/*
* compute a new dma xfer rate for max_mpdu @ max mcs.
* This is the minimum dma rate that can achieve no
* underflow condition for the current mpdu size.
*
* note : we divide/multiply by 100 to avoid integer overflows
*/
fifo->dmaxferrate =
(((phy_rate / 100) *
(max_mpdu * FFPLD_MPDU_SIZE - fifo->ampdu_pld_size))
/ (max_mpdu * FFPLD_MPDU_SIZE)) * 100;
brcms_dbg_ht(wlc->hw->d11core,
"DMA estimated transfer rate %d; "
"pre-load size %d\n",
fifo->dmaxferrate, fifo->ampdu_pld_size);
} else {
/* decrease ampdu size */
if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] > 1) {
if (fifo->mcs2ampdu_table[FFPLD_MAX_MCS] == 255)
fifo->mcs2ampdu_table[FFPLD_MAX_MCS] =
AMPDU_NUM_MPDU_LEGACY - 1;
else
fifo->mcs2ampdu_table[FFPLD_MAX_MCS] -= 1;
/* recompute the table */
brcms_c_ffpld_calc_mcs2ampdu_table(ampdu, fid);
/* update scb release size */
brcms_c_scb_ampdu_update_config_all(ampdu);
}
}
fifo->accum_txfunfl = 0;
return 0;
}
void
brcms_c_ampdu_tx_operational(struct brcms_c_info *wlc, u8 tid,
u8 ba_wsize, /* negotiated ba window size (in pdu) */
uint max_rx_ampdu_bytes) /* from ht_cap in beacon */
{
struct scb_ampdu *scb_ampdu;
struct scb_ampdu_tid_ini *ini;
struct ampdu_info *ampdu = wlc->ampdu;
struct scb *scb = &wlc->pri_scb;
scb_ampdu = &scb->scb_ampdu;
if (!ampdu->ini_enable[tid]) {
brcms_err(wlc->hw->d11core, "%s: Rejecting tid %d\n",
__func__, tid);
return;
}
ini = &scb_ampdu->ini[tid];
ini->tid = tid;
ini->scb = scb_ampdu->scb;
ini->ba_wsize = ba_wsize;
scb_ampdu->max_rx_ampdu_bytes = max_rx_ampdu_bytes;
}
void brcms_c_ampdu_reset_session(struct brcms_ampdu_session *session,
struct brcms_c_info *wlc)
{
session->wlc = wlc;
skb_queue_head_init(&session->skb_list);
session->max_ampdu_len = 0; /* determined from first MPDU */
session->max_ampdu_frames = 0; /* determined from first MPDU */
session->ampdu_len = 0;
session->dma_len = 0;
}
/*
* Preps the given packet for AMPDU based on the session data. If the
* frame cannot be accomodated in the current session, -ENOSPC is
* returned.
*/
int brcms_c_ampdu_add_frame(struct brcms_ampdu_session *session,
struct sk_buff *p)
{
struct brcms_c_info *wlc = session->wlc;
struct ampdu_info *ampdu = wlc->ampdu;
struct scb *scb = &wlc->pri_scb;
struct scb_ampdu *scb_ampdu = &scb->scb_ampdu;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p);
struct ieee80211_tx_rate *txrate = tx_info->status.rates;
struct d11txh *txh = (struct d11txh *)p->data;
unsigned ampdu_frames;
u8 ndelim, tid;
u8 *plcp;
uint len;
u16 mcl;
bool fbr_iscck;
bool rr;
ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM];
plcp = (u8 *)(txh + 1);
fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03);
len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) :
BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback);
len = roundup(len, 4) + (ndelim + 1) * AMPDU_DELIMITER_LEN;
ampdu_frames = skb_queue_len(&session->skb_list);
if (ampdu_frames != 0) {
struct sk_buff *first;
if (ampdu_frames + 1 > session->max_ampdu_frames ||
session->ampdu_len + len > session->max_ampdu_len)
return -ENOSPC;
/*
* We aren't really out of space if the new frame is of
* a different priority, but we want the same behaviour
* so return -ENOSPC anyway.
*
* XXX: The old AMPDU code did this, but is it really
* necessary?
*/
first = skb_peek(&session->skb_list);
if (p->priority != first->priority)
return -ENOSPC;
}
/*
* Now that we're sure this frame can be accomodated, update the
* session information.
*/
session->ampdu_len += len;
session->dma_len += p->len;
tid = (u8)p->priority;
/* Handle retry limits */
if (txrate[0].count <= ampdu->rr_retry_limit_tid[tid]) {
txrate[0].count++;
rr = true;
} else {
txrate[1].count++;
rr = false;
}
if (ampdu_frames == 0) {
u8 plcp0, plcp3, is40, sgi, mcs;
uint fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK;
struct brcms_fifo_info *f = &ampdu->fifo_tb[fifo];
if (rr) {
plcp0 = plcp[0];
plcp3 = plcp[3];
} else {
plcp0 = txh->FragPLCPFallback[0];
plcp3 = txh->FragPLCPFallback[3];
}
/* Limit AMPDU size based on MCS */
is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0;
sgi = plcp3_issgi(plcp3) ? 1 : 0;
mcs = plcp0 & ~MIMO_PLCP_40MHZ;
session->max_ampdu_len = min(scb_ampdu->max_rx_ampdu_bytes,
ampdu->max_txlen[mcs][is40][sgi]);
session->max_ampdu_frames = scb_ampdu->max_pdu;
if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) {
session->max_ampdu_frames =
min_t(u16, f->mcs2ampdu_table[mcs],
session->max_ampdu_frames);
}
}
/*
* Treat all frames as "middle" frames of AMPDU here. First and
* last frames must be fixed up after all MPDUs have been prepped.
*/
mcl = le16_to_cpu(txh->MacTxControlLow);
mcl &= ~TXC_AMPDU_MASK;
mcl |= (TXC_AMPDU_MIDDLE << TXC_AMPDU_SHIFT);
mcl &= ~(TXC_STARTMSDU | TXC_SENDRTS | TXC_SENDCTS);
txh->MacTxControlLow = cpu_to_le16(mcl);
txh->PreloadSize = 0; /* always default to 0 */
skb_queue_tail(&session->skb_list, p);
return 0;
}
void brcms_c_ampdu_finalize(struct brcms_ampdu_session *session)
{
struct brcms_c_info *wlc = session->wlc;
struct ampdu_info *ampdu = wlc->ampdu;
struct sk_buff *first, *last;
struct d11txh *txh;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *txrate;
u8 ndelim;
u8 *plcp;
uint len;
uint fifo;
struct brcms_fifo_info *f;
u16 mcl;
bool fbr;
bool fbr_iscck;
struct ieee80211_rts *rts;
bool use_rts = false, use_cts = false;
u16 dma_len = session->dma_len;
u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
u32 rspec = 0, rspec_fallback = 0;
u32 rts_rspec = 0, rts_rspec_fallback = 0;
u8 plcp0, plcp3, is40, sgi, mcs;
u16 mch;
u8 preamble_type = BRCMS_GF_PREAMBLE;
u8 fbr_preamble_type = BRCMS_GF_PREAMBLE;
u8 rts_preamble_type = BRCMS_LONG_PREAMBLE;
u8 rts_fbr_preamble_type = BRCMS_LONG_PREAMBLE;
if (skb_queue_empty(&session->skb_list))
return;
first = skb_peek(&session->skb_list);
last = skb_peek_tail(&session->skb_list);
/* Need to fix up last MPDU first to adjust AMPDU length */
txh = (struct d11txh *)last->data;
fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK;
f = &ampdu->fifo_tb[fifo];
mcl = le16_to_cpu(txh->MacTxControlLow);
mcl &= ~TXC_AMPDU_MASK;
mcl |= (TXC_AMPDU_LAST << TXC_AMPDU_SHIFT);
txh->MacTxControlLow = cpu_to_le16(mcl);
/* remove the null delimiter after last mpdu */
ndelim = txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM];
txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] = 0;
session->ampdu_len -= ndelim * AMPDU_DELIMITER_LEN;
/* remove the pad len from last mpdu */
fbr_iscck = ((le16_to_cpu(txh->XtraFrameTypes) & 0x3) == 0);
len = fbr_iscck ? BRCMS_GET_CCK_PLCP_LEN(txh->FragPLCPFallback) :
BRCMS_GET_MIMO_PLCP_LEN(txh->FragPLCPFallback);
session->ampdu_len -= roundup(len, 4) - len;
/* Now fix up the first MPDU */
tx_info = IEEE80211_SKB_CB(first);
txrate = tx_info->status.rates;
txh = (struct d11txh *)first->data;
plcp = (u8 *)(txh + 1);
rts = (struct ieee80211_rts *)&txh->rts_frame;
mcl = le16_to_cpu(txh->MacTxControlLow);
/* If only one MPDU leave it marked as last */
if (first != last) {
mcl &= ~TXC_AMPDU_MASK;
mcl |= (TXC_AMPDU_FIRST << TXC_AMPDU_SHIFT);
}
mcl |= TXC_STARTMSDU;
if (ieee80211_is_rts(rts->frame_control)) {
mcl |= TXC_SENDRTS;
use_rts = true;
}
if (ieee80211_is_cts(rts->frame_control)) {
mcl |= TXC_SENDCTS;
use_cts = true;
}
txh->MacTxControlLow = cpu_to_le16(mcl);
fbr = txrate[1].count > 0;
if (!fbr) {
plcp0 = plcp[0];
plcp3 = plcp[3];
} else {
plcp0 = txh->FragPLCPFallback[0];
plcp3 = txh->FragPLCPFallback[3];
}
is40 = (plcp0 & MIMO_PLCP_40MHZ) ? 1 : 0;
sgi = plcp3_issgi(plcp3) ? 1 : 0;
mcs = plcp0 & ~MIMO_PLCP_40MHZ;
if (is40) {
if (CHSPEC_SB_UPPER(wlc_phy_chanspec_get(wlc->band->pi)))
mimo_ctlchbw = PHY_TXC1_BW_20MHZ_UP;
else
mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
}
/* rebuild the rspec and rspec_fallback */
rspec = RSPEC_MIMORATE;
rspec |= plcp[0] & ~MIMO_PLCP_40MHZ;
if (plcp[0] & MIMO_PLCP_40MHZ)
rspec |= (PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT);
fbr_iscck = !(le16_to_cpu(txh->XtraFrameTypes) & 0x03);
if (fbr_iscck) {
rspec_fallback =
cck_rspec(cck_phy2mac_rate(txh->FragPLCPFallback[0]));
} else {
rspec_fallback = RSPEC_MIMORATE;
rspec_fallback |= txh->FragPLCPFallback[0] & ~MIMO_PLCP_40MHZ;
if (txh->FragPLCPFallback[0] & MIMO_PLCP_40MHZ)
rspec_fallback |= PHY_TXC1_BW_40MHZ << RSPEC_BW_SHIFT;
}
if (use_rts || use_cts) {
rts_rspec =
brcms_c_rspec_to_rts_rspec(wlc, rspec,
false, mimo_ctlchbw);
rts_rspec_fallback =
brcms_c_rspec_to_rts_rspec(wlc, rspec_fallback,
false, mimo_ctlchbw);
}
BRCMS_SET_MIMO_PLCP_LEN(plcp, session->ampdu_len);
/* mark plcp to indicate ampdu */
BRCMS_SET_MIMO_PLCP_AMPDU(plcp);
/* reset the mixed mode header durations */
if (txh->MModeLen) {
u16 mmodelen = brcms_c_calc_lsig_len(wlc, rspec,
session->ampdu_len);
txh->MModeLen = cpu_to_le16(mmodelen);
preamble_type = BRCMS_MM_PREAMBLE;
}
if (txh->MModeFbrLen) {
u16 mmfbrlen = brcms_c_calc_lsig_len(wlc, rspec_fallback,
session->ampdu_len);
txh->MModeFbrLen = cpu_to_le16(mmfbrlen);
fbr_preamble_type = BRCMS_MM_PREAMBLE;
}
/* set the preload length */
if (mcs_2_rate(mcs, true, false) >= f->dmaxferrate) {
dma_len = min(dma_len, f->ampdu_pld_size);
txh->PreloadSize = cpu_to_le16(dma_len);
} else {
txh->PreloadSize = 0;
}
mch = le16_to_cpu(txh->MacTxControlHigh);
/* update RTS dur fields */
if (use_rts || use_cts) {
u16 durid;
if ((mch & TXC_PREAMBLE_RTS_MAIN_SHORT) ==
TXC_PREAMBLE_RTS_MAIN_SHORT)
rts_preamble_type = BRCMS_SHORT_PREAMBLE;
if ((mch & TXC_PREAMBLE_RTS_FB_SHORT) ==
TXC_PREAMBLE_RTS_FB_SHORT)
rts_fbr_preamble_type = BRCMS_SHORT_PREAMBLE;
durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec,
rspec, rts_preamble_type,
preamble_type,
session->ampdu_len, true);
rts->duration = cpu_to_le16(durid);
durid = brcms_c_compute_rtscts_dur(wlc, use_cts,
rts_rspec_fallback,
rspec_fallback,
rts_fbr_preamble_type,
fbr_preamble_type,
session->ampdu_len, true);
txh->RTSDurFallback = cpu_to_le16(durid);
/* set TxFesTimeNormal */
txh->TxFesTimeNormal = rts->duration;
/* set fallback rate version of TxFesTimeNormal */
txh->TxFesTimeFallback = txh->RTSDurFallback;
}
/* set flag and plcp for fallback rate */
if (fbr) {
mch |= TXC_AMPDU_FBR;
txh->MacTxControlHigh = cpu_to_le16(mch);
BRCMS_SET_MIMO_PLCP_AMPDU(plcp);
BRCMS_SET_MIMO_PLCP_AMPDU(txh->FragPLCPFallback);
}
brcms_dbg_ht(wlc->hw->d11core, "wl%d: count %d ampdu_len %d\n",
wlc->pub->unit, skb_queue_len(&session->skb_list),
session->ampdu_len);
}
static void
brcms_c_ampdu_rate_status(struct brcms_c_info *wlc,
struct ieee80211_tx_info *tx_info,
struct tx_status *txs, u8 mcs)
{
struct ieee80211_tx_rate *txrate = tx_info->status.rates;
int i;
/* clear the rest of the rates */
for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) {
txrate[i].idx = -1;
txrate[i].count = 0;
}
}
static void
brcms_c_ampdu_dotxstatus_complete(struct ampdu_info *ampdu, struct scb *scb,
struct sk_buff *p, struct tx_status *txs,
u32 s1, u32 s2)
{
struct scb_ampdu *scb_ampdu;
struct brcms_c_info *wlc = ampdu->wlc;
struct scb_ampdu_tid_ini *ini;
u8 bitmap[8], queue, tid;
struct d11txh *txh;
u8 *plcp;
struct ieee80211_hdr *h;
u16 seq, start_seq = 0, bindex, index, mcl;
u8 mcs = 0;
bool ba_recd = false, ack_recd = false;
u8 suc_mpdu = 0, tot_mpdu = 0;
uint supr_status;
bool update_rate = true, retry = true, tx_error = false;
u16 mimoantsel = 0;
u8 antselid = 0;
u8 retry_limit, rr_retry_limit;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(p);
#ifdef DEBUG
u8 hole[AMPDU_MAX_MPDU];
memset(hole, 0, sizeof(hole));
#endif
scb_ampdu = &scb->scb_ampdu;
tid = (u8) (p->priority);
ini = &scb_ampdu->ini[tid];
retry_limit = ampdu->retry_limit_tid[tid];
rr_retry_limit = ampdu->rr_retry_limit_tid[tid];
memset(bitmap, 0, sizeof(bitmap));
queue = txs->frameid & TXFID_QUEUE_MASK;
supr_status = txs->status & TX_STATUS_SUPR_MASK;
if (txs->status & TX_STATUS_ACK_RCV) {
if (TX_STATUS_SUPR_UF == supr_status)
update_rate = false;
WARN_ON(!(txs->status & TX_STATUS_INTERMEDIATE));
start_seq = txs->sequence >> SEQNUM_SHIFT;
bitmap[0] = (txs->status & TX_STATUS_BA_BMAP03_MASK) >>
TX_STATUS_BA_BMAP03_SHIFT;
WARN_ON(s1 & TX_STATUS_INTERMEDIATE);
WARN_ON(!(s1 & TX_STATUS_AMPDU));
bitmap[0] |=
(s1 & TX_STATUS_BA_BMAP47_MASK) <<
TX_STATUS_BA_BMAP47_SHIFT;
bitmap[1] = (s1 >> 8) & 0xff;
bitmap[2] = (s1 >> 16) & 0xff;
bitmap[3] = (s1 >> 24) & 0xff;
bitmap[4] = s2 & 0xff;
bitmap[5] = (s2 >> 8) & 0xff;
bitmap[6] = (s2 >> 16) & 0xff;
bitmap[7] = (s2 >> 24) & 0xff;
ba_recd = true;
} else {
if (supr_status) {
update_rate = false;
if (supr_status == TX_STATUS_SUPR_BADCH) {
brcms_dbg_ht(wlc->hw->d11core,
"%s: Pkt tx suppressed, illegal channel possibly %d\n",
__func__, CHSPEC_CHANNEL(
wlc->default_bss->chanspec));
} else {
if (supr_status != TX_STATUS_SUPR_FRAG)
brcms_err(wlc->hw->d11core,
"%s: supr_status 0x%x\n",
__func__, supr_status);
}
/* no need to retry for badch; will fail again */
if (supr_status == TX_STATUS_SUPR_BADCH ||
supr_status == TX_STATUS_SUPR_EXPTIME) {
retry = false;
} else if (supr_status == TX_STATUS_SUPR_EXPTIME) {
/* TX underflow:
* try tuning pre-loading or ampdu size
*/
} else if (supr_status == TX_STATUS_SUPR_FRAG) {
/*
* if there were underflows, but pre-loading
* is not active, notify rate adaptation.
*/
if (brcms_c_ffpld_check_txfunfl(wlc, queue) > 0)
tx_error = true;
}
} else if (txs->phyerr) {
update_rate = false;
brcms_dbg_ht(wlc->hw->d11core,
"%s: ampdu tx phy error (0x%x)\n",
__func__, txs->phyerr);
}
}
/* loop through all pkts and retry if not acked */
while (p) {
tx_info = IEEE80211_SKB_CB(p);
txh = (struct d11txh *) p->data;
mcl = le16_to_cpu(txh->MacTxControlLow);
plcp = (u8 *) (txh + 1);
h = (struct ieee80211_hdr *)(plcp + D11_PHY_HDR_LEN);
seq = le16_to_cpu(h->seq_ctrl) >> SEQNUM_SHIFT;
trace_brcms_txdesc(&wlc->hw->d11core->dev, txh, sizeof(*txh));
if (tot_mpdu == 0) {
mcs = plcp[0] & MIMO_PLCP_MCS_MASK;
mimoantsel = le16_to_cpu(txh->ABI_MimoAntSel);
}
index = TX_SEQ_TO_INDEX(seq);
ack_recd = false;
if (ba_recd) {
bindex = MODSUB_POW2(seq, start_seq, SEQNUM_MAX);
brcms_dbg_ht(wlc->hw->d11core,
"tid %d seq %d, start_seq %d, bindex %d set %d, index %d\n",
tid, seq, start_seq, bindex,
isset(bitmap, bindex), index);
/* if acked then clear bit and free packet */
if ((bindex < AMPDU_TX_BA_MAX_WSIZE)
&& isset(bitmap, bindex)) {
ini->txretry[index] = 0;
/*
* ampdu_ack_len:
* number of acked aggregated frames
*/
/* ampdu_len: number of aggregated frames */
brcms_c_ampdu_rate_status(wlc, tx_info, txs,
mcs);
tx_info->flags |= IEEE80211_TX_STAT_ACK;
tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
tx_info->status.ampdu_ack_len =
tx_info->status.ampdu_len = 1;
skb_pull(p, D11_PHY_HDR_LEN);
skb_pull(p, D11_TXH_LEN);
ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw,
p);
ack_recd = true;
suc_mpdu++;
}
}
/* either retransmit or send bar if ack not recd */
if (!ack_recd) {
if (retry && (ini->txretry[index] < (int)retry_limit)) {
int ret;
ini->txretry[index]++;
ret = brcms_c_txfifo(wlc, queue, p);
/*
* We shouldn't be out of space in the DMA
* ring here since we're reinserting a frame
* that was just pulled out.
*/
WARN_ONCE(ret, "queue %d out of txds\n", queue);
} else {
/* Retry timeout */
ieee80211_tx_info_clear_status(tx_info);
tx_info->status.ampdu_ack_len = 0;
tx_info->status.ampdu_len = 1;
tx_info->flags |=
IEEE80211_TX_STAT_AMPDU_NO_BACK;
skb_pull(p, D11_PHY_HDR_LEN);
skb_pull(p, D11_TXH_LEN);
brcms_dbg_ht(wlc->hw->d11core,
"BA Timeout, seq %d\n",
seq);
ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw,
p);
}
}
tot_mpdu++;
/* break out if last packet of ampdu */
if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) ==
TXC_AMPDU_LAST)
break;
p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED);
}
/* update rate state */
antselid = brcms_c_antsel_antsel2id(wlc->asi, mimoantsel);
}
void
brcms_c_ampdu_dotxstatus(struct ampdu_info *ampdu, struct scb *scb,
struct sk_buff *p, struct tx_status *txs)
{
struct scb_ampdu *scb_ampdu;
struct brcms_c_info *wlc = ampdu->wlc;
struct scb_ampdu_tid_ini *ini;
u32 s1 = 0, s2 = 0;
struct ieee80211_tx_info *tx_info;
tx_info = IEEE80211_SKB_CB(p);
/* BMAC_NOTE: For the split driver, second level txstatus comes later
* So if the ACK was received then wait for the second level else just
* call the first one
*/
if (txs->status & TX_STATUS_ACK_RCV) {
u8 status_delay = 0;
/* wait till the next 8 bytes of txstatus is available */
s1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus));
while ((s1 & TXS_V) == 0) {
udelay(1);
status_delay++;
if (status_delay > 10)
return; /* error condition */
s1 = bcma_read32(wlc->hw->d11core,
D11REGOFFS(frmtxstatus));
}
s2 = bcma_read32(wlc->hw->d11core, D11REGOFFS(frmtxstatus2));
}
if (scb) {
scb_ampdu = &scb->scb_ampdu;
ini = &scb_ampdu->ini[p->priority];
brcms_c_ampdu_dotxstatus_complete(ampdu, scb, p, txs, s1, s2);
} else {
/* loop through all pkts and free */
u8 queue = txs->frameid & TXFID_QUEUE_MASK;
struct d11txh *txh;
u16 mcl;
while (p) {
tx_info = IEEE80211_SKB_CB(p);
txh = (struct d11txh *) p->data;
trace_brcms_txdesc(&wlc->hw->d11core->dev, txh,
sizeof(*txh));
mcl = le16_to_cpu(txh->MacTxControlLow);
brcmu_pkt_buf_free_skb(p);
/* break out if last packet of ampdu */
if (((mcl & TXC_AMPDU_MASK) >> TXC_AMPDU_SHIFT) ==
TXC_AMPDU_LAST)
break;
p = dma_getnexttxp(wlc->hw->di[queue],
DMA_RANGE_TRANSMITTED);
}
}
}
void brcms_c_ampdu_macaddr_upd(struct brcms_c_info *wlc)
{
char template[T_RAM_ACCESS_SZ * 2];
/* driver needs to write the ta in the template; ta is at offset 16 */
memset(template, 0, sizeof(template));
memcpy(template, wlc->pub->cur_etheraddr, ETH_ALEN);
brcms_b_write_template_ram(wlc->hw, (T_BA_TPL_BASE + 16),
(T_RAM_ACCESS_SZ * 2),
template);
}
bool brcms_c_aggregatable(struct brcms_c_info *wlc, u8 tid)
{
return wlc->ampdu->ini_enable[tid];
}
void brcms_c_ampdu_shm_upd(struct ampdu_info *ampdu)
{
struct brcms_c_info *wlc = ampdu->wlc;
/*
* Extend ucode internal watchdog timer to
* match larger received frames
*/
if ((ampdu->rx_factor & IEEE80211_HT_AMPDU_PARM_FACTOR) ==
IEEE80211_HT_MAX_AMPDU_64K) {
brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_MAX);
brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_MAX);
} else {
brcms_b_write_shm(wlc->hw, M_MIMO_MAXSYM, MIMO_MAXSYM_DEF);
brcms_b_write_shm(wlc->hw, M_WATCHDOG_8TU, WATCHDOG_8TU_DEF);
}
}
/*
* callback function that helps invalidating ampdu packets in a DMA queue
*/
static void dma_cb_fn_ampdu(void *txi, void *arg_a)
{
struct ieee80211_sta *sta = arg_a;
struct ieee80211_tx_info *tx_info = (struct ieee80211_tx_info *)txi;
if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
(tx_info->rate_driver_data[0] == sta || sta == NULL))
tx_info->rate_driver_data[0] = NULL;
}
/*
* When a remote party is no longer available for ampdu communication, any
* pending tx ampdu packets in the driver have to be flushed.
*/
void brcms_c_ampdu_flush(struct brcms_c_info *wlc,
struct ieee80211_sta *sta, u16 tid)
{
brcms_c_inval_dma_pkts(wlc->hw, sta, dma_cb_fn_ampdu);
}