tegrakernel/kernel/kernel-4.9/drivers/net/wireless/intel/iwlegacy/commands.h

3371 lines
110 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#ifndef __il_commands_h__
#define __il_commands_h__
#include <linux/ieee80211.h>
struct il_priv;
/* uCode version contains 4 values: Major/Minor/API/Serial */
#define IL_UCODE_MAJOR(ver) (((ver) & 0xFF000000) >> 24)
#define IL_UCODE_MINOR(ver) (((ver) & 0x00FF0000) >> 16)
#define IL_UCODE_API(ver) (((ver) & 0x0000FF00) >> 8)
#define IL_UCODE_SERIAL(ver) ((ver) & 0x000000FF)
/* Tx rates */
#define IL_CCK_RATES 4
#define IL_OFDM_RATES 8
#define IL_MAX_RATES (IL_CCK_RATES + IL_OFDM_RATES)
enum {
N_ALIVE = 0x1,
N_ERROR = 0x2,
/* RXON and QOS commands */
C_RXON = 0x10,
C_RXON_ASSOC = 0x11,
C_QOS_PARAM = 0x13,
C_RXON_TIMING = 0x14,
/* Multi-Station support */
C_ADD_STA = 0x18,
C_REM_STA = 0x19,
/* Security */
C_WEPKEY = 0x20,
/* RX, TX, LEDs */
N_3945_RX = 0x1b, /* 3945 only */
C_TX = 0x1c,
C_RATE_SCALE = 0x47, /* 3945 only */
C_LEDS = 0x48,
C_TX_LINK_QUALITY_CMD = 0x4e, /* for 4965 */
/* 802.11h related */
C_CHANNEL_SWITCH = 0x72,
N_CHANNEL_SWITCH = 0x73,
C_SPECTRUM_MEASUREMENT = 0x74,
N_SPECTRUM_MEASUREMENT = 0x75,
/* Power Management */
C_POWER_TBL = 0x77,
N_PM_SLEEP = 0x7A,
N_PM_DEBUG_STATS = 0x7B,
/* Scan commands and notifications */
C_SCAN = 0x80,
C_SCAN_ABORT = 0x81,
N_SCAN_START = 0x82,
N_SCAN_RESULTS = 0x83,
N_SCAN_COMPLETE = 0x84,
/* IBSS/AP commands */
N_BEACON = 0x90,
C_TX_BEACON = 0x91,
/* Miscellaneous commands */
C_TX_PWR_TBL = 0x97,
/* Bluetooth device coexistence config command */
C_BT_CONFIG = 0x9b,
/* Statistics */
C_STATS = 0x9c,
N_STATS = 0x9d,
/* RF-KILL commands and notifications */
N_CARD_STATE = 0xa1,
/* Missed beacons notification */
N_MISSED_BEACONS = 0xa2,
C_CT_KILL_CONFIG = 0xa4,
C_SENSITIVITY = 0xa8,
C_PHY_CALIBRATION = 0xb0,
N_RX_PHY = 0xc0,
N_RX_MPDU = 0xc1,
N_RX = 0xc3,
N_COMPRESSED_BA = 0xc5,
IL_CN_MAX = 0xff
};
/******************************************************************************
* (0)
* Commonly used structures and definitions:
* Command header, rate_n_flags, txpower
*
*****************************************************************************/
/* il_cmd_header flags value */
#define IL_CMD_FAILED_MSK 0x40
#define SEQ_TO_QUEUE(s) (((s) >> 8) & 0x1f)
#define QUEUE_TO_SEQ(q) (((q) & 0x1f) << 8)
#define SEQ_TO_IDX(s) ((s) & 0xff)
#define IDX_TO_SEQ(i) ((i) & 0xff)
#define SEQ_HUGE_FRAME cpu_to_le16(0x4000)
#define SEQ_RX_FRAME cpu_to_le16(0x8000)
/**
* struct il_cmd_header
*
* This header format appears in the beginning of each command sent from the
* driver, and each response/notification received from uCode.
*/
struct il_cmd_header {
u8 cmd; /* Command ID: C_RXON, etc. */
u8 flags; /* 0:5 reserved, 6 abort, 7 internal */
/*
* The driver sets up the sequence number to values of its choosing.
* uCode does not use this value, but passes it back to the driver
* when sending the response to each driver-originated command, so
* the driver can match the response to the command. Since the values
* don't get used by uCode, the driver may set up an arbitrary format.
*
* There is one exception: uCode sets bit 15 when it originates
* the response/notification, i.e. when the response/notification
* is not a direct response to a command sent by the driver. For
* example, uCode issues N_3945_RX when it sends a received frame
* to the driver; it is not a direct response to any driver command.
*
* The Linux driver uses the following format:
*
* 0:7 tfd idx - position within TX queue
* 8:12 TX queue id
* 13 reserved
* 14 huge - driver sets this to indicate command is in the
* 'huge' storage at the end of the command buffers
* 15 unsolicited RX or uCode-originated notification
*/
__le16 sequence;
/* command or response/notification data follows immediately */
u8 data[0];
} __packed;
/**
* struct il3945_tx_power
*
* Used in C_TX_PWR_TBL, C_SCAN, C_CHANNEL_SWITCH
*
* Each entry contains two values:
* 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
* linear value that multiplies the output of the digital signal processor,
* before being sent to the analog radio.
* 2) Radio gain. This sets the analog gain of the radio Tx path.
* It is a coarser setting, and behaves in a logarithmic (dB) fashion.
*
* Driver obtains values from struct il3945_tx_power power_gain_table[][].
*/
struct il3945_tx_power {
u8 tx_gain; /* gain for analog radio */
u8 dsp_atten; /* gain for DSP */
} __packed;
/**
* struct il3945_power_per_rate
*
* Used in C_TX_PWR_TBL, C_CHANNEL_SWITCH
*/
struct il3945_power_per_rate {
u8 rate; /* plcp */
struct il3945_tx_power tpc;
u8 reserved;
} __packed;
/**
* iwl4965 rate_n_flags bit fields
*
* rate_n_flags format is used in following iwl4965 commands:
* N_RX (response only)
* N_RX_MPDU (response only)
* C_TX (both command and response)
* C_TX_LINK_QUALITY_CMD
*
* High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
* 2-0: 0) 6 Mbps
* 1) 12 Mbps
* 2) 18 Mbps
* 3) 24 Mbps
* 4) 36 Mbps
* 5) 48 Mbps
* 6) 54 Mbps
* 7) 60 Mbps
*
* 4-3: 0) Single stream (SISO)
* 1) Dual stream (MIMO)
* 2) Triple stream (MIMO)
*
* 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
*
* Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
* 3-0: 0xD) 6 Mbps
* 0xF) 9 Mbps
* 0x5) 12 Mbps
* 0x7) 18 Mbps
* 0x9) 24 Mbps
* 0xB) 36 Mbps
* 0x1) 48 Mbps
* 0x3) 54 Mbps
*
* Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
* 6-0: 10) 1 Mbps
* 20) 2 Mbps
* 55) 5.5 Mbps
* 110) 11 Mbps
*/
#define RATE_MCS_CODE_MSK 0x7
#define RATE_MCS_SPATIAL_POS 3
#define RATE_MCS_SPATIAL_MSK 0x18
#define RATE_MCS_HT_DUP_POS 5
#define RATE_MCS_HT_DUP_MSK 0x20
/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
#define RATE_MCS_FLAGS_POS 8
#define RATE_MCS_HT_POS 8
#define RATE_MCS_HT_MSK 0x100
/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
#define RATE_MCS_CCK_POS 9
#define RATE_MCS_CCK_MSK 0x200
/* Bit 10: (1) Use Green Field preamble */
#define RATE_MCS_GF_POS 10
#define RATE_MCS_GF_MSK 0x400
/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
#define RATE_MCS_HT40_POS 11
#define RATE_MCS_HT40_MSK 0x800
/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
#define RATE_MCS_DUP_POS 12
#define RATE_MCS_DUP_MSK 0x1000
/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
#define RATE_MCS_SGI_POS 13
#define RATE_MCS_SGI_MSK 0x2000
/**
* rate_n_flags Tx antenna masks
* 4965 has 2 transmitters
* bit14:16
*/
#define RATE_MCS_ANT_POS 14
#define RATE_MCS_ANT_A_MSK 0x04000
#define RATE_MCS_ANT_B_MSK 0x08000
#define RATE_MCS_ANT_C_MSK 0x10000
#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
#define RATE_ANT_NUM 3
#define POWER_TBL_NUM_ENTRIES 33
#define POWER_TBL_NUM_HT_OFDM_ENTRIES 32
#define POWER_TBL_CCK_ENTRY 32
#define IL_PWR_NUM_HT_OFDM_ENTRIES 24
#define IL_PWR_CCK_ENTRIES 2
/**
* union il4965_tx_power_dual_stream
*
* Host format used for C_TX_PWR_TBL, C_CHANNEL_SWITCH
* Use __le32 version (struct tx_power_dual_stream) when building command.
*
* Driver provides radio gain and DSP attenuation settings to device in pairs,
* one value for each transmitter chain. The first value is for transmitter A,
* second for transmitter B.
*
* For SISO bit rates, both values in a pair should be identical.
* For MIMO rates, one value may be different from the other,
* in order to balance the Tx output between the two transmitters.
*
* See more details in doc for TXPOWER in 4965.h.
*/
union il4965_tx_power_dual_stream {
struct {
u8 radio_tx_gain[2];
u8 dsp_predis_atten[2];
} s;
u32 dw;
};
/**
* struct tx_power_dual_stream
*
* Table entries in C_TX_PWR_TBL, C_CHANNEL_SWITCH
*
* Same format as il_tx_power_dual_stream, but __le32
*/
struct tx_power_dual_stream {
__le32 dw;
} __packed;
/**
* struct il4965_tx_power_db
*
* Entire table within C_TX_PWR_TBL, C_CHANNEL_SWITCH
*/
struct il4965_tx_power_db {
struct tx_power_dual_stream power_tbl[POWER_TBL_NUM_ENTRIES];
} __packed;
/******************************************************************************
* (0a)
* Alive and Error Commands & Responses:
*
*****************************************************************************/
#define UCODE_VALID_OK cpu_to_le32(0x1)
#define INITIALIZE_SUBTYPE (9)
/*
* ("Initialize") N_ALIVE = 0x1 (response only, not a command)
*
* uCode issues this "initialize alive" notification once the initialization
* uCode image has completed its work, and is ready to load the runtime image.
* This is the *first* "alive" notification that the driver will receive after
* rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
*
* See comments documenting "BSM" (bootstrap state machine).
*
* For 4965, this notification contains important calibration data for
* calculating txpower settings:
*
* 1) Power supply voltage indication. The voltage sensor outputs higher
* values for lower voltage, and vice verse.
*
* 2) Temperature measurement parameters, for each of two channel widths
* (20 MHz and 40 MHz) supported by the radios. Temperature sensing
* is done via one of the receiver chains, and channel width influences
* the results.
*
* 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
* for each of 5 frequency ranges.
*/
struct il_init_alive_resp {
u8 ucode_minor;
u8 ucode_major;
__le16 reserved1;
u8 sw_rev[8];
u8 ver_type;
u8 ver_subtype; /* "9" for initialize alive */
__le16 reserved2;
__le32 log_event_table_ptr;
__le32 error_event_table_ptr;
__le32 timestamp;
__le32 is_valid;
/* calibration values from "initialize" uCode */
__le32 voltage; /* signed, higher value is lower voltage */
__le32 therm_r1[2]; /* signed, 1st for normal, 2nd for HT40 */
__le32 therm_r2[2]; /* signed */
__le32 therm_r3[2]; /* signed */
__le32 therm_r4[2]; /* signed */
__le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
* 2 Tx chains */
} __packed;
/**
* N_ALIVE = 0x1 (response only, not a command)
*
* uCode issues this "alive" notification once the runtime image is ready
* to receive commands from the driver. This is the *second* "alive"
* notification that the driver will receive after rebooting uCode;
* this "alive" is indicated by subtype field != 9.
*
* See comments documenting "BSM" (bootstrap state machine).
*
* This response includes two pointers to structures within the device's
* data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
*
* 1) log_event_table_ptr indicates base of the event log. This traces
* a 256-entry history of uCode execution within a circular buffer.
* Its header format is:
*
* __le32 log_size; log capacity (in number of entries)
* __le32 type; (1) timestamp with each entry, (0) no timestamp
* __le32 wraps; # times uCode has wrapped to top of circular buffer
* __le32 write_idx; next circular buffer entry that uCode would fill
*
* The header is followed by the circular buffer of log entries. Entries
* with timestamps have the following format:
*
* __le32 event_id; range 0 - 1500
* __le32 timestamp; low 32 bits of TSF (of network, if associated)
* __le32 data; event_id-specific data value
*
* Entries without timestamps contain only event_id and data.
*
*
* 2) error_event_table_ptr indicates base of the error log. This contains
* information about any uCode error that occurs. For 4965, the format
* of the error log is:
*
* __le32 valid; (nonzero) valid, (0) log is empty
* __le32 error_id; type of error
* __le32 pc; program counter
* __le32 blink1; branch link
* __le32 blink2; branch link
* __le32 ilink1; interrupt link
* __le32 ilink2; interrupt link
* __le32 data1; error-specific data
* __le32 data2; error-specific data
* __le32 line; source code line of error
* __le32 bcon_time; beacon timer
* __le32 tsf_low; network timestamp function timer
* __le32 tsf_hi; network timestamp function timer
* __le32 gp1; GP1 timer register
* __le32 gp2; GP2 timer register
* __le32 gp3; GP3 timer register
* __le32 ucode_ver; uCode version
* __le32 hw_ver; HW Silicon version
* __le32 brd_ver; HW board version
* __le32 log_pc; log program counter
* __le32 frame_ptr; frame pointer
* __le32 stack_ptr; stack pointer
* __le32 hcmd; last host command
* __le32 isr0; isr status register LMPM_NIC_ISR0: rxtx_flag
* __le32 isr1; isr status register LMPM_NIC_ISR1: host_flag
* __le32 isr2; isr status register LMPM_NIC_ISR2: enc_flag
* __le32 isr3; isr status register LMPM_NIC_ISR3: time_flag
* __le32 isr4; isr status register LMPM_NIC_ISR4: wico interrupt
* __le32 isr_pref; isr status register LMPM_NIC_PREF_STAT
* __le32 wait_event; wait event() caller address
* __le32 l2p_control; L2pControlField
* __le32 l2p_duration; L2pDurationField
* __le32 l2p_mhvalid; L2pMhValidBits
* __le32 l2p_addr_match; L2pAddrMatchStat
* __le32 lmpm_pmg_sel; indicate which clocks are turned on (LMPM_PMG_SEL)
* __le32 u_timestamp; indicate when the date and time of the compilation
* __le32 reserved;
*
* The Linux driver can print both logs to the system log when a uCode error
* occurs.
*/
struct il_alive_resp {
u8 ucode_minor;
u8 ucode_major;
__le16 reserved1;
u8 sw_rev[8];
u8 ver_type;
u8 ver_subtype; /* not "9" for runtime alive */
__le16 reserved2;
__le32 log_event_table_ptr; /* SRAM address for event log */
__le32 error_event_table_ptr; /* SRAM address for error log */
__le32 timestamp;
__le32 is_valid;
} __packed;
/*
* N_ERROR = 0x2 (response only, not a command)
*/
struct il_error_resp {
__le32 error_type;
u8 cmd_id;
u8 reserved1;
__le16 bad_cmd_seq_num;
__le32 error_info;
__le64 timestamp;
} __packed;
/******************************************************************************
* (1)
* RXON Commands & Responses:
*
*****************************************************************************/
/*
* Rx config defines & structure
*/
/* rx_config device types */
enum {
RXON_DEV_TYPE_AP = 1,
RXON_DEV_TYPE_ESS = 3,
RXON_DEV_TYPE_IBSS = 4,
RXON_DEV_TYPE_SNIFFER = 6,
};
#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
#define RXON_RX_CHAIN_VALID_POS (1)
#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
#define RXON_RX_CHAIN_CNT_POS (10)
#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
/* rx_config flags */
/* band & modulation selection */
#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
/* auto detection enable */
#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
/* TGg protection when tx */
#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
/* cck short slot & preamble */
#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
/* antenna selection */
#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
/* radar detection enable */
#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
/* rx response to host with 8-byte TSF
* (according to ON_AIR deassertion) */
#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
/* HT flags */
#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
#define RXON_FLG_HT_OPERATING_MODE_POS (23)
#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
#define RXON_FLG_CHANNEL_MODE_POS (25)
#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
/* channel mode */
enum {
CHANNEL_MODE_LEGACY = 0,
CHANNEL_MODE_PURE_40 = 1,
CHANNEL_MODE_MIXED = 2,
CHANNEL_MODE_RESERVED = 3,
};
#define RXON_FLG_CHANNEL_MODE_LEGACY \
cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
#define RXON_FLG_CHANNEL_MODE_PURE_40 \
cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
#define RXON_FLG_CHANNEL_MODE_MIXED \
cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
/* CTS to self (if spec allows) flag */
#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
/* rx_config filter flags */
/* accept all data frames */
#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
/* pass control & management to host */
#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
/* accept multi-cast */
#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
/* don't decrypt uni-cast frames */
#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
/* don't decrypt multi-cast frames */
#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
/* STA is associated */
#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
/* transfer to host non bssid beacons in associated state */
#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
/**
* C_RXON = 0x10 (command, has simple generic response)
*
* RXON tunes the radio tuner to a service channel, and sets up a number
* of parameters that are used primarily for Rx, but also for Tx operations.
*
* NOTE: When tuning to a new channel, driver must set the
* RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
* info within the device, including the station tables, tx retry
* rate tables, and txpower tables. Driver must build a new station
* table and txpower table before transmitting anything on the RXON
* channel.
*
* NOTE: All RXONs wipe clean the internal txpower table. Driver must
* issue a new C_TX_PWR_TBL after each C_RXON (0x10),
* regardless of whether RXON_FILTER_ASSOC_MSK is set.
*/
struct il3945_rxon_cmd {
u8 node_addr[6];
__le16 reserved1;
u8 bssid_addr[6];
__le16 reserved2;
u8 wlap_bssid_addr[6];
__le16 reserved3;
u8 dev_type;
u8 air_propagation;
__le16 reserved4;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 assoc_id;
__le32 flags;
__le32 filter_flags;
__le16 channel;
__le16 reserved5;
} __packed;
struct il4965_rxon_cmd {
u8 node_addr[6];
__le16 reserved1;
u8 bssid_addr[6];
__le16 reserved2;
u8 wlap_bssid_addr[6];
__le16 reserved3;
u8 dev_type;
u8 air_propagation;
__le16 rx_chain;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 assoc_id;
__le32 flags;
__le32 filter_flags;
__le16 channel;
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
} __packed;
/* Create a common rxon cmd which will be typecast into the 3945 or 4965
* specific rxon cmd, depending on where it is called from.
*/
struct il_rxon_cmd {
u8 node_addr[6];
__le16 reserved1;
u8 bssid_addr[6];
__le16 reserved2;
u8 wlap_bssid_addr[6];
__le16 reserved3;
u8 dev_type;
u8 air_propagation;
__le16 rx_chain;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 assoc_id;
__le32 flags;
__le32 filter_flags;
__le16 channel;
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
u8 reserved4;
u8 reserved5;
} __packed;
/*
* C_RXON_ASSOC = 0x11 (command, has simple generic response)
*/
struct il3945_rxon_assoc_cmd {
__le32 flags;
__le32 filter_flags;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
__le16 reserved;
} __packed;
struct il4965_rxon_assoc_cmd {
__le32 flags;
__le32 filter_flags;
u8 ofdm_basic_rates;
u8 cck_basic_rates;
u8 ofdm_ht_single_stream_basic_rates;
u8 ofdm_ht_dual_stream_basic_rates;
__le16 rx_chain_select_flags;
__le16 reserved;
} __packed;
#define IL_CONN_MAX_LISTEN_INTERVAL 10
#define IL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
#define IL39_MAX_UCODE_BEACON_INTERVAL 1 /* 1024 */
/*
* C_RXON_TIMING = 0x14 (command, has simple generic response)
*/
struct il_rxon_time_cmd {
__le64 timestamp;
__le16 beacon_interval;
__le16 atim_win;
__le32 beacon_init_val;
__le16 listen_interval;
u8 dtim_period;
u8 delta_cp_bss_tbtts;
} __packed;
/*
* C_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
*/
struct il3945_channel_switch_cmd {
u8 band;
u8 expect_beacon;
__le16 channel;
__le32 rxon_flags;
__le32 rxon_filter_flags;
__le32 switch_time;
struct il3945_power_per_rate power[IL_MAX_RATES];
} __packed;
struct il4965_channel_switch_cmd {
u8 band;
u8 expect_beacon;
__le16 channel;
__le32 rxon_flags;
__le32 rxon_filter_flags;
__le32 switch_time;
struct il4965_tx_power_db tx_power;
} __packed;
/*
* N_CHANNEL_SWITCH = 0x73 (notification only, not a command)
*/
struct il_csa_notification {
__le16 band;
__le16 channel;
__le32 status; /* 0 - OK, 1 - fail */
} __packed;
/******************************************************************************
* (2)
* Quality-of-Service (QOS) Commands & Responses:
*
*****************************************************************************/
/**
* struct il_ac_qos -- QOS timing params for C_QOS_PARAM
* One for each of 4 EDCA access categories in struct il_qosparam_cmd
*
* @cw_min: Contention win, start value in numbers of slots.
* Should be a power-of-2, minus 1. Device's default is 0x0f.
* @cw_max: Contention win, max value in numbers of slots.
* Should be a power-of-2, minus 1. Device's default is 0x3f.
* @aifsn: Number of slots in Arbitration Interframe Space (before
* performing random backoff timing prior to Tx). Device default 1.
* @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
*
* Device will automatically increase contention win by (2*CW) + 1 for each
* transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
* value, to cap the CW value.
*/
struct il_ac_qos {
__le16 cw_min;
__le16 cw_max;
u8 aifsn;
u8 reserved1;
__le16 edca_txop;
} __packed;
/* QoS flags defines */
#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
/* Number of Access Categories (AC) (EDCA), queues 0..3 */
#define AC_NUM 4
/*
* C_QOS_PARAM = 0x13 (command, has simple generic response)
*
* This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
* 0: Background, 1: Best Effort, 2: Video, 3: Voice.
*/
struct il_qosparam_cmd {
__le32 qos_flags;
struct il_ac_qos ac[AC_NUM];
} __packed;
/******************************************************************************
* (3)
* Add/Modify Stations Commands & Responses:
*
*****************************************************************************/
/*
* Multi station support
*/
/* Special, dedicated locations within device's station table */
#define IL_AP_ID 0
#define IL_STA_ID 2
#define IL3945_BROADCAST_ID 24
#define IL3945_STATION_COUNT 25
#define IL4965_BROADCAST_ID 31
#define IL4965_STATION_COUNT 32
#define IL_STATION_COUNT 32 /* MAX(3945,4965) */
#define IL_INVALID_STATION 255
#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
#define STA_FLG_MAX_AGG_SIZE_POS (19)
#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
/* Use in mode field. 1: modify existing entry, 0: add new station entry */
#define STA_CONTROL_MODIFY_MSK 0x01
/* key flags __le16*/
#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
#define STA_KEY_FLG_KEYID_POS 8
#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
/* wep key is either from global key (0) or from station info array (1) */
#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
#define STA_KEY_MAX_NUM 8
/* Flags indicate whether to modify vs. don't change various station params */
#define STA_MODIFY_KEY_MASK 0x01
#define STA_MODIFY_TID_DISABLE_TX 0x02
#define STA_MODIFY_TX_RATE_MSK 0x04
#define STA_MODIFY_ADDBA_TID_MSK 0x08
#define STA_MODIFY_DELBA_TID_MSK 0x10
#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
/* Receiver address (actually, Rx station's idx into station table),
* combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
#define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
struct il4965_keyinfo {
__le16 key_flags;
u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
u8 reserved1;
__le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
u8 key_offset;
u8 reserved2;
u8 key[16]; /* 16-byte unicast decryption key */
} __packed;
/**
* struct sta_id_modify
* @addr[ETH_ALEN]: station's MAC address
* @sta_id: idx of station in uCode's station table
* @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
*
* Driver selects unused table idx when adding new station,
* or the idx to a pre-existing station entry when modifying that station.
* Some idxes have special purposes (IL_AP_ID, idx 0, is for AP).
*
* modify_mask flags select which parameters to modify vs. leave alone.
*/
struct sta_id_modify {
u8 addr[ETH_ALEN];
__le16 reserved1;
u8 sta_id;
u8 modify_mask;
__le16 reserved2;
} __packed;
/*
* C_ADD_STA = 0x18 (command)
*
* The device contains an internal table of per-station information,
* with info on security keys, aggregation parameters, and Tx rates for
* initial Tx attempt and any retries (4965 devices uses
* C_TX_LINK_QUALITY_CMD,
* 3945 uses C_RATE_SCALE to set up rate tables).
*
* C_ADD_STA sets up the table entry for one station, either creating
* a new entry, or modifying a pre-existing one.
*
* NOTE: RXON command (without "associated" bit set) wipes the station table
* clean. Moving into RF_KILL state does this also. Driver must set up
* new station table before transmitting anything on the RXON channel
* (except active scans or active measurements; those commands carry
* their own txpower/rate setup data).
*
* When getting started on a new channel, driver must set up the
* IL_BROADCAST_ID entry (last entry in the table). For a client
* station in a BSS, once an AP is selected, driver sets up the AP STA
* in the IL_AP_ID entry (1st entry in the table). BROADCAST and AP
* are all that are needed for a BSS client station. If the device is
* used as AP, or in an IBSS network, driver must set up station table
* entries for all STAs in network, starting with idx IL_STA_ID.
*/
struct il3945_addsta_cmd {
u8 mode; /* 1: modify existing, 0: add new station */
u8 reserved[3];
struct sta_id_modify sta;
struct il4965_keyinfo key;
__le32 station_flags; /* STA_FLG_* */
__le32 station_flags_msk; /* STA_FLG_* */
/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
* corresponding to bit (e.g. bit 5 controls TID 5).
* Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
__le16 tid_disable_tx;
__le16 rate_n_flags;
/* TID for which to add block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
u8 add_immediate_ba_tid;
/* TID for which to remove block-ack support.
* Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
u8 remove_immediate_ba_tid;
/* Starting Sequence Number for added block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
__le16 add_immediate_ba_ssn;
} __packed;
struct il4965_addsta_cmd {
u8 mode; /* 1: modify existing, 0: add new station */
u8 reserved[3];
struct sta_id_modify sta;
struct il4965_keyinfo key;
__le32 station_flags; /* STA_FLG_* */
__le32 station_flags_msk; /* STA_FLG_* */
/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
* corresponding to bit (e.g. bit 5 controls TID 5).
* Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
__le16 tid_disable_tx;
__le16 reserved1;
/* TID for which to add block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
u8 add_immediate_ba_tid;
/* TID for which to remove block-ack support.
* Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
u8 remove_immediate_ba_tid;
/* Starting Sequence Number for added block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
__le16 add_immediate_ba_ssn;
/*
* Number of packets OK to transmit to station even though
* it is asleep -- used to synchronise PS-poll and u-APSD
* responses while ucode keeps track of STA sleep state.
*/
__le16 sleep_tx_count;
__le16 reserved2;
} __packed;
/* Wrapper struct for 3945 and 4965 addsta_cmd structures */
struct il_addsta_cmd {
u8 mode; /* 1: modify existing, 0: add new station */
u8 reserved[3];
struct sta_id_modify sta;
struct il4965_keyinfo key;
__le32 station_flags; /* STA_FLG_* */
__le32 station_flags_msk; /* STA_FLG_* */
/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
* corresponding to bit (e.g. bit 5 controls TID 5).
* Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
__le16 tid_disable_tx;
__le16 rate_n_flags; /* 3945 only */
/* TID for which to add block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
u8 add_immediate_ba_tid;
/* TID for which to remove block-ack support.
* Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
u8 remove_immediate_ba_tid;
/* Starting Sequence Number for added block-ack support.
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
__le16 add_immediate_ba_ssn;
/*
* Number of packets OK to transmit to station even though
* it is asleep -- used to synchronise PS-poll and u-APSD
* responses while ucode keeps track of STA sleep state.
*/
__le16 sleep_tx_count;
__le16 reserved2;
} __packed;
#define ADD_STA_SUCCESS_MSK 0x1
#define ADD_STA_NO_ROOM_IN_TBL 0x2
#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
/*
* C_ADD_STA = 0x18 (response)
*/
struct il_add_sta_resp {
u8 status; /* ADD_STA_* */
} __packed;
#define REM_STA_SUCCESS_MSK 0x1
/*
* C_REM_STA = 0x19 (response)
*/
struct il_rem_sta_resp {
u8 status;
} __packed;
/*
* C_REM_STA = 0x19 (command)
*/
struct il_rem_sta_cmd {
u8 num_sta; /* number of removed stations */
u8 reserved[3];
u8 addr[ETH_ALEN]; /* MAC addr of the first station */
u8 reserved2[2];
} __packed;
#define IL_TX_FIFO_BK_MSK cpu_to_le32(BIT(0))
#define IL_TX_FIFO_BE_MSK cpu_to_le32(BIT(1))
#define IL_TX_FIFO_VI_MSK cpu_to_le32(BIT(2))
#define IL_TX_FIFO_VO_MSK cpu_to_le32(BIT(3))
#define IL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
#define IL_DROP_SINGLE 0
#define IL_DROP_SELECTED 1
#define IL_DROP_ALL 2
/*
* REPLY_WEP_KEY = 0x20
*/
struct il_wep_key {
u8 key_idx;
u8 key_offset;
u8 reserved1[2];
u8 key_size;
u8 reserved2[3];
u8 key[16];
} __packed;
struct il_wep_cmd {
u8 num_keys;
u8 global_key_type;
u8 flags;
u8 reserved;
struct il_wep_key key[0];
} __packed;
#define WEP_KEY_WEP_TYPE 1
#define WEP_KEYS_MAX 4
#define WEP_INVALID_OFFSET 0xff
#define WEP_KEY_LEN_64 5
#define WEP_KEY_LEN_128 13
/******************************************************************************
* (4)
* Rx Responses:
*
*****************************************************************************/
#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
#define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
#define RX_RES_STATUS_STATION_FOUND (1<<6)
#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
struct il3945_rx_frame_stats {
u8 phy_count;
u8 id;
u8 rssi;
u8 agc;
__le16 sig_avg;
__le16 noise_diff;
u8 payload[0];
} __packed;
struct il3945_rx_frame_hdr {
__le16 channel;
__le16 phy_flags;
u8 reserved1;
u8 rate;
__le16 len;
u8 payload[0];
} __packed;
struct il3945_rx_frame_end {
__le32 status;
__le64 timestamp;
__le32 beacon_timestamp;
} __packed;
/*
* N_3945_RX = 0x1b (response only, not a command)
*
* NOTE: DO NOT dereference from casts to this structure
* It is provided only for calculating minimum data set size.
* The actual offsets of the hdr and end are dynamic based on
* stats.phy_count
*/
struct il3945_rx_frame {
struct il3945_rx_frame_stats stats;
struct il3945_rx_frame_hdr hdr;
struct il3945_rx_frame_end end;
} __packed;
#define IL39_RX_FRAME_SIZE (4 + sizeof(struct il3945_rx_frame))
/* Fixed (non-configurable) rx data from phy */
#define IL49_RX_RES_PHY_CNT 14
#define IL49_RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
#define IL49_RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
#define IL49_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
#define IL49_AGC_DB_POS (7)
struct il4965_rx_non_cfg_phy {
__le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
__le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
u8 pad[0];
} __packed;
/*
* N_RX = 0xc3 (response only, not a command)
* Used only for legacy (non 11n) frames.
*/
struct il_rx_phy_res {
u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
u8 stat_id; /* configurable DSP phy data set ID */
u8 reserved1;
__le64 timestamp; /* TSF at on air rise */
__le32 beacon_time_stamp; /* beacon at on-air rise */
__le16 phy_flags; /* general phy flags: band, modulation, ... */
__le16 channel; /* channel number */
u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
__le32 rate_n_flags; /* RATE_MCS_* */
__le16 byte_count; /* frame's byte-count */
__le16 frame_time; /* frame's time on the air */
} __packed;
struct il_rx_mpdu_res_start {
__le16 byte_count;
__le16 reserved;
} __packed;
/******************************************************************************
* (5)
* Tx Commands & Responses:
*
* Driver must place each C_TX command into one of the prioritized Tx
* queues in host DRAM, shared between driver and device (see comments for
* SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
* are preparing to transmit, the device pulls the Tx command over the PCI
* bus via one of the device's Tx DMA channels, to fill an internal FIFO
* from which data will be transmitted.
*
* uCode handles all timing and protocol related to control frames
* (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
* handle reception of block-acks; uCode updates the host driver via
* N_COMPRESSED_BA.
*
* uCode handles retrying Tx when an ACK is expected but not received.
* This includes trying lower data rates than the one requested in the Tx
* command, as set up by the C_RATE_SCALE (for 3945) or
* C_TX_LINK_QUALITY_CMD (4965).
*
* Driver sets up transmit power for various rates via C_TX_PWR_TBL.
* This command must be executed after every RXON command, before Tx can occur.
*****************************************************************************/
/* C_TX Tx flags field */
/*
* 1: Use Request-To-Send protocol before this frame.
* Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
*/
#define TX_CMD_FLG_RTS_MSK cpu_to_le32(1 << 1)
/*
* 1: Transmit Clear-To-Send to self before this frame.
* Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
* Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
*/
#define TX_CMD_FLG_CTS_MSK cpu_to_le32(1 << 2)
/* 1: Expect ACK from receiving station
* 0: Don't expect ACK (MAC header's duration field s/b 0)
* Set this for unicast frames, but not broadcast/multicast. */
#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
/* For 4965 devices:
* 1: Use rate scale table (see C_TX_LINK_QUALITY_CMD).
* Tx command's initial_rate_idx indicates first rate to try;
* uCode walks through table for additional Tx attempts.
* 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
* This rate will be used for all Tx attempts; it will not be scaled. */
#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
/* 1: Expect immediate block-ack.
* Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
/*
* 1: Frame requires full Tx-Op protection.
* Set this if either RTS or CTS Tx Flag gets set.
*/
#define TX_CMD_FLG_FULL_TXOP_PROT_MSK cpu_to_le32(1 << 7)
/* Tx antenna selection field; used only for 3945, reserved (0) for 4965 devices.
* Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
#define TX_CMD_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
#define TX_CMD_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
/* 1: uCode overrides sequence control field in MAC header.
* 0: Driver provides sequence control field in MAC header.
* Set this for management frames, non-QOS data frames, non-unicast frames,
* and also in Tx command embedded in C_SCAN for active scans. */
#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
/* 1: This frame is non-last MPDU; more fragments are coming.
* 0: Last fragment, or not using fragmentation. */
#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
* 0: No TSF required in outgoing frame.
* Set this for transmitting beacons and probe responses. */
#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
* alignment of frame's payload data field.
* 0: No pad
* Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
* field (but not both). Driver must align frame data (i.e. data following
* MAC header) to DWORD boundary. */
#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
/* accelerate aggregation support
* 0 - no CCMP encryption; 1 - CCMP encryption */
#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
/* HCCA-AP - disable duration overwriting. */
#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
/*
* TX command security control
*/
#define TX_CMD_SEC_WEP 0x01
#define TX_CMD_SEC_CCM 0x02
#define TX_CMD_SEC_TKIP 0x03
#define TX_CMD_SEC_MSK 0x03
#define TX_CMD_SEC_SHIFT 6
#define TX_CMD_SEC_KEY128 0x08
/*
* C_TX = 0x1c (command)
*/
struct il3945_tx_cmd {
/*
* MPDU byte count:
* MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
* + 8 byte IV for CCM or TKIP (not used for WEP)
* + Data payload
* + 8-byte MIC (not used for CCM/WEP)
* NOTE: Does not include Tx command bytes, post-MAC pad bytes,
* MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
* Range: 14-2342 bytes.
*/
__le16 len;
/*
* MPDU or MSDU byte count for next frame.
* Used for fragmentation and bursting, but not 11n aggregation.
* Same as "len", but for next frame. Set to 0 if not applicable.
*/
__le16 next_frame_len;
__le32 tx_flags; /* TX_CMD_FLG_* */
u8 rate;
/* Index of recipient station in uCode's station table */
u8 sta_id;
u8 tid_tspec;
u8 sec_ctl;
u8 key[16];
union {
u8 byte[8];
__le16 word[4];
__le32 dw[2];
} tkip_mic;
__le32 next_frame_info;
union {
__le32 life_time;
__le32 attempt;
} stop_time;
u8 supp_rates[2];
u8 rts_retry_limit; /*byte 50 */
u8 data_retry_limit; /*byte 51 */
union {
__le16 pm_frame_timeout;
__le16 attempt_duration;
} timeout;
/*
* Duration of EDCA burst Tx Opportunity, in 32-usec units.
* Set this if txop time is not specified by HCCA protocol (e.g. by AP).
*/
__le16 driver_txop;
/*
* MAC header goes here, followed by 2 bytes padding if MAC header
* length is 26 or 30 bytes, followed by payload data
*/
u8 payload[0];
struct ieee80211_hdr hdr[0];
} __packed;
/*
* C_TX = 0x1c (response)
*/
struct il3945_tx_resp {
u8 failure_rts;
u8 failure_frame;
u8 bt_kill_count;
u8 rate;
__le32 wireless_media_time;
__le32 status; /* TX status */
} __packed;
/*
* 4965 uCode updates these Tx attempt count values in host DRAM.
* Used for managing Tx retries when expecting block-acks.
* Driver should set these fields to 0.
*/
struct il_dram_scratch {
u8 try_cnt; /* Tx attempts */
u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
__le16 reserved;
} __packed;
struct il_tx_cmd {
/*
* MPDU byte count:
* MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
* + 8 byte IV for CCM or TKIP (not used for WEP)
* + Data payload
* + 8-byte MIC (not used for CCM/WEP)
* NOTE: Does not include Tx command bytes, post-MAC pad bytes,
* MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
* Range: 14-2342 bytes.
*/
__le16 len;
/*
* MPDU or MSDU byte count for next frame.
* Used for fragmentation and bursting, but not 11n aggregation.
* Same as "len", but for next frame. Set to 0 if not applicable.
*/
__le16 next_frame_len;
__le32 tx_flags; /* TX_CMD_FLG_* */
/* uCode may modify this field of the Tx command (in host DRAM!).
* Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
struct il_dram_scratch scratch;
/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
__le32 rate_n_flags; /* RATE_MCS_* */
/* Index of destination station in uCode's station table */
u8 sta_id;
/* Type of security encryption: CCM or TKIP */
u8 sec_ctl; /* TX_CMD_SEC_* */
/*
* Index into rate table (see C_TX_LINK_QUALITY_CMD) for initial
* Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
* data frames, this field may be used to selectively reduce initial
* rate (via non-0 value) for special frames (e.g. management), while
* still supporting rate scaling for all frames.
*/
u8 initial_rate_idx;
u8 reserved;
u8 key[16];
__le16 next_frame_flags;
__le16 reserved2;
union {
__le32 life_time;
__le32 attempt;
} stop_time;
/* Host DRAM physical address pointer to "scratch" in this command.
* Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
__le32 dram_lsb_ptr;
u8 dram_msb_ptr;
u8 rts_retry_limit; /*byte 50 */
u8 data_retry_limit; /*byte 51 */
u8 tid_tspec;
union {
__le16 pm_frame_timeout;
__le16 attempt_duration;
} timeout;
/*
* Duration of EDCA burst Tx Opportunity, in 32-usec units.
* Set this if txop time is not specified by HCCA protocol (e.g. by AP).
*/
__le16 driver_txop;
/*
* MAC header goes here, followed by 2 bytes padding if MAC header
* length is 26 or 30 bytes, followed by payload data
*/
u8 payload[0];
struct ieee80211_hdr hdr[0];
} __packed;
/* TX command response is sent after *3945* transmission attempts.
*
* NOTES:
*
* TX_STATUS_FAIL_NEXT_FRAG
*
* If the fragment flag in the MAC header for the frame being transmitted
* is set and there is insufficient time to transmit the next frame, the
* TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
*
* TX_STATUS_FIFO_UNDERRUN
*
* Indicates the host did not provide bytes to the FIFO fast enough while
* a TX was in progress.
*
* TX_STATUS_FAIL_MGMNT_ABORT
*
* This status is only possible if the ABORT ON MGMT RX parameter was
* set to true with the TX command.
*
* If the MSB of the status parameter is set then an abort sequence is
* required. This sequence consists of the host activating the TX Abort
* control line, and then waiting for the TX Abort command response. This
* indicates that a the device is no longer in a transmit state, and that the
* command FIFO has been cleared. The host must then deactivate the TX Abort
* control line. Receiving is still allowed in this case.
*/
enum {
TX_3945_STATUS_SUCCESS = 0x01,
TX_3945_STATUS_DIRECT_DONE = 0x02,
TX_3945_STATUS_FAIL_SHORT_LIMIT = 0x82,
TX_3945_STATUS_FAIL_LONG_LIMIT = 0x83,
TX_3945_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
TX_3945_STATUS_FAIL_MGMNT_ABORT = 0x85,
TX_3945_STATUS_FAIL_NEXT_FRAG = 0x86,
TX_3945_STATUS_FAIL_LIFE_EXPIRE = 0x87,
TX_3945_STATUS_FAIL_DEST_PS = 0x88,
TX_3945_STATUS_FAIL_ABORTED = 0x89,
TX_3945_STATUS_FAIL_BT_RETRY = 0x8a,
TX_3945_STATUS_FAIL_STA_INVALID = 0x8b,
TX_3945_STATUS_FAIL_FRAG_DROPPED = 0x8c,
TX_3945_STATUS_FAIL_TID_DISABLE = 0x8d,
TX_3945_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
TX_3945_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
TX_3945_STATUS_FAIL_TX_LOCKED = 0x90,
TX_3945_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
};
/*
* TX command response is sent after *4965* transmission attempts.
*
* both postpone and abort status are expected behavior from uCode. there is
* no special operation required from driver; except for RFKILL_FLUSH,
* which required tx flush host command to flush all the tx frames in queues
*/
enum {
TX_STATUS_SUCCESS = 0x01,
TX_STATUS_DIRECT_DONE = 0x02,
/* postpone TX */
TX_STATUS_POSTPONE_DELAY = 0x40,
TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
/* abort TX */
TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
TX_STATUS_FAIL_LONG_LIMIT = 0x83,
TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
TX_STATUS_FAIL_DEST_PS = 0x88,
TX_STATUS_FAIL_HOST_ABORTED = 0x89,
TX_STATUS_FAIL_BT_RETRY = 0x8a,
TX_STATUS_FAIL_STA_INVALID = 0x8b,
TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
TX_STATUS_FAIL_TID_DISABLE = 0x8d,
TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
};
#define TX_PACKET_MODE_REGULAR 0x0000
#define TX_PACKET_MODE_BURST_SEQ 0x0100
#define TX_PACKET_MODE_BURST_FIRST 0x0200
enum {
TX_POWER_PA_NOT_ACTIVE = 0x0,
};
enum {
TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
TX_STATUS_DELAY_MSK = 0x00000040,
TX_STATUS_ABORT_MSK = 0x00000080,
TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
TX_RESERVED = 0x00780000, /* bits 19:22 */
TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
};
/* *******************************
* TX aggregation status
******************************* */
enum {
AGG_TX_STATE_TRANSMITTED = 0x00,
AGG_TX_STATE_UNDERRUN_MSK = 0x01,
AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
AGG_TX_STATE_ABORT_MSK = 0x08,
AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
AGG_TX_STATE_DUMP_TX_MSK = 0x200,
AGG_TX_STATE_DELAY_TX_MSK = 0x400
};
#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK)
/* # tx attempts for first frame in aggregation */
#define AGG_TX_STATE_TRY_CNT_POS 12
#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
/* Command ID and sequence number of Tx command for this frame */
#define AGG_TX_STATE_SEQ_NUM_POS 16
#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
/*
* C_TX = 0x1c (response)
*
* This response may be in one of two slightly different formats, indicated
* by the frame_count field:
*
* 1) No aggregation (frame_count == 1). This reports Tx results for
* a single frame. Multiple attempts, at various bit rates, may have
* been made for this frame.
*
* 2) Aggregation (frame_count > 1). This reports Tx results for
* 2 or more frames that used block-acknowledge. All frames were
* transmitted at same rate. Rate scaling may have been used if first
* frame in this new agg block failed in previous agg block(s).
*
* Note that, for aggregation, ACK (block-ack) status is not delivered here;
* block-ack has not been received by the time the 4965 device records
* this status.
* This status relates to reasons the tx might have been blocked or aborted
* within the sending station (this 4965 device), rather than whether it was
* received successfully by the destination station.
*/
struct agg_tx_status {
__le16 status;
__le16 sequence;
} __packed;
struct il4965_tx_resp {
u8 frame_count; /* 1 no aggregation, >1 aggregation */
u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
u8 failure_rts; /* # failures due to unsuccessful RTS */
u8 failure_frame; /* # failures due to no ACK (unused for agg) */
/* For non-agg: Rate at which frame was successful.
* For agg: Rate at which all frames were transmitted. */
__le32 rate_n_flags; /* RATE_MCS_* */
/* For non-agg: RTS + CTS + frame tx attempts time + ACK.
* For agg: RTS + CTS + aggregation tx time + block-ack time. */
__le16 wireless_media_time; /* uSecs */
__le16 reserved;
__le32 pa_power1; /* RF power amplifier measurement (not used) */
__le32 pa_power2;
/*
* For non-agg: frame status TX_STATUS_*
* For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
* fields follow this one, up to frame_count.
* Bit fields:
* 11- 0: AGG_TX_STATE_* status code
* 15-12: Retry count for 1st frame in aggregation (retries
* occur if tx failed for this frame when it was a
* member of a previous aggregation block). If rate
* scaling is used, retry count indicates the rate
* table entry used for all frames in the new agg.
* 31-16: Sequence # for this frame's Tx cmd (not SSN!)
*/
union {
__le32 status;
struct agg_tx_status agg_status[0]; /* for each agg frame */
} u;
} __packed;
/*
* N_COMPRESSED_BA = 0xc5 (response only, not a command)
*
* Reports Block-Acknowledge from recipient station
*/
struct il_compressed_ba_resp {
__le32 sta_addr_lo32;
__le16 sta_addr_hi16;
__le16 reserved;
/* Index of recipient (BA-sending) station in uCode's station table */
u8 sta_id;
u8 tid;
__le16 seq_ctl;
__le64 bitmap;
__le16 scd_flow;
__le16 scd_ssn;
} __packed;
/*
* C_TX_PWR_TBL = 0x97 (command, has simple generic response)
*
* See details under "TXPOWER" in 4965.h.
*/
struct il3945_txpowertable_cmd {
u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
u8 reserved;
__le16 channel;
struct il3945_power_per_rate power[IL_MAX_RATES];
} __packed;
struct il4965_txpowertable_cmd {
u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
u8 reserved;
__le16 channel;
struct il4965_tx_power_db tx_power;
} __packed;
/**
* struct il3945_rate_scaling_cmd - Rate Scaling Command & Response
*
* C_RATE_SCALE = 0x47 (command, has simple generic response)
*
* NOTE: The table of rates passed to the uCode via the
* RATE_SCALE command sets up the corresponding order of
* rates used for all related commands, including rate
* masks, etc.
*
* For example, if you set 9MB (PLCP 0x0f) as the first
* rate in the rate table, the bit mask for that rate
* when passed through ofdm_basic_rates on the C_RXON
* command would be bit 0 (1 << 0)
*/
struct il3945_rate_scaling_info {
__le16 rate_n_flags;
u8 try_cnt;
u8 next_rate_idx;
} __packed;
struct il3945_rate_scaling_cmd {
u8 table_id;
u8 reserved[3];
struct il3945_rate_scaling_info table[IL_MAX_RATES];
} __packed;
/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
/* # of EDCA prioritized tx fifos */
#define LINK_QUAL_AC_NUM AC_NUM
/* # entries in rate scale table to support Tx retries */
#define LINK_QUAL_MAX_RETRY_NUM 16
/* Tx antenna selection values */
#define LINK_QUAL_ANT_A_MSK (1 << 0)
#define LINK_QUAL_ANT_B_MSK (1 << 1)
#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
/**
* struct il_link_qual_general_params
*
* Used in C_TX_LINK_QUALITY_CMD
*/
struct il_link_qual_general_params {
u8 flags;
/* No entries at or above this (driver chosen) idx contain MIMO */
u8 mimo_delimiter;
/* Best single antenna to use for single stream (legacy, SISO). */
u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
/* Best antennas to use for MIMO (unused for 4965, assumes both). */
u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
/*
* If driver needs to use different initial rates for different
* EDCA QOS access categories (as implemented by tx fifos 0-3),
* this table will set that up, by indicating the idxes in the
* rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
* Otherwise, driver should set all entries to 0.
*
* Entry usage:
* 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
* TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
*/
u8 start_rate_idx[LINK_QUAL_AC_NUM];
} __packed;
#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (31)
#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
/**
* struct il_link_qual_agg_params
*
* Used in C_TX_LINK_QUALITY_CMD
*/
struct il_link_qual_agg_params {
/*
*Maximum number of uSec in aggregation.
* default set to 4000 (4 milliseconds) if not configured in .cfg
*/
__le16 agg_time_limit;
/*
* Number of Tx retries allowed for a frame, before that frame will
* no longer be considered for the start of an aggregation sequence
* (scheduler will then try to tx it as single frame).
* Driver should set this to 3.
*/
u8 agg_dis_start_th;
/*
* Maximum number of frames in aggregation.
* 0 = no limit (default). 1 = no aggregation.
* Other values = max # frames in aggregation.
*/
u8 agg_frame_cnt_limit;
__le32 reserved;
} __packed;
/*
* C_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
*
* For 4965 devices only; 3945 uses C_RATE_SCALE.
*
* Each station in the 4965 device's internal station table has its own table
* of 16
* Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
* an ACK is not received. This command replaces the entire table for
* one station.
*
* NOTE: Station must already be in 4965 device's station table.
* Use C_ADD_STA.
*
* The rate scaling procedures described below work well. Of course, other
* procedures are possible, and may work better for particular environments.
*
*
* FILLING THE RATE TBL
*
* Given a particular initial rate and mode, as determined by the rate
* scaling algorithm described below, the Linux driver uses the following
* formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
* Link Quality command:
*
*
* 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
* a) Use this same initial rate for first 3 entries.
* b) Find next lower available rate using same mode (SISO or MIMO),
* use for next 3 entries. If no lower rate available, switch to
* legacy mode (no HT40 channel, no MIMO, no short guard interval).
* c) If using MIMO, set command's mimo_delimiter to number of entries
* using MIMO (3 or 6).
* d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
* no MIMO, no short guard interval), at the next lower bit rate
* (e.g. if second HT bit rate was 54, try 48 legacy), and follow
* legacy procedure for remaining table entries.
*
* 2) If using legacy initial rate:
* a) Use the initial rate for only one entry.
* b) For each following entry, reduce the rate to next lower available
* rate, until reaching the lowest available rate.
* c) When reducing rate, also switch antenna selection.
* d) Once lowest available rate is reached, repeat this rate until
* rate table is filled (16 entries), switching antenna each entry.
*
*
* ACCUMULATING HISTORY
*
* The rate scaling algorithm for 4965 devices, as implemented in Linux driver,
* uses two sets of frame Tx success history: One for the current/active
* modulation mode, and one for a speculative/search mode that is being
* attempted. If the speculative mode turns out to be more effective (i.e.
* actual transfer rate is better), then the driver continues to use the
* speculative mode as the new current active mode.
*
* Each history set contains, separately for each possible rate, data for a
* sliding win of the 62 most recent tx attempts at that rate. The data
* includes a shifting bitmap of success(1)/failure(0), and sums of successful
* and attempted frames, from which the driver can additionally calculate a
* success ratio (success / attempted) and number of failures
* (attempted - success), and control the size of the win (attempted).
* The driver uses the bit map to remove successes from the success sum, as
* the oldest tx attempts fall out of the win.
*
* When the 4965 device makes multiple tx attempts for a given frame, each
* attempt might be at a different rate, and have different modulation
* characteristics (e.g. antenna, fat channel, short guard interval), as set
* up in the rate scaling table in the Link Quality command. The driver must
* determine which rate table entry was used for each tx attempt, to determine
* which rate-specific history to update, and record only those attempts that
* match the modulation characteristics of the history set.
*
* When using block-ack (aggregation), all frames are transmitted at the same
* rate, since there is no per-attempt acknowledgment from the destination
* station. The Tx response struct il_tx_resp indicates the Tx rate in
* rate_n_flags field. After receiving a block-ack, the driver can update
* history for the entire block all at once.
*
*
* FINDING BEST STARTING RATE:
*
* When working with a selected initial modulation mode (see below), the
* driver attempts to find a best initial rate. The initial rate is the
* first entry in the Link Quality command's rate table.
*
* 1) Calculate actual throughput (success ratio * expected throughput, see
* table below) for current initial rate. Do this only if enough frames
* have been attempted to make the value meaningful: at least 6 failed
* tx attempts, or at least 8 successes. If not enough, don't try rate
* scaling yet.
*
* 2) Find available rates adjacent to current initial rate. Available means:
* a) supported by hardware &&
* b) supported by association &&
* c) within any constraints selected by user
*
* 3) Gather measured throughputs for adjacent rates. These might not have
* enough history to calculate a throughput. That's okay, we might try
* using one of them anyway!
*
* 4) Try decreasing rate if, for current rate:
* a) success ratio is < 15% ||
* b) lower adjacent rate has better measured throughput ||
* c) higher adjacent rate has worse throughput, and lower is unmeasured
*
* As a sanity check, if decrease was determined above, leave rate
* unchanged if:
* a) lower rate unavailable
* b) success ratio at current rate > 85% (very good)
* c) current measured throughput is better than expected throughput
* of lower rate (under perfect 100% tx conditions, see table below)
*
* 5) Try increasing rate if, for current rate:
* a) success ratio is < 15% ||
* b) both adjacent rates' throughputs are unmeasured (try it!) ||
* b) higher adjacent rate has better measured throughput ||
* c) lower adjacent rate has worse throughput, and higher is unmeasured
*
* As a sanity check, if increase was determined above, leave rate
* unchanged if:
* a) success ratio at current rate < 70%. This is not particularly
* good performance; higher rate is sure to have poorer success.
*
* 6) Re-evaluate the rate after each tx frame. If working with block-
* acknowledge, history and stats may be calculated for the entire
* block (including prior history that fits within the history wins),
* before re-evaluation.
*
* FINDING BEST STARTING MODULATION MODE:
*
* After working with a modulation mode for a "while" (and doing rate scaling),
* the driver searches for a new initial mode in an attempt to improve
* throughput. The "while" is measured by numbers of attempted frames:
*
* For legacy mode, search for new mode after:
* 480 successful frames, or 160 failed frames
* For high-throughput modes (SISO or MIMO), search for new mode after:
* 4500 successful frames, or 400 failed frames
*
* Mode switch possibilities are (3 for each mode):
*
* For legacy:
* Change antenna, try SISO (if HT association), try MIMO (if HT association)
* For SISO:
* Change antenna, try MIMO, try shortened guard interval (SGI)
* For MIMO:
* Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
*
* When trying a new mode, use the same bit rate as the old/current mode when
* trying antenna switches and shortened guard interval. When switching to
* SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
* for which the expected throughput (under perfect conditions) is about the
* same or slightly better than the actual measured throughput delivered by
* the old/current mode.
*
* Actual throughput can be estimated by multiplying the expected throughput
* by the success ratio (successful / attempted tx frames). Frame size is
* not considered in this calculation; it assumes that frame size will average
* out to be fairly consistent over several samples. The following are
* metric values for expected throughput assuming 100% success ratio.
* Only G band has support for CCK rates:
*
* RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
*
* G: 7 13 35 58 40 57 72 98 121 154 177 186 186
* A: 0 0 0 0 40 57 72 98 121 154 177 186 186
* SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
* SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
* MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
* SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
* SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
* SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
* MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
* SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
*
* After the new mode has been tried for a short while (minimum of 6 failed
* frames or 8 successful frames), compare success ratio and actual throughput
* estimate of the new mode with the old. If either is better with the new
* mode, continue to use the new mode.
*
* Continue comparing modes until all 3 possibilities have been tried.
* If moving from legacy to HT, try all 3 possibilities from the new HT
* mode. After trying all 3, a best mode is found. Continue to use this mode
* for the longer "while" described above (e.g. 480 successful frames for
* legacy), and then repeat the search process.
*
*/
struct il_link_quality_cmd {
/* Index of destination/recipient station in uCode's station table */
u8 sta_id;
u8 reserved1;
__le16 control; /* not used */
struct il_link_qual_general_params general_params;
struct il_link_qual_agg_params agg_params;
/*
* Rate info; when using rate-scaling, Tx command's initial_rate_idx
* specifies 1st Tx rate attempted, via idx into this table.
* 4965 devices works its way through table when retrying Tx.
*/
struct {
__le32 rate_n_flags; /* RATE_MCS_*, RATE_* */
} rs_table[LINK_QUAL_MAX_RETRY_NUM];
__le32 reserved2;
} __packed;
/*
* BT configuration enable flags:
* bit 0 - 1: BT channel announcement enabled
* 0: disable
* bit 1 - 1: priority of BT device enabled
* 0: disable
*/
#define BT_COEX_DISABLE (0x0)
#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
#define BT_ENABLE_PRIORITY BIT(1)
#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
#define BT_LEAD_TIME_DEF (0x1E)
#define BT_MAX_KILL_DEF (0x5)
/*
* C_BT_CONFIG = 0x9b (command, has simple generic response)
*
* 3945 and 4965 devices support hardware handshake with Bluetooth device on
* same platform. Bluetooth device alerts wireless device when it will Tx;
* wireless device can delay or kill its own Tx to accommodate.
*/
struct il_bt_cmd {
u8 flags;
u8 lead_time;
u8 max_kill;
u8 reserved;
__le32 kill_ack_mask;
__le32 kill_cts_mask;
} __packed;
/******************************************************************************
* (6)
* Spectrum Management (802.11h) Commands, Responses, Notifications:
*
*****************************************************************************/
/*
* Spectrum Management
*/
#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
RXON_FILTER_CTL2HOST_MSK | \
RXON_FILTER_ACCEPT_GRP_MSK | \
RXON_FILTER_DIS_DECRYPT_MSK | \
RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
RXON_FILTER_ASSOC_MSK | \
RXON_FILTER_BCON_AWARE_MSK)
struct il_measure_channel {
__le32 duration; /* measurement duration in extended beacon
* format */
u8 channel; /* channel to measure */
u8 type; /* see enum il_measure_type */
__le16 reserved;
} __packed;
/*
* C_SPECTRUM_MEASUREMENT = 0x74 (command)
*/
struct il_spectrum_cmd {
__le16 len; /* number of bytes starting from token */
u8 token; /* token id */
u8 id; /* measurement id -- 0 or 1 */
u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
u8 periodic; /* 1 = periodic */
__le16 path_loss_timeout;
__le32 start_time; /* start time in extended beacon format */
__le32 reserved2;
__le32 flags; /* rxon flags */
__le32 filter_flags; /* rxon filter flags */
__le16 channel_count; /* minimum 1, maximum 10 */
__le16 reserved3;
struct il_measure_channel channels[10];
} __packed;
/*
* C_SPECTRUM_MEASUREMENT = 0x74 (response)
*/
struct il_spectrum_resp {
u8 token;
u8 id; /* id of the prior command replaced, or 0xff */
__le16 status; /* 0 - command will be handled
* 1 - cannot handle (conflicts with another
* measurement) */
} __packed;
enum il_measurement_state {
IL_MEASUREMENT_START = 0,
IL_MEASUREMENT_STOP = 1,
};
enum il_measurement_status {
IL_MEASUREMENT_OK = 0,
IL_MEASUREMENT_CONCURRENT = 1,
IL_MEASUREMENT_CSA_CONFLICT = 2,
IL_MEASUREMENT_TGH_CONFLICT = 3,
/* 4-5 reserved */
IL_MEASUREMENT_STOPPED = 6,
IL_MEASUREMENT_TIMEOUT = 7,
IL_MEASUREMENT_PERIODIC_FAILED = 8,
};
#define NUM_ELEMENTS_IN_HISTOGRAM 8
struct il_measurement_histogram {
__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
} __packed;
/* clear channel availability counters */
struct il_measurement_cca_counters {
__le32 ofdm;
__le32 cck;
} __packed;
enum il_measure_type {
IL_MEASURE_BASIC = (1 << 0),
IL_MEASURE_CHANNEL_LOAD = (1 << 1),
IL_MEASURE_HISTOGRAM_RPI = (1 << 2),
IL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
IL_MEASURE_FRAME = (1 << 4),
/* bits 5:6 are reserved */
IL_MEASURE_IDLE = (1 << 7),
};
/*
* N_SPECTRUM_MEASUREMENT = 0x75 (notification only, not a command)
*/
struct il_spectrum_notification {
u8 id; /* measurement id -- 0 or 1 */
u8 token;
u8 channel_idx; /* idx in measurement channel list */
u8 state; /* 0 - start, 1 - stop */
__le32 start_time; /* lower 32-bits of TSF */
u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
u8 channel;
u8 type; /* see enum il_measurement_type */
u8 reserved1;
/* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
* valid if applicable for measurement type requested. */
__le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
__le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
__le32 cca_time; /* channel load time in usecs */
u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
* unidentified */
u8 reserved2[3];
struct il_measurement_histogram histogram;
__le32 stop_time; /* lower 32-bits of TSF */
__le32 status; /* see il_measurement_status */
} __packed;
/******************************************************************************
* (7)
* Power Management Commands, Responses, Notifications:
*
*****************************************************************************/
/**
* struct il_powertable_cmd - Power Table Command
* @flags: See below:
*
* C_POWER_TBL = 0x77 (command, has simple generic response)
*
* PM allow:
* bit 0 - '0' Driver not allow power management
* '1' Driver allow PM (use rest of parameters)
*
* uCode send sleep notifications:
* bit 1 - '0' Don't send sleep notification
* '1' send sleep notification (SEND_PM_NOTIFICATION)
*
* Sleep over DTIM
* bit 2 - '0' PM have to walk up every DTIM
* '1' PM could sleep over DTIM till listen Interval.
*
* PCI power managed
* bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
* '1' !(PCI_CFG_LINK_CTRL & 0x1)
*
* Fast PD
* bit 4 - '1' Put radio to sleep when receiving frame for others
*
* Force sleep Modes
* bit 31/30- '00' use both mac/xtal sleeps
* '01' force Mac sleep
* '10' force xtal sleep
* '11' Illegal set
*
* NOTE: if sleep_interval[SLEEP_INTRVL_TBL_SIZE-1] > DTIM period then
* ucode assume sleep over DTIM is allowed and we don't need to wake up
* for every DTIM.
*/
#define IL_POWER_VEC_SIZE 5
#define IL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
#define IL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
#define IL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
struct il3945_powertable_cmd {
__le16 flags;
u8 reserved[2];
__le32 rx_data_timeout;
__le32 tx_data_timeout;
__le32 sleep_interval[IL_POWER_VEC_SIZE];
} __packed;
struct il_powertable_cmd {
__le16 flags;
u8 keep_alive_seconds; /* 3945 reserved */
u8 debug_flags; /* 3945 reserved */
__le32 rx_data_timeout;
__le32 tx_data_timeout;
__le32 sleep_interval[IL_POWER_VEC_SIZE];
__le32 keep_alive_beacons;
} __packed;
/*
* N_PM_SLEEP = 0x7A (notification only, not a command)
* all devices identical.
*/
struct il_sleep_notification {
u8 pm_sleep_mode;
u8 pm_wakeup_src;
__le16 reserved;
__le32 sleep_time;
__le32 tsf_low;
__le32 bcon_timer;
} __packed;
/* Sleep states. all devices identical. */
enum {
IL_PM_NO_SLEEP = 0,
IL_PM_SLP_MAC = 1,
IL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
IL_PM_SLP_FULL_MAC_CARD_STATE = 3,
IL_PM_SLP_PHY = 4,
IL_PM_SLP_REPENT = 5,
IL_PM_WAKEUP_BY_TIMER = 6,
IL_PM_WAKEUP_BY_DRIVER = 7,
IL_PM_WAKEUP_BY_RFKILL = 8,
/* 3 reserved */
IL_PM_NUM_OF_MODES = 12,
};
/*
* N_CARD_STATE = 0xa1 (notification only, not a command)
*/
struct il_card_state_notif {
__le32 flags;
} __packed;
#define HW_CARD_DISABLED 0x01
#define SW_CARD_DISABLED 0x02
#define CT_CARD_DISABLED 0x04
#define RXON_CARD_DISABLED 0x10
struct il_ct_kill_config {
__le32 reserved;
__le32 critical_temperature_M;
__le32 critical_temperature_R;
} __packed;
/******************************************************************************
* (8)
* Scan Commands, Responses, Notifications:
*
*****************************************************************************/
#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
/**
* struct il_scan_channel - entry in C_SCAN channel table
*
* One for each channel in the scan list.
* Each channel can independently select:
* 1) SSID for directed active scans
* 2) Txpower setting (for rate specified within Tx command)
* 3) How long to stay on-channel (behavior may be modified by quiet_time,
* quiet_plcp_th, good_CRC_th)
*
* To avoid uCode errors, make sure the following are true (see comments
* under struct il_scan_cmd about max_out_time and quiet_time):
* 1) If using passive_dwell (i.e. passive_dwell != 0):
* active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
* 2) quiet_time <= active_dwell
* 3) If restricting off-channel time (i.e. max_out_time !=0):
* passive_dwell < max_out_time
* active_dwell < max_out_time
*/
struct il3945_scan_channel {
/*
* type is defined as:
* 0:0 1 = active, 0 = passive
* 1:4 SSID direct bit map; if a bit is set, then corresponding
* SSID IE is transmitted in probe request.
* 5:7 reserved
*/
u8 type;
u8 channel; /* band is selected by il3945_scan_cmd "flags" field */
struct il3945_tx_power tpc;
__le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
__le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
} __packed;
/* set number of direct probes u8 type */
#define IL39_SCAN_PROBE_MASK(n) ((BIT(n) | (BIT(n) - BIT(1))))
struct il_scan_channel {
/*
* type is defined as:
* 0:0 1 = active, 0 = passive
* 1:20 SSID direct bit map; if a bit is set, then corresponding
* SSID IE is transmitted in probe request.
* 21:31 reserved
*/
__le32 type;
__le16 channel; /* band is selected by il_scan_cmd "flags" field */
u8 tx_gain; /* gain for analog radio */
u8 dsp_atten; /* gain for DSP */
__le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
__le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
} __packed;
/* set number of direct probes __le32 type */
#define IL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
/**
* struct il_ssid_ie - directed scan network information element
*
* Up to 20 of these may appear in C_SCAN (Note: Only 4 are in
* 3945 SCAN api), selected by "type" bit field in struct il_scan_channel;
* each channel may select different ssids from among the 20 (4) entries.
* SSID IEs get transmitted in reverse order of entry.
*/
struct il_ssid_ie {
u8 id;
u8 len;
u8 ssid[32];
} __packed;
#define PROBE_OPTION_MAX_3945 4
#define PROBE_OPTION_MAX 20
#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
#define IL_GOOD_CRC_TH_DISABLED 0
#define IL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
#define IL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
#define IL_MAX_SCAN_SIZE 1024
#define IL_MAX_CMD_SIZE 4096
/*
* C_SCAN = 0x80 (command)
*
* The hardware scan command is very powerful; the driver can set it up to
* maintain (relatively) normal network traffic while doing a scan in the
* background. The max_out_time and suspend_time control the ratio of how
* long the device stays on an associated network channel ("service channel")
* vs. how long it's away from the service channel, i.e. tuned to other channels
* for scanning.
*
* max_out_time is the max time off-channel (in usec), and suspend_time
* is how long (in "extended beacon" format) that the scan is "suspended"
* after returning to the service channel. That is, suspend_time is the
* time that we stay on the service channel, doing normal work, between
* scan segments. The driver may set these parameters differently to support
* scanning when associated vs. not associated, and light vs. heavy traffic
* loads when associated.
*
* After receiving this command, the device's scan engine does the following;
*
* 1) Sends SCAN_START notification to driver
* 2) Checks to see if it has time to do scan for one channel
* 3) Sends NULL packet, with power-save (PS) bit set to 1,
* to tell AP that we're going off-channel
* 4) Tunes to first channel in scan list, does active or passive scan
* 5) Sends SCAN_RESULT notification to driver
* 6) Checks to see if it has time to do scan on *next* channel in list
* 7) Repeats 4-6 until it no longer has time to scan the next channel
* before max_out_time expires
* 8) Returns to service channel
* 9) Sends NULL packet with PS=0 to tell AP that we're back
* 10) Stays on service channel until suspend_time expires
* 11) Repeats entire process 2-10 until list is complete
* 12) Sends SCAN_COMPLETE notification
*
* For fast, efficient scans, the scan command also has support for staying on
* a channel for just a short time, if doing active scanning and getting no
* responses to the transmitted probe request. This time is controlled by
* quiet_time, and the number of received packets below which a channel is
* considered "quiet" is controlled by quiet_plcp_threshold.
*
* For active scanning on channels that have regulatory restrictions against
* blindly transmitting, the scan can listen before transmitting, to make sure
* that there is already legitimate activity on the channel. If enough
* packets are cleanly received on the channel (controlled by good_CRC_th,
* typical value 1), the scan engine starts transmitting probe requests.
*
* Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
*
* To avoid uCode errors, see timing restrictions described under
* struct il_scan_channel.
*/
struct il3945_scan_cmd {
__le16 len;
u8 reserved0;
u8 channel_count; /* # channels in channel list */
__le16 quiet_time; /* dwell only this # millisecs on quiet channel
* (only for active scan) */
__le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
__le16 good_CRC_th; /* passive -> active promotion threshold */
__le16 reserved1;
__le32 max_out_time; /* max usec to be away from associated (service)
* channel */
__le32 suspend_time; /* pause scan this long (in "extended beacon
* format") when returning to service channel:
* 3945; 31:24 # beacons, 19:0 additional usec,
* 4965; 31:22 # beacons, 21:0 additional usec.
*/
__le32 flags; /* RXON_FLG_* */
__le32 filter_flags; /* RXON_FILTER_* */
/* For active scans (set to all-0s for passive scans).
* Does not include payload. Must specify Tx rate; no rate scaling. */
struct il3945_tx_cmd tx_cmd;
/* For directed active scans (set to all-0s otherwise) */
struct il_ssid_ie direct_scan[PROBE_OPTION_MAX_3945];
/*
* Probe request frame, followed by channel list.
*
* Size of probe request frame is specified by byte count in tx_cmd.
* Channel list follows immediately after probe request frame.
* Number of channels in list is specified by channel_count.
* Each channel in list is of type:
*
* struct il3945_scan_channel channels[0];
*
* NOTE: Only one band of channels can be scanned per pass. You
* must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
* for one scan to complete (i.e. receive N_SCAN_COMPLETE)
* before requesting another scan.
*/
u8 data[0];
} __packed;
struct il_scan_cmd {
__le16 len;
u8 reserved0;
u8 channel_count; /* # channels in channel list */
__le16 quiet_time; /* dwell only this # millisecs on quiet channel
* (only for active scan) */
__le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
__le16 good_CRC_th; /* passive -> active promotion threshold */
__le16 rx_chain; /* RXON_RX_CHAIN_* */
__le32 max_out_time; /* max usec to be away from associated (service)
* channel */
__le32 suspend_time; /* pause scan this long (in "extended beacon
* format") when returning to service chnl:
* 3945; 31:24 # beacons, 19:0 additional usec,
* 4965; 31:22 # beacons, 21:0 additional usec.
*/
__le32 flags; /* RXON_FLG_* */
__le32 filter_flags; /* RXON_FILTER_* */
/* For active scans (set to all-0s for passive scans).
* Does not include payload. Must specify Tx rate; no rate scaling. */
struct il_tx_cmd tx_cmd;
/* For directed active scans (set to all-0s otherwise) */
struct il_ssid_ie direct_scan[PROBE_OPTION_MAX];
/*
* Probe request frame, followed by channel list.
*
* Size of probe request frame is specified by byte count in tx_cmd.
* Channel list follows immediately after probe request frame.
* Number of channels in list is specified by channel_count.
* Each channel in list is of type:
*
* struct il_scan_channel channels[0];
*
* NOTE: Only one band of channels can be scanned per pass. You
* must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
* for one scan to complete (i.e. receive N_SCAN_COMPLETE)
* before requesting another scan.
*/
u8 data[0];
} __packed;
/* Can abort will notify by complete notification with abort status. */
#define CAN_ABORT_STATUS cpu_to_le32(0x1)
/* complete notification statuses */
#define ABORT_STATUS 0x2
/*
* C_SCAN = 0x80 (response)
*/
struct il_scanreq_notification {
__le32 status; /* 1: okay, 2: cannot fulfill request */
} __packed;
/*
* N_SCAN_START = 0x82 (notification only, not a command)
*/
struct il_scanstart_notification {
__le32 tsf_low;
__le32 tsf_high;
__le32 beacon_timer;
u8 channel;
u8 band;
u8 reserved[2];
__le32 status;
} __packed;
#define SCAN_OWNER_STATUS 0x1
#define MEASURE_OWNER_STATUS 0x2
#define IL_PROBE_STATUS_OK 0
#define IL_PROBE_STATUS_TX_FAILED BIT(0)
/* error statuses combined with TX_FAILED */
#define IL_PROBE_STATUS_FAIL_TTL BIT(1)
#define IL_PROBE_STATUS_FAIL_BT BIT(2)
#define NUMBER_OF_STATS 1 /* first __le32 is good CRC */
/*
* N_SCAN_RESULTS = 0x83 (notification only, not a command)
*/
struct il_scanresults_notification {
u8 channel;
u8 band;
u8 probe_status;
u8 num_probe_not_sent; /* not enough time to send */
__le32 tsf_low;
__le32 tsf_high;
__le32 stats[NUMBER_OF_STATS];
} __packed;
/*
* N_SCAN_COMPLETE = 0x84 (notification only, not a command)
*/
struct il_scancomplete_notification {
u8 scanned_channels;
u8 status;
u8 last_channel;
__le32 tsf_low;
__le32 tsf_high;
} __packed;
/******************************************************************************
* (9)
* IBSS/AP Commands and Notifications:
*
*****************************************************************************/
enum il_ibss_manager {
IL_NOT_IBSS_MANAGER = 0,
IL_IBSS_MANAGER = 1,
};
/*
* N_BEACON = 0x90 (notification only, not a command)
*/
struct il3945_beacon_notif {
struct il3945_tx_resp beacon_notify_hdr;
__le32 low_tsf;
__le32 high_tsf;
__le32 ibss_mgr_status;
} __packed;
struct il4965_beacon_notif {
struct il4965_tx_resp beacon_notify_hdr;
__le32 low_tsf;
__le32 high_tsf;
__le32 ibss_mgr_status;
} __packed;
/*
* C_TX_BEACON= 0x91 (command, has simple generic response)
*/
struct il3945_tx_beacon_cmd {
struct il3945_tx_cmd tx;
__le16 tim_idx;
u8 tim_size;
u8 reserved1;
struct ieee80211_hdr frame[0]; /* beacon frame */
} __packed;
struct il_tx_beacon_cmd {
struct il_tx_cmd tx;
__le16 tim_idx;
u8 tim_size;
u8 reserved1;
struct ieee80211_hdr frame[0]; /* beacon frame */
} __packed;
/******************************************************************************
* (10)
* Statistics Commands and Notifications:
*
*****************************************************************************/
#define IL_TEMP_CONVERT 260
#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
/* Used for passing to driver number of successes and failures per rate */
struct rate_histogram {
union {
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
} success;
union {
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
} failed;
} __packed;
/* stats command response */
struct iwl39_stats_rx_phy {
__le32 ina_cnt;
__le32 fina_cnt;
__le32 plcp_err;
__le32 crc32_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 false_alarm_cnt;
__le32 fina_sync_err_cnt;
__le32 sfd_timeout;
__le32 fina_timeout;
__le32 unresponded_rts;
__le32 rxe_frame_limit_overrun;
__le32 sent_ack_cnt;
__le32 sent_cts_cnt;
} __packed;
struct iwl39_stats_rx_non_phy {
__le32 bogus_cts; /* CTS received when not expecting CTS */
__le32 bogus_ack; /* ACK received when not expecting ACK */
__le32 non_bssid_frames; /* number of frames with BSSID that
* doesn't belong to the STA BSSID */
__le32 filtered_frames; /* count frames that were dumped in the
* filtering process */
__le32 non_channel_beacons; /* beacons with our bss id but not on
* our serving channel */
} __packed;
struct iwl39_stats_rx {
struct iwl39_stats_rx_phy ofdm;
struct iwl39_stats_rx_phy cck;
struct iwl39_stats_rx_non_phy general;
} __packed;
struct iwl39_stats_tx {
__le32 preamble_cnt;
__le32 rx_detected_cnt;
__le32 bt_prio_defer_cnt;
__le32 bt_prio_kill_cnt;
__le32 few_bytes_cnt;
__le32 cts_timeout;
__le32 ack_timeout;
__le32 expected_ack_cnt;
__le32 actual_ack_cnt;
} __packed;
struct stats_dbg {
__le32 burst_check;
__le32 burst_count;
__le32 wait_for_silence_timeout_cnt;
__le32 reserved[3];
} __packed;
struct iwl39_stats_div {
__le32 tx_on_a;
__le32 tx_on_b;
__le32 exec_time;
__le32 probe_time;
} __packed;
struct iwl39_stats_general {
__le32 temperature;
struct stats_dbg dbg;
__le32 sleep_time;
__le32 slots_out;
__le32 slots_idle;
__le32 ttl_timestamp;
struct iwl39_stats_div div;
} __packed;
struct stats_rx_phy {
__le32 ina_cnt;
__le32 fina_cnt;
__le32 plcp_err;
__le32 crc32_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 false_alarm_cnt;
__le32 fina_sync_err_cnt;
__le32 sfd_timeout;
__le32 fina_timeout;
__le32 unresponded_rts;
__le32 rxe_frame_limit_overrun;
__le32 sent_ack_cnt;
__le32 sent_cts_cnt;
__le32 sent_ba_rsp_cnt;
__le32 dsp_self_kill;
__le32 mh_format_err;
__le32 re_acq_main_rssi_sum;
__le32 reserved3;
} __packed;
struct stats_rx_ht_phy {
__le32 plcp_err;
__le32 overrun_err;
__le32 early_overrun_err;
__le32 crc32_good;
__le32 crc32_err;
__le32 mh_format_err;
__le32 agg_crc32_good;
__le32 agg_mpdu_cnt;
__le32 agg_cnt;
__le32 unsupport_mcs;
} __packed;
#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
struct stats_rx_non_phy {
__le32 bogus_cts; /* CTS received when not expecting CTS */
__le32 bogus_ack; /* ACK received when not expecting ACK */
__le32 non_bssid_frames; /* number of frames with BSSID that
* doesn't belong to the STA BSSID */
__le32 filtered_frames; /* count frames that were dumped in the
* filtering process */
__le32 non_channel_beacons; /* beacons with our bss id but not on
* our serving channel */
__le32 channel_beacons; /* beacons with our bss id and in our
* serving channel */
__le32 num_missed_bcon; /* number of missed beacons */
__le32 adc_rx_saturation_time; /* count in 0.8us units the time the
* ADC was in saturation */
__le32 ina_detection_search_time; /* total time (in 0.8us) searched
* for INA */
__le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
__le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
__le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
__le32 interference_data_flag; /* flag for interference data
* availability. 1 when data is
* available. */
__le32 channel_load; /* counts RX Enable time in uSec */
__le32 dsp_false_alarms; /* DSP false alarm (both OFDM
* and CCK) counter */
__le32 beacon_rssi_a;
__le32 beacon_rssi_b;
__le32 beacon_rssi_c;
__le32 beacon_energy_a;
__le32 beacon_energy_b;
__le32 beacon_energy_c;
} __packed;
struct stats_rx {
struct stats_rx_phy ofdm;
struct stats_rx_phy cck;
struct stats_rx_non_phy general;
struct stats_rx_ht_phy ofdm_ht;
} __packed;
/**
* struct stats_tx_power - current tx power
*
* @ant_a: current tx power on chain a in 1/2 dB step
* @ant_b: current tx power on chain b in 1/2 dB step
* @ant_c: current tx power on chain c in 1/2 dB step
*/
struct stats_tx_power {
u8 ant_a;
u8 ant_b;
u8 ant_c;
u8 reserved;
} __packed;
struct stats_tx_non_phy_agg {
__le32 ba_timeout;
__le32 ba_reschedule_frames;
__le32 scd_query_agg_frame_cnt;
__le32 scd_query_no_agg;
__le32 scd_query_agg;
__le32 scd_query_mismatch;
__le32 frame_not_ready;
__le32 underrun;
__le32 bt_prio_kill;
__le32 rx_ba_rsp_cnt;
} __packed;
struct stats_tx {
__le32 preamble_cnt;
__le32 rx_detected_cnt;
__le32 bt_prio_defer_cnt;
__le32 bt_prio_kill_cnt;
__le32 few_bytes_cnt;
__le32 cts_timeout;
__le32 ack_timeout;
__le32 expected_ack_cnt;
__le32 actual_ack_cnt;
__le32 dump_msdu_cnt;
__le32 burst_abort_next_frame_mismatch_cnt;
__le32 burst_abort_missing_next_frame_cnt;
__le32 cts_timeout_collision;
__le32 ack_or_ba_timeout_collision;
struct stats_tx_non_phy_agg agg;
__le32 reserved1;
} __packed;
struct stats_div {
__le32 tx_on_a;
__le32 tx_on_b;
__le32 exec_time;
__le32 probe_time;
__le32 reserved1;
__le32 reserved2;
} __packed;
struct stats_general_common {
__le32 temperature; /* radio temperature */
struct stats_dbg dbg;
__le32 sleep_time;
__le32 slots_out;
__le32 slots_idle;
__le32 ttl_timestamp;
struct stats_div div;
__le32 rx_enable_counter;
/*
* num_of_sos_states:
* count the number of times we have to re-tune
* in order to get out of bad PHY status
*/
__le32 num_of_sos_states;
} __packed;
struct stats_general {
struct stats_general_common common;
__le32 reserved2;
__le32 reserved3;
} __packed;
#define UCODE_STATS_CLEAR_MSK (0x1 << 0)
#define UCODE_STATS_FREQUENCY_MSK (0x1 << 1)
#define UCODE_STATS_NARROW_BAND_MSK (0x1 << 2)
/*
* C_STATS = 0x9c,
* all devices identical.
*
* This command triggers an immediate response containing uCode stats.
* The response is in the same format as N_STATS 0x9d, below.
*
* If the CLEAR_STATS configuration flag is set, uCode will clear its
* internal copy of the stats (counters) after issuing the response.
* This flag does not affect N_STATSs after beacons (see below).
*
* If the DISABLE_NOTIF configuration flag is set, uCode will not issue
* N_STATSs after received beacons (see below). This flag
* does not affect the response to the C_STATS 0x9c itself.
*/
#define IL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
#define IL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2) /* see above */
struct il_stats_cmd {
__le32 configuration_flags; /* IL_STATS_CONF_* */
} __packed;
/*
* N_STATS = 0x9d (notification only, not a command)
*
* By default, uCode issues this notification after receiving a beacon
* while associated. To disable this behavior, set DISABLE_NOTIF flag in the
* C_STATS 0x9c, above.
*
* Statistics counters continue to increment beacon after beacon, but are
* cleared when changing channels or when driver issues C_STATS
* 0x9c with CLEAR_STATS bit set (see above).
*
* uCode also issues this notification during scans. uCode clears stats
* appropriately so that each notification contains stats for only the
* one channel that has just been scanned.
*/
#define STATS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
#define STATS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
struct il3945_notif_stats {
__le32 flag;
struct iwl39_stats_rx rx;
struct iwl39_stats_tx tx;
struct iwl39_stats_general general;
} __packed;
struct il_notif_stats {
__le32 flag;
struct stats_rx rx;
struct stats_tx tx;
struct stats_general general;
} __packed;
/*
* N_MISSED_BEACONS = 0xa2 (notification only, not a command)
*
* uCode send N_MISSED_BEACONS to driver when detect beacon missed
* in regardless of how many missed beacons, which mean when driver receive the
* notification, inside the command, it can find all the beacons information
* which include number of total missed beacons, number of consecutive missed
* beacons, number of beacons received and number of beacons expected to
* receive.
*
* If uCode detected consecutive_missed_beacons > 5, it will reset the radio
* in order to bring the radio/PHY back to working state; which has no relation
* to when driver will perform sensitivity calibration.
*
* Driver should set it own missed_beacon_threshold to decide when to perform
* sensitivity calibration based on number of consecutive missed beacons in
* order to improve overall performance, especially in noisy environment.
*
*/
#define IL_MISSED_BEACON_THRESHOLD_MIN (1)
#define IL_MISSED_BEACON_THRESHOLD_DEF (5)
#define IL_MISSED_BEACON_THRESHOLD_MAX IL_MISSED_BEACON_THRESHOLD_DEF
struct il_missed_beacon_notif {
__le32 consecutive_missed_beacons;
__le32 total_missed_becons;
__le32 num_expected_beacons;
__le32 num_recvd_beacons;
} __packed;
/******************************************************************************
* (11)
* Rx Calibration Commands:
*
* With the uCode used for open source drivers, most Tx calibration (except
* for Tx Power) and most Rx calibration is done by uCode during the
* "initialize" phase of uCode boot. Driver must calibrate only:
*
* 1) Tx power (depends on temperature), described elsewhere
* 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
* 3) Receiver sensitivity (to optimize signal detection)
*
*****************************************************************************/
/**
* C_SENSITIVITY = 0xa8 (command, has simple generic response)
*
* This command sets up the Rx signal detector for a sensitivity level that
* is high enough to lock onto all signals within the associated network,
* but low enough to ignore signals that are below a certain threshold, so as
* not to have too many "false alarms". False alarms are signals that the
* Rx DSP tries to lock onto, but then discards after determining that they
* are noise.
*
* The optimum number of false alarms is between 5 and 50 per 200 TUs
* (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
* time listening, not transmitting). Driver must adjust sensitivity so that
* the ratio of actual false alarms to actual Rx time falls within this range.
*
* While associated, uCode delivers N_STATSs after each
* received beacon. These provide information to the driver to analyze the
* sensitivity. Don't analyze stats that come in from scanning, or any
* other non-associated-network source. Pertinent stats include:
*
* From "general" stats (struct stats_rx_non_phy):
*
* (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
* Measure of energy of desired signal. Used for establishing a level
* below which the device does not detect signals.
*
* (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
* Measure of background noise in silent period after beacon.
*
* channel_load
* uSecs of actual Rx time during beacon period (varies according to
* how much time was spent transmitting).
*
* From "cck" and "ofdm" stats (struct stats_rx_phy), separately:
*
* false_alarm_cnt
* Signal locks abandoned early (before phy-level header).
*
* plcp_err
* Signal locks abandoned late (during phy-level header).
*
* NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
* beacon to beacon, i.e. each value is an accumulation of all errors
* before and including the latest beacon. Values will wrap around to 0
* after counting up to 2^32 - 1. Driver must differentiate vs.
* previous beacon's values to determine # false alarms in the current
* beacon period.
*
* Total number of false alarms = false_alarms + plcp_errs
*
* For OFDM, adjust the following table entries in struct il_sensitivity_cmd
* (notice that the start points for OFDM are at or close to settings for
* maximum sensitivity):
*
* START / MIN / MAX
* HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX 90 / 85 / 120
* HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX 170 / 170 / 210
* HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX 105 / 105 / 140
* HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX 220 / 220 / 270
*
* If actual rate of OFDM false alarms (+ plcp_errors) is too high
* (greater than 50 for each 204.8 msecs listening), reduce sensitivity
* by *adding* 1 to all 4 of the table entries above, up to the max for
* each entry. Conversely, if false alarm rate is too low (less than 5
* for each 204.8 msecs listening), *subtract* 1 from each entry to
* increase sensitivity.
*
* For CCK sensitivity, keep track of the following:
*
* 1). 20-beacon history of maximum background noise, indicated by
* (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
* 3 receivers. For any given beacon, the "silence reference" is
* the maximum of last 60 samples (20 beacons * 3 receivers).
*
* 2). 10-beacon history of strongest signal level, as indicated
* by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
* i.e. the strength of the signal through the best receiver at the
* moment. These measurements are "upside down", with lower values
* for stronger signals, so max energy will be *minimum* value.
*
* Then for any given beacon, the driver must determine the *weakest*
* of the strongest signals; this is the minimum level that needs to be
* successfully detected, when using the best receiver at the moment.
* "Max cck energy" is the maximum (higher value means lower energy!)
* of the last 10 minima. Once this is determined, driver must add
* a little margin by adding "6" to it.
*
* 3). Number of consecutive beacon periods with too few false alarms.
* Reset this to 0 at the first beacon period that falls within the
* "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
*
* Then, adjust the following CCK table entries in struct il_sensitivity_cmd
* (notice that the start points for CCK are at maximum sensitivity):
*
* START / MIN / MAX
* HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX 125 / 125 / 200
* HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX 200 / 200 / 400
* HD_MIN_ENERGY_CCK_DET_IDX 100 / 0 / 100
*
* If actual rate of CCK false alarms (+ plcp_errors) is too high
* (greater than 50 for each 204.8 msecs listening), method for reducing
* sensitivity is:
*
* 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX,
* up to max 400.
*
* 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX is < 160,
* sensitivity has been reduced a significant amount; bring it up to
* a moderate 161. Otherwise, *add* 3, up to max 200.
*
* 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX is > 160,
* sensitivity has been reduced only a moderate or small amount;
* *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_IDX,
* down to min 0. Otherwise (if gain has been significantly reduced),
* don't change the HD_MIN_ENERGY_CCK_DET_IDX value.
*
* b) Save a snapshot of the "silence reference".
*
* If actual rate of CCK false alarms (+ plcp_errors) is too low
* (less than 5 for each 204.8 msecs listening), method for increasing
* sensitivity is used only if:
*
* 1a) Previous beacon did not have too many false alarms
* 1b) AND difference between previous "silence reference" and current
* "silence reference" (prev - current) is 2 or more,
* OR 2) 100 or more consecutive beacon periods have had rate of
* less than 5 false alarms per 204.8 milliseconds rx time.
*
* Method for increasing sensitivity:
*
* 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX,
* down to min 125.
*
* 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX,
* down to min 200.
*
* 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_IDX, up to max 100.
*
* If actual rate of CCK false alarms (+ plcp_errors) is within good range
* (between 5 and 50 for each 204.8 msecs listening):
*
* 1) Save a snapshot of the silence reference.
*
* 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
* give some extra margin to energy threshold by *subtracting* 8
* from value in HD_MIN_ENERGY_CCK_DET_IDX.
*
* For all cases (too few, too many, good range), make sure that the CCK
* detection threshold (energy) is below the energy level for robust
* detection over the past 10 beacon periods, the "Max cck energy".
* Lower values mean higher energy; this means making sure that the value
* in HD_MIN_ENERGY_CCK_DET_IDX is at or *above* "Max cck energy".
*
*/
/*
* Table entries in C_SENSITIVITY (struct il_sensitivity_cmd)
*/
#define HD_TBL_SIZE (11) /* number of entries */
#define HD_MIN_ENERGY_CCK_DET_IDX (0) /* table idxes */
#define HD_MIN_ENERGY_OFDM_DET_IDX (1)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX (2)
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX (3)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX (4)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX (5)
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX (6)
#define HD_BARKER_CORR_TH_ADD_MIN_IDX (7)
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX (8)
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX (9)
#define HD_OFDM_ENERGY_TH_IN_IDX (10)
/* Control field in struct il_sensitivity_cmd */
#define C_SENSITIVITY_CONTROL_DEFAULT_TBL cpu_to_le16(0)
#define C_SENSITIVITY_CONTROL_WORK_TBL cpu_to_le16(1)
/**
* struct il_sensitivity_cmd
* @control: (1) updates working table, (0) updates default table
* @table: energy threshold values, use HD_* as idx into table
*
* Always use "1" in "control" to update uCode's working table and DSP.
*/
struct il_sensitivity_cmd {
__le16 control; /* always use "1" */
__le16 table[HD_TBL_SIZE]; /* use HD_* as idx */
} __packed;
/**
* C_PHY_CALIBRATION = 0xb0 (command, has simple generic response)
*
* This command sets the relative gains of 4965 device's 3 radio receiver chains.
*
* After the first association, driver should accumulate signal and noise
* stats from the N_STATSs that follow the first 20
* beacons from the associated network (don't collect stats that come
* in from scanning, or any other non-network source).
*
* DISCONNECTED ANTENNA:
*
* Driver should determine which antennas are actually connected, by comparing
* average beacon signal levels for the 3 Rx chains. Accumulate (add) the
* following values over 20 beacons, one accumulator for each of the chains
* a/b/c, from struct stats_rx_non_phy:
*
* beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
*
* Find the strongest signal from among a/b/c. Compare the other two to the
* strongest. If any signal is more than 15 dB (times 20, unless you
* divide the accumulated values by 20) below the strongest, the driver
* considers that antenna to be disconnected, and should not try to use that
* antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
* driver should declare the stronger one as connected, and attempt to use it
* (A and B are the only 2 Tx chains!).
*
*
* RX BALANCE:
*
* Driver should balance the 3 receivers (but just the ones that are connected
* to antennas, see above) for gain, by comparing the average signal levels
* detected during the silence after each beacon (background noise).
* Accumulate (add) the following values over 20 beacons, one accumulator for
* each of the chains a/b/c, from struct stats_rx_non_phy:
*
* beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
*
* Find the weakest background noise level from among a/b/c. This Rx chain
* will be the reference, with 0 gain adjustment. Attenuate other channels by
* finding noise difference:
*
* (accum_noise[i] - accum_noise[reference]) / 30
*
* The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
* For use in diff_gain_[abc] fields of struct il_calibration_cmd, the
* driver should limit the difference results to a range of 0-3 (0-4.5 dB),
* and set bit 2 to indicate "reduce gain". The value for the reference
* (weakest) chain should be "0".
*
* diff_gain_[abc] bit fields:
* 2: (1) reduce gain, (0) increase gain
* 1-0: amount of gain, units of 1.5 dB
*/
/* Phy calibration command for series */
/* The default calibrate table size if not specified by firmware */
#define IL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE 18
enum {
IL_PHY_CALIBRATE_DIFF_GAIN_CMD = 7,
IL_MAX_STANDARD_PHY_CALIBRATE_TBL_SIZE = 19,
};
#define IL_MAX_PHY_CALIBRATE_TBL_SIZE (253)
struct il_calib_hdr {
u8 op_code;
u8 first_group;
u8 groups_num;
u8 data_valid;
} __packed;
/* IL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
struct il_calib_diff_gain_cmd {
struct il_calib_hdr hdr;
s8 diff_gain_a; /* see above */
s8 diff_gain_b;
s8 diff_gain_c;
u8 reserved1;
} __packed;
/******************************************************************************
* (12)
* Miscellaneous Commands:
*
*****************************************************************************/
/*
* LEDs Command & Response
* C_LEDS = 0x48 (command, has simple generic response)
*
* For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
* this command turns it on or off, or sets up a periodic blinking cycle.
*/
struct il_led_cmd {
__le32 interval; /* "interval" in uSec */
u8 id; /* 1: Activity, 2: Link, 3: Tech */
u8 off; /* # intervals off while blinking;
* "0", with >0 "on" value, turns LED on */
u8 on; /* # intervals on while blinking;
* "0", regardless of "off", turns LED off */
u8 reserved;
} __packed;
/******************************************************************************
* (13)
* Union of all expected notifications/responses:
*
*****************************************************************************/
#define IL_RX_FRAME_SIZE_MSK 0x00003fff
struct il_rx_pkt {
/*
* The first 4 bytes of the RX frame header contain both the RX frame
* size and some flags.
* Bit fields:
* 31: flag flush RB request
* 30: flag ignore TC (terminal counter) request
* 29: flag fast IRQ request
* 28-14: Reserved
* 13-00: RX frame size
*/
__le32 len_n_flags;
struct il_cmd_header hdr;
union {
struct il3945_rx_frame rx_frame;
struct il3945_tx_resp tx_resp;
struct il3945_beacon_notif beacon_status;
struct il_alive_resp alive_frame;
struct il_spectrum_notification spectrum_notif;
struct il_csa_notification csa_notif;
struct il_error_resp err_resp;
struct il_card_state_notif card_state_notif;
struct il_add_sta_resp add_sta;
struct il_rem_sta_resp rem_sta;
struct il_sleep_notification sleep_notif;
struct il_spectrum_resp spectrum;
struct il_notif_stats stats;
struct il_compressed_ba_resp compressed_ba;
struct il_missed_beacon_notif missed_beacon;
__le32 status;
u8 raw[0];
} u;
} __packed;
#endif /* __il_commands_h__ */