tegrakernel/kernel/kernel-4.9/drivers/net/wireless/mediatek/mt7601u/mac.c

578 lines
14 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "mt7601u.h"
#include "trace.h"
#include <linux/etherdevice.h>
static void
mt76_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate)
{
u8 idx = FIELD_GET(MT_TXWI_RATE_MCS, rate);
txrate->idx = 0;
txrate->flags = 0;
txrate->count = 1;
switch (FIELD_GET(MT_TXWI_RATE_PHY_MODE, rate)) {
case MT_PHY_TYPE_OFDM:
txrate->idx = idx + 4;
return;
case MT_PHY_TYPE_CCK:
if (idx >= 8)
idx -= 8;
txrate->idx = idx;
return;
case MT_PHY_TYPE_HT_GF:
txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD;
/* fall through */
case MT_PHY_TYPE_HT:
txrate->flags |= IEEE80211_TX_RC_MCS;
txrate->idx = idx;
break;
default:
WARN_ON(1);
return;
}
if (FIELD_GET(MT_TXWI_RATE_BW, rate) == MT_PHY_BW_40)
txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
if (rate & MT_TXWI_RATE_SGI)
txrate->flags |= IEEE80211_TX_RC_SHORT_GI;
}
static void
mt76_mac_fill_tx_status(struct mt7601u_dev *dev, struct ieee80211_tx_info *info,
struct mt76_tx_status *st)
{
struct ieee80211_tx_rate *rate = info->status.rates;
int cur_idx, last_rate;
int i;
last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1);
mt76_mac_process_tx_rate(&rate[last_rate], st->rate);
if (last_rate < IEEE80211_TX_MAX_RATES - 1)
rate[last_rate + 1].idx = -1;
cur_idx = rate[last_rate].idx + st->retry;
for (i = 0; i <= last_rate; i++) {
rate[i].flags = rate[last_rate].flags;
rate[i].idx = max_t(int, 0, cur_idx - i);
rate[i].count = 1;
}
if (last_rate > 0)
rate[last_rate - 1].count = st->retry + 1 - last_rate;
info->status.ampdu_len = 1;
info->status.ampdu_ack_len = st->success;
if (st->is_probe)
info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
if (st->aggr)
info->flags |= IEEE80211_TX_CTL_AMPDU |
IEEE80211_TX_STAT_AMPDU;
if (!st->ack_req)
info->flags |= IEEE80211_TX_CTL_NO_ACK;
else if (st->success)
info->flags |= IEEE80211_TX_STAT_ACK;
}
u16 mt76_mac_tx_rate_val(struct mt7601u_dev *dev,
const struct ieee80211_tx_rate *rate, u8 *nss_val)
{
u16 rateval;
u8 phy, rate_idx;
u8 nss = 1;
u8 bw = 0;
if (rate->flags & IEEE80211_TX_RC_MCS) {
rate_idx = rate->idx;
nss = 1 + (rate->idx >> 3);
phy = MT_PHY_TYPE_HT;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
phy = MT_PHY_TYPE_HT_GF;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
bw = 1;
} else {
const struct ieee80211_rate *r;
int band = dev->chandef.chan->band;
u16 val;
r = &dev->hw->wiphy->bands[band]->bitrates[rate->idx];
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
val = r->hw_value_short;
else
val = r->hw_value;
phy = val >> 8;
rate_idx = val & 0xff;
bw = 0;
}
rateval = FIELD_PREP(MT_RXWI_RATE_MCS, rate_idx);
rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy);
rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw);
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rateval |= MT_RXWI_RATE_SGI;
*nss_val = nss;
return rateval;
}
void mt76_mac_wcid_set_rate(struct mt7601u_dev *dev, struct mt76_wcid *wcid,
const struct ieee80211_tx_rate *rate)
{
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
wcid->tx_rate = mt76_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss);
wcid->tx_rate_set = true;
spin_unlock_irqrestore(&dev->lock, flags);
}
struct mt76_tx_status mt7601u_mac_fetch_tx_status(struct mt7601u_dev *dev)
{
struct mt76_tx_status stat = {};
u32 val;
val = mt7601u_rr(dev, MT_TX_STAT_FIFO);
stat.valid = !!(val & MT_TX_STAT_FIFO_VALID);
stat.success = !!(val & MT_TX_STAT_FIFO_SUCCESS);
stat.aggr = !!(val & MT_TX_STAT_FIFO_AGGR);
stat.ack_req = !!(val & MT_TX_STAT_FIFO_ACKREQ);
stat.pktid = FIELD_GET(MT_TX_STAT_FIFO_PID_TYPE, val);
stat.wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, val);
stat.rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, val);
return stat;
}
void mt76_send_tx_status(struct mt7601u_dev *dev, struct mt76_tx_status *stat)
{
struct ieee80211_tx_info info = {};
struct ieee80211_sta *sta = NULL;
struct mt76_wcid *wcid = NULL;
void *msta;
rcu_read_lock();
if (stat->wcid < ARRAY_SIZE(dev->wcid))
wcid = rcu_dereference(dev->wcid[stat->wcid]);
if (wcid) {
msta = container_of(wcid, struct mt76_sta, wcid);
sta = container_of(msta, struct ieee80211_sta,
drv_priv);
}
mt76_mac_fill_tx_status(dev, &info, stat);
spin_lock_bh(&dev->mac_lock);
ieee80211_tx_status_noskb(dev->hw, sta, &info);
spin_unlock_bh(&dev->mac_lock);
rcu_read_unlock();
}
void mt7601u_mac_set_protection(struct mt7601u_dev *dev, bool legacy_prot,
int ht_mode)
{
int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION;
bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
u32 prot[6];
bool ht_rts[4] = {};
int i;
prot[0] = MT_PROT_NAV_SHORT |
MT_PROT_TXOP_ALLOW_ALL |
MT_PROT_RTS_THR_EN;
prot[1] = prot[0];
if (legacy_prot)
prot[1] |= MT_PROT_CTRL_CTS2SELF;
prot[2] = prot[4] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_BW20;
prot[3] = prot[5] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL;
if (legacy_prot) {
prot[2] |= MT_PROT_RATE_CCK_11;
prot[3] |= MT_PROT_RATE_CCK_11;
prot[4] |= MT_PROT_RATE_CCK_11;
prot[5] |= MT_PROT_RATE_CCK_11;
} else {
prot[2] |= MT_PROT_RATE_OFDM_24;
prot[3] |= MT_PROT_RATE_DUP_OFDM_24;
prot[4] |= MT_PROT_RATE_OFDM_24;
prot[5] |= MT_PROT_RATE_DUP_OFDM_24;
}
switch (mode) {
case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
ht_rts[1] = ht_rts[3] = true;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
break;
}
if (non_gf)
ht_rts[2] = ht_rts[3] = true;
for (i = 0; i < 4; i++)
if (ht_rts[i])
prot[i + 2] |= MT_PROT_CTRL_RTS_CTS;
for (i = 0; i < 6; i++)
mt7601u_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]);
}
void mt7601u_mac_set_short_preamble(struct mt7601u_dev *dev, bool short_preamb)
{
if (short_preamb)
mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
else
mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
}
void mt7601u_mac_config_tsf(struct mt7601u_dev *dev, bool enable, int interval)
{
u32 val = mt7601u_rr(dev, MT_BEACON_TIME_CFG);
val &= ~(MT_BEACON_TIME_CFG_TIMER_EN |
MT_BEACON_TIME_CFG_SYNC_MODE |
MT_BEACON_TIME_CFG_TBTT_EN);
if (!enable) {
mt7601u_wr(dev, MT_BEACON_TIME_CFG, val);
return;
}
val &= ~MT_BEACON_TIME_CFG_INTVAL;
val |= FIELD_PREP(MT_BEACON_TIME_CFG_INTVAL, interval << 4) |
MT_BEACON_TIME_CFG_TIMER_EN |
MT_BEACON_TIME_CFG_SYNC_MODE |
MT_BEACON_TIME_CFG_TBTT_EN;
}
static void mt7601u_check_mac_err(struct mt7601u_dev *dev)
{
u32 val = mt7601u_rr(dev, 0x10f4);
if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5))))
return;
dev_err(dev->dev, "Error: MAC specific condition occurred\n");
mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
udelay(10);
mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
}
void mt7601u_mac_work(struct work_struct *work)
{
struct mt7601u_dev *dev = container_of(work, struct mt7601u_dev,
mac_work.work);
struct {
u32 addr_base;
u32 span;
u64 *stat_base;
} spans[] = {
{ MT_RX_STA_CNT0, 3, dev->stats.rx_stat },
{ MT_TX_STA_CNT0, 3, dev->stats.tx_stat },
{ MT_TX_AGG_STAT, 1, dev->stats.aggr_stat },
{ MT_MPDU_DENSITY_CNT, 1, dev->stats.zero_len_del },
{ MT_TX_AGG_CNT_BASE0, 8, &dev->stats.aggr_n[0] },
{ MT_TX_AGG_CNT_BASE1, 8, &dev->stats.aggr_n[16] },
};
u32 sum, n;
int i, j, k;
/* Note: using MCU_RANDOM_READ is actually slower then reading all the
* registers by hand. MCU takes ca. 20ms to complete read of 24
* registers while reading them one by one will takes roughly
* 24*200us =~ 5ms.
*/
k = 0;
n = 0;
sum = 0;
for (i = 0; i < ARRAY_SIZE(spans); i++)
for (j = 0; j < spans[i].span; j++) {
u32 val = mt7601u_rr(dev, spans[i].addr_base + j * 4);
spans[i].stat_base[j * 2] += val & 0xffff;
spans[i].stat_base[j * 2 + 1] += val >> 16;
/* Calculate average AMPDU length */
if (spans[i].addr_base != MT_TX_AGG_CNT_BASE0 &&
spans[i].addr_base != MT_TX_AGG_CNT_BASE1)
continue;
n += (val >> 16) + (val & 0xffff);
sum += (val & 0xffff) * (1 + k * 2) +
(val >> 16) * (2 + k * 2);
k++;
}
atomic_set(&dev->avg_ampdu_len, n ? DIV_ROUND_CLOSEST(sum, n) : 1);
mt7601u_check_mac_err(dev);
ieee80211_queue_delayed_work(dev->hw, &dev->mac_work, 10 * HZ);
}
void
mt7601u_mac_wcid_setup(struct mt7601u_dev *dev, u8 idx, u8 vif_idx, u8 *mac)
{
u8 zmac[ETH_ALEN] = {};
u32 attr;
attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) |
FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8));
mt76_wr(dev, MT_WCID_ATTR(idx), attr);
if (mac)
memcpy(zmac, mac, sizeof(zmac));
mt7601u_addr_wr(dev, MT_WCID_ADDR(idx), zmac);
}
void mt7601u_mac_set_ampdu_factor(struct mt7601u_dev *dev)
{
struct ieee80211_sta *sta;
struct mt76_wcid *wcid;
void *msta;
u8 min_factor = 3;
int i;
rcu_read_lock();
for (i = 0; i < ARRAY_SIZE(dev->wcid); i++) {
wcid = rcu_dereference(dev->wcid[i]);
if (!wcid)
continue;
msta = container_of(wcid, struct mt76_sta, wcid);
sta = container_of(msta, struct ieee80211_sta, drv_priv);
min_factor = min(min_factor, sta->ht_cap.ampdu_factor);
}
rcu_read_unlock();
mt7601u_wr(dev, MT_MAX_LEN_CFG, 0xa0fff |
FIELD_PREP(MT_MAX_LEN_CFG_AMPDU, min_factor));
}
static void
mt76_mac_process_rate(struct ieee80211_rx_status *status, u16 rate)
{
u8 idx = FIELD_GET(MT_RXWI_RATE_MCS, rate);
switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
case MT_PHY_TYPE_OFDM:
if (WARN_ON(idx >= 8))
idx = 0;
idx += 4;
status->rate_idx = idx;
return;
case MT_PHY_TYPE_CCK:
if (idx >= 8) {
idx -= 8;
status->flag |= RX_FLAG_SHORTPRE;
}
if (WARN_ON(idx >= 4))
idx = 0;
status->rate_idx = idx;
return;
case MT_PHY_TYPE_HT_GF:
status->flag |= RX_FLAG_HT_GF;
/* fall through */
case MT_PHY_TYPE_HT:
status->flag |= RX_FLAG_HT;
status->rate_idx = idx;
break;
default:
WARN_ON(1);
return;
}
if (rate & MT_RXWI_RATE_SGI)
status->flag |= RX_FLAG_SHORT_GI;
if (rate & MT_RXWI_RATE_STBC)
status->flag |= 1 << RX_FLAG_STBC_SHIFT;
if (rate & MT_RXWI_RATE_BW)
status->flag |= RX_FLAG_40MHZ;
}
static void
mt7601u_rx_monitor_beacon(struct mt7601u_dev *dev, struct mt7601u_rxwi *rxwi,
u16 rate, int rssi)
{
dev->bcn_freq_off = rxwi->freq_off;
dev->bcn_phy_mode = FIELD_GET(MT_RXWI_RATE_PHY, rate);
dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8);
}
static int
mt7601u_rx_is_our_beacon(struct mt7601u_dev *dev, u8 *data)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
return ieee80211_is_beacon(hdr->frame_control) &&
ether_addr_equal(hdr->addr2, dev->ap_bssid);
}
u32 mt76_mac_process_rx(struct mt7601u_dev *dev, struct sk_buff *skb,
u8 *data, void *rxi)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct mt7601u_rxwi *rxwi = rxi;
u32 len, ctl = le32_to_cpu(rxwi->ctl);
u16 rate = le16_to_cpu(rxwi->rate);
int rssi;
len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl);
if (len < 10)
return 0;
if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) {
status->flag |= RX_FLAG_DECRYPTED;
status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED;
}
status->chains = BIT(0);
rssi = mt7601u_phy_get_rssi(dev, rxwi, rate);
status->chain_signal[0] = status->signal = rssi;
status->freq = dev->chandef.chan->center_freq;
status->band = dev->chandef.chan->band;
mt76_mac_process_rate(status, rate);
spin_lock_bh(&dev->con_mon_lock);
if (mt7601u_rx_is_our_beacon(dev, data))
mt7601u_rx_monitor_beacon(dev, rxwi, rate, rssi);
else if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_U2M))
dev->avg_rssi = (dev->avg_rssi * 15) / 16 + (rssi << 8);
spin_unlock_bh(&dev->con_mon_lock);
return len;
}
static enum mt76_cipher_type
mt76_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
{
memset(key_data, 0, 32);
if (!key)
return MT_CIPHER_NONE;
if (key->keylen > 32)
return MT_CIPHER_NONE;
memcpy(key_data, key->key, key->keylen);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
return MT_CIPHER_WEP40;
case WLAN_CIPHER_SUITE_WEP104:
return MT_CIPHER_WEP104;
case WLAN_CIPHER_SUITE_TKIP:
return MT_CIPHER_TKIP;
case WLAN_CIPHER_SUITE_CCMP:
return MT_CIPHER_AES_CCMP;
default:
return MT_CIPHER_NONE;
}
}
int mt76_mac_wcid_set_key(struct mt7601u_dev *dev, u8 idx,
struct ieee80211_key_conf *key)
{
enum mt76_cipher_type cipher;
u8 key_data[32];
u8 iv_data[8];
u32 val;
cipher = mt76_mac_get_key_info(key, key_data);
if (cipher == MT_CIPHER_NONE && key)
return -EINVAL;
trace_set_key(dev, idx);
mt7601u_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data));
memset(iv_data, 0, sizeof(iv_data));
if (key) {
iv_data[3] = key->keyidx << 6;
if (cipher >= MT_CIPHER_TKIP) {
/* Note: start with 1 to comply with spec,
* (see comment on common/cmm_wpa.c:4291).
*/
iv_data[0] |= 1;
iv_data[3] |= 0x20;
}
}
mt7601u_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data));
val = mt7601u_rr(dev, MT_WCID_ATTR(idx));
val &= ~MT_WCID_ATTR_PKEY_MODE & ~MT_WCID_ATTR_PKEY_MODE_EXT;
val |= FIELD_PREP(MT_WCID_ATTR_PKEY_MODE, cipher & 7) |
FIELD_PREP(MT_WCID_ATTR_PKEY_MODE_EXT, cipher >> 3);
val &= ~MT_WCID_ATTR_PAIRWISE;
val |= MT_WCID_ATTR_PAIRWISE *
!!(key && key->flags & IEEE80211_KEY_FLAG_PAIRWISE);
mt7601u_wr(dev, MT_WCID_ATTR(idx), val);
return 0;
}
int mt76_mac_shared_key_setup(struct mt7601u_dev *dev, u8 vif_idx, u8 key_idx,
struct ieee80211_key_conf *key)
{
enum mt76_cipher_type cipher;
u8 key_data[32];
u32 val;
cipher = mt76_mac_get_key_info(key, key_data);
if (cipher == MT_CIPHER_NONE && key)
return -EINVAL;
trace_set_shared_key(dev, vif_idx, key_idx);
mt7601u_wr_copy(dev, MT_SKEY(vif_idx, key_idx),
key_data, sizeof(key_data));
val = mt76_rr(dev, MT_SKEY_MODE(vif_idx));
val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx));
val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx);
mt76_wr(dev, MT_SKEY_MODE(vif_idx), val);
return 0;
}