tegrakernel/kernel/kernel-4.9/drivers/nvme/host/lightnvm.c

653 lines
15 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* nvme-lightnvm.c - LightNVM NVMe device
*
* Copyright (C) 2014-2015 IT University of Copenhagen
* Initial release: Matias Bjorling <mb@lightnvm.io>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*/
#include "nvme.h"
#include <linux/nvme.h>
#include <linux/bitops.h>
#include <linux/lightnvm.h>
#include <linux/vmalloc.h>
enum nvme_nvm_admin_opcode {
nvme_nvm_admin_identity = 0xe2,
nvme_nvm_admin_get_l2p_tbl = 0xea,
nvme_nvm_admin_get_bb_tbl = 0xf2,
nvme_nvm_admin_set_bb_tbl = 0xf1,
};
struct nvme_nvm_hb_rw {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd2;
__le64 metadata;
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 slba;
};
struct nvme_nvm_ph_rw {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd2;
__le64 metadata;
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 resv;
};
struct nvme_nvm_identity {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le32 chnl_off;
__u32 rsvd11[5];
};
struct nvme_nvm_l2ptbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__le32 cdw2[4];
__le64 prp1;
__le64 prp2;
__le64 slba;
__le32 nlb;
__le16 cdw14[6];
};
struct nvme_nvm_getbbtbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__u32 rsvd4[4];
};
struct nvme_nvm_setbbtbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__le64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 nlb;
__u8 value;
__u8 rsvd3;
__u32 rsvd4[3];
};
struct nvme_nvm_erase_blk {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 resv;
};
struct nvme_nvm_command {
union {
struct nvme_common_command common;
struct nvme_nvm_identity identity;
struct nvme_nvm_hb_rw hb_rw;
struct nvme_nvm_ph_rw ph_rw;
struct nvme_nvm_l2ptbl l2p;
struct nvme_nvm_getbbtbl get_bb;
struct nvme_nvm_setbbtbl set_bb;
struct nvme_nvm_erase_blk erase;
};
};
struct nvme_nvm_completion {
__le64 result; /* Used by LightNVM to return ppa completions */
__le16 sq_head; /* how much of this queue may be reclaimed */
__le16 sq_id; /* submission queue that generated this entry */
__u16 command_id; /* of the command which completed */
__le16 status; /* did the command fail, and if so, why? */
};
#define NVME_NVM_LP_MLC_PAIRS 886
struct nvme_nvm_lp_mlc {
__le16 num_pairs;
__u8 pairs[NVME_NVM_LP_MLC_PAIRS];
};
struct nvme_nvm_lp_tbl {
__u8 id[8];
struct nvme_nvm_lp_mlc mlc;
};
struct nvme_nvm_id_group {
__u8 mtype;
__u8 fmtype;
__le16 res16;
__u8 num_ch;
__u8 num_lun;
__u8 num_pln;
__u8 rsvd1;
__le16 num_blk;
__le16 num_pg;
__le16 fpg_sz;
__le16 csecs;
__le16 sos;
__le16 rsvd2;
__le32 trdt;
__le32 trdm;
__le32 tprt;
__le32 tprm;
__le32 tbet;
__le32 tbem;
__le32 mpos;
__le32 mccap;
__le16 cpar;
__u8 reserved[10];
struct nvme_nvm_lp_tbl lptbl;
} __packed;
struct nvme_nvm_addr_format {
__u8 ch_offset;
__u8 ch_len;
__u8 lun_offset;
__u8 lun_len;
__u8 pln_offset;
__u8 pln_len;
__u8 blk_offset;
__u8 blk_len;
__u8 pg_offset;
__u8 pg_len;
__u8 sect_offset;
__u8 sect_len;
__u8 res[4];
} __packed;
struct nvme_nvm_id {
__u8 ver_id;
__u8 vmnt;
__u8 cgrps;
__u8 res;
__le32 cap;
__le32 dom;
struct nvme_nvm_addr_format ppaf;
__u8 resv[228];
struct nvme_nvm_id_group groups[4];
} __packed;
struct nvme_nvm_bb_tbl {
__u8 tblid[4];
__le16 verid;
__le16 revid;
__le32 rvsd1;
__le32 tblks;
__le32 tfact;
__le32 tgrown;
__le32 tdresv;
__le32 thresv;
__le32 rsvd2[8];
__u8 blk[0];
};
/*
* Check we didn't inadvertently grow the command struct
*/
static inline void _nvme_nvm_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_hb_rw) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_l2ptbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id_group) != 960);
BUILD_BUG_ON(sizeof(struct nvme_nvm_addr_format) != 128);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 512);
}
static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id)
{
struct nvme_nvm_id_group *src;
struct nvm_id_group *dst;
int i, end;
end = min_t(u32, 4, nvm_id->cgrps);
for (i = 0; i < end; i++) {
src = &nvme_nvm_id->groups[i];
dst = &nvm_id->groups[i];
dst->mtype = src->mtype;
dst->fmtype = src->fmtype;
dst->num_ch = src->num_ch;
dst->num_lun = src->num_lun;
dst->num_pln = src->num_pln;
dst->num_pg = le16_to_cpu(src->num_pg);
dst->num_blk = le16_to_cpu(src->num_blk);
dst->fpg_sz = le16_to_cpu(src->fpg_sz);
dst->csecs = le16_to_cpu(src->csecs);
dst->sos = le16_to_cpu(src->sos);
dst->trdt = le32_to_cpu(src->trdt);
dst->trdm = le32_to_cpu(src->trdm);
dst->tprt = le32_to_cpu(src->tprt);
dst->tprm = le32_to_cpu(src->tprm);
dst->tbet = le32_to_cpu(src->tbet);
dst->tbem = le32_to_cpu(src->tbem);
dst->mpos = le32_to_cpu(src->mpos);
dst->mccap = le32_to_cpu(src->mccap);
dst->cpar = le16_to_cpu(src->cpar);
if (dst->fmtype == NVM_ID_FMTYPE_MLC) {
memcpy(dst->lptbl.id, src->lptbl.id, 8);
dst->lptbl.mlc.num_pairs =
le16_to_cpu(src->lptbl.mlc.num_pairs);
if (dst->lptbl.mlc.num_pairs > NVME_NVM_LP_MLC_PAIRS) {
pr_err("nvm: number of MLC pairs not supported\n");
return -EINVAL;
}
memcpy(dst->lptbl.mlc.pairs, src->lptbl.mlc.pairs,
dst->lptbl.mlc.num_pairs);
}
}
return 0;
}
static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_id *nvme_nvm_id;
struct nvme_nvm_command c = {};
int ret;
c.identity.opcode = nvme_nvm_admin_identity;
c.identity.nsid = cpu_to_le32(ns->ns_id);
c.identity.chnl_off = 0;
nvme_nvm_id = kmalloc(sizeof(struct nvme_nvm_id), GFP_KERNEL);
if (!nvme_nvm_id)
return -ENOMEM;
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
nvme_nvm_id, sizeof(struct nvme_nvm_id));
if (ret) {
ret = -EIO;
goto out;
}
nvm_id->ver_id = nvme_nvm_id->ver_id;
nvm_id->vmnt = nvme_nvm_id->vmnt;
nvm_id->cgrps = nvme_nvm_id->cgrps;
nvm_id->cap = le32_to_cpu(nvme_nvm_id->cap);
nvm_id->dom = le32_to_cpu(nvme_nvm_id->dom);
memcpy(&nvm_id->ppaf, &nvme_nvm_id->ppaf,
sizeof(struct nvme_nvm_addr_format));
ret = init_grps(nvm_id, nvme_nvm_id);
out:
kfree(nvme_nvm_id);
return ret;
}
static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb,
nvm_l2p_update_fn *update_l2p, void *priv)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_command c = {};
u32 len = queue_max_hw_sectors(ns->ctrl->admin_q) << 9;
u32 nlb_pr_rq = len / sizeof(u64);
u64 cmd_slba = slba;
void *entries;
int ret = 0;
c.l2p.opcode = nvme_nvm_admin_get_l2p_tbl;
c.l2p.nsid = cpu_to_le32(ns->ns_id);
entries = kmalloc(len, GFP_KERNEL);
if (!entries)
return -ENOMEM;
while (nlb) {
u32 cmd_nlb = min(nlb_pr_rq, nlb);
c.l2p.slba = cpu_to_le64(cmd_slba);
c.l2p.nlb = cpu_to_le32(cmd_nlb);
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q,
(struct nvme_command *)&c, entries, len);
if (ret) {
dev_err(ns->ctrl->device,
"L2P table transfer failed (%d)\n", ret);
ret = -EIO;
goto out;
}
if (update_l2p(cmd_slba, cmd_nlb, entries, priv)) {
ret = -EINTR;
goto out;
}
cmd_slba += cmd_nlb;
nlb -= cmd_nlb;
}
out:
kfree(entries);
return ret;
}
static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
u8 *blks)
{
struct request_queue *q = nvmdev->q;
struct nvme_ns *ns = q->queuedata;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_nvm_command c = {};
struct nvme_nvm_bb_tbl *bb_tbl;
int nr_blks = nvmdev->blks_per_lun * nvmdev->plane_mode;
int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks;
int ret = 0;
c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl;
c.get_bb.nsid = cpu_to_le32(ns->ns_id);
c.get_bb.spba = cpu_to_le64(ppa.ppa);
bb_tbl = kzalloc(tblsz, GFP_KERNEL);
if (!bb_tbl)
return -ENOMEM;
ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c,
bb_tbl, tblsz);
if (ret) {
dev_err(ctrl->device, "get bad block table failed (%d)\n", ret);
ret = -EIO;
goto out;
}
if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' ||
bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') {
dev_err(ctrl->device, "bbt format mismatch\n");
ret = -EINVAL;
goto out;
}
if (le16_to_cpu(bb_tbl->verid) != 1) {
ret = -EINVAL;
dev_err(ctrl->device, "bbt version not supported\n");
goto out;
}
if (le32_to_cpu(bb_tbl->tblks) != nr_blks) {
ret = -EINVAL;
dev_err(ctrl->device,
"bbt unsuspected blocks returned (%u!=%u)",
le32_to_cpu(bb_tbl->tblks), nr_blks);
goto out;
}
memcpy(blks, bb_tbl->blk, nvmdev->blks_per_lun * nvmdev->plane_mode);
out:
kfree(bb_tbl);
return ret;
}
static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas,
int nr_ppas, int type)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_command c = {};
int ret = 0;
c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl;
c.set_bb.nsid = cpu_to_le32(ns->ns_id);
c.set_bb.spba = cpu_to_le64(ppas->ppa);
c.set_bb.nlb = cpu_to_le16(nr_ppas - 1);
c.set_bb.value = type;
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
NULL, 0);
if (ret)
dev_err(ns->ctrl->device, "set bad block table failed (%d)\n",
ret);
return ret;
}
static inline void nvme_nvm_rqtocmd(struct request *rq, struct nvm_rq *rqd,
struct nvme_ns *ns, struct nvme_nvm_command *c)
{
c->ph_rw.opcode = rqd->opcode;
c->ph_rw.nsid = cpu_to_le32(ns->ns_id);
c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa);
c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list);
c->ph_rw.control = cpu_to_le16(rqd->flags);
c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1);
if (rqd->opcode == NVM_OP_HBWRITE || rqd->opcode == NVM_OP_HBREAD)
c->hb_rw.slba = cpu_to_le64(nvme_block_nr(ns,
rqd->bio->bi_iter.bi_sector));
}
static void nvme_nvm_end_io(struct request *rq, int error)
{
struct nvm_rq *rqd = rq->end_io_data;
struct nvme_nvm_completion *cqe = rq->special;
if (cqe)
rqd->ppa_status = le64_to_cpu(cqe->result);
nvm_end_io(rqd, error);
kfree(rq->cmd);
blk_mq_free_request(rq);
}
static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd)
{
struct request_queue *q = dev->q;
struct nvme_ns *ns = q->queuedata;
struct request *rq;
struct bio *bio = rqd->bio;
struct nvme_nvm_command *cmd;
rq = blk_mq_alloc_request(q, bio_data_dir(bio), 0);
if (IS_ERR(rq))
return -ENOMEM;
cmd = kzalloc(sizeof(struct nvme_nvm_command) +
sizeof(struct nvme_nvm_completion), GFP_KERNEL);
if (!cmd) {
blk_mq_free_request(rq);
return -ENOMEM;
}
rq->cmd_type = REQ_TYPE_DRV_PRIV;
rq->ioprio = bio_prio(bio);
if (bio_has_data(bio))
rq->nr_phys_segments = bio_phys_segments(q, bio);
rq->__data_len = bio->bi_iter.bi_size;
rq->bio = rq->biotail = bio;
nvme_nvm_rqtocmd(rq, rqd, ns, cmd);
rq->cmd = (unsigned char *)cmd;
rq->cmd_len = sizeof(struct nvme_nvm_command);
rq->special = cmd + 1;
rq->end_io_data = rqd;
blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io);
return 0;
}
static int nvme_nvm_erase_block(struct nvm_dev *dev, struct nvm_rq *rqd)
{
struct request_queue *q = dev->q;
struct nvme_ns *ns = q->queuedata;
struct nvme_nvm_command c = {};
c.erase.opcode = NVM_OP_ERASE;
c.erase.nsid = cpu_to_le32(ns->ns_id);
c.erase.spba = cpu_to_le64(rqd->ppa_addr.ppa);
c.erase.length = cpu_to_le16(rqd->nr_ppas - 1);
return nvme_submit_sync_cmd(q, (struct nvme_command *)&c, NULL, 0);
}
static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0);
}
static void nvme_nvm_destroy_dma_pool(void *pool)
{
struct dma_pool *dma_pool = pool;
dma_pool_destroy(dma_pool);
}
static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool,
gfp_t mem_flags, dma_addr_t *dma_handler)
{
return dma_pool_alloc(pool, mem_flags, dma_handler);
}
static void nvme_nvm_dev_dma_free(void *pool, void *addr,
dma_addr_t dma_handler)
{
dma_pool_free(pool, addr, dma_handler);
}
static struct nvm_dev_ops nvme_nvm_dev_ops = {
.identity = nvme_nvm_identity,
.get_l2p_tbl = nvme_nvm_get_l2p_tbl,
.get_bb_tbl = nvme_nvm_get_bb_tbl,
.set_bb_tbl = nvme_nvm_set_bb_tbl,
.submit_io = nvme_nvm_submit_io,
.erase_block = nvme_nvm_erase_block,
.create_dma_pool = nvme_nvm_create_dma_pool,
.destroy_dma_pool = nvme_nvm_destroy_dma_pool,
.dev_dma_alloc = nvme_nvm_dev_dma_alloc,
.dev_dma_free = nvme_nvm_dev_dma_free,
.max_phys_sect = 64,
};
int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node,
const struct attribute_group *attrs)
{
struct request_queue *q = ns->queue;
struct nvm_dev *dev;
int ret;
dev = nvm_alloc_dev(node);
if (!dev)
return -ENOMEM;
dev->q = q;
memcpy(dev->name, disk_name, DISK_NAME_LEN);
dev->ops = &nvme_nvm_dev_ops;
dev->parent_dev = ns->ctrl->device;
dev->private_data = ns;
ns->ndev = dev;
ret = nvm_register(dev);
ns->lba_shift = ilog2(dev->sec_size);
if (sysfs_create_group(&dev->dev.kobj, attrs))
pr_warn("%s: failed to create sysfs group for identification\n",
disk_name);
return ret;
}
void nvme_nvm_unregister(struct nvme_ns *ns)
{
nvm_unregister(ns->ndev);
}
/* move to shared place when used in multiple places. */
#define PCI_VENDOR_ID_CNEX 0x1d1d
#define PCI_DEVICE_ID_CNEX_WL 0x2807
#define PCI_DEVICE_ID_CNEX_QEMU 0x1f1f
int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
{
struct nvme_ctrl *ctrl = ns->ctrl;
/* XXX: this is poking into PCI structures from generic code! */
struct pci_dev *pdev = to_pci_dev(ctrl->dev);
/* QEMU NVMe simulator - PCI ID + Vendor specific bit */
if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
pdev->device == PCI_DEVICE_ID_CNEX_QEMU &&
id->vs[0] == 0x1)
return 1;
/* CNEX Labs - PCI ID + Vendor specific bit */
if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
pdev->device == PCI_DEVICE_ID_CNEX_WL &&
id->vs[0] == 0x1)
return 1;
return 0;
}