tegrakernel/kernel/kernel-4.9/drivers/phy/tegra/xusb.c

1804 lines
43 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Copyright (c) 2014-2019, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/phy/tegra/xusb.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <soc/tegra/fuse.h>
#include "xusb.h"
static struct phy *tegra_xusb_pad_of_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct tegra_xusb_pad *pad = dev_get_drvdata(dev);
struct phy *phy = NULL;
unsigned int i;
if (args->args_count != 0)
return ERR_PTR(-EINVAL);
for (i = 0; i < pad->soc->num_lanes; i++) {
if (!pad->lanes[i])
continue;
if (pad->lanes[i]->dev.of_node == args->np) {
phy = pad->lanes[i];
break;
}
}
if (phy == NULL)
phy = ERR_PTR(-ENODEV);
return phy;
}
static const struct of_device_id tegra_xusb_padctl_of_match[] = {
#if defined(CONFIG_ARCH_TEGRA_124_SOC) || defined(CONFIG_ARCH_TEGRA_132_SOC)
{
.compatible = "nvidia,tegra124-xusb-padctl",
.data = &tegra124_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{
.compatible = "nvidia,tegra210-xusb-padctl",
.data = &tegra210_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_210_SOC)
{
.compatible = "nvidia,tegra210b01-xusb-padctl",
.data = &tegra210b01_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_18x_SOC)
{
.compatible = "nvidia,tegra18x-xusb-padctl",
.data = &tegra186_xusb_padctl_soc,
},
#endif
#if defined(CONFIG_ARCH_TEGRA_19x_SOC)
{
.compatible = "nvidia,tegra19x-xusb-padctl",
.data = &tegra194_xusb_padctl_soc,
},
#endif
{ }
};
MODULE_DEVICE_TABLE(of, tegra_xusb_padctl_of_match);
static struct device_node *
tegra_xusb_find_pad_node(struct tegra_xusb_padctl *padctl, const char *name)
{
/*
* of_find_node_by_name() drops a reference, so make sure to grab one.
*/
struct device_node *np = of_node_get(padctl->dev->of_node);
np = of_find_node_by_name(np, "pads");
if (np)
np = of_find_node_by_name(np, name);
return np;
}
static struct device_node *
tegra_xusb_pad_find_phy_node(struct tegra_xusb_pad *pad, unsigned int index)
{
/*
* of_find_node_by_name() drops a reference, so make sure to grab one.
*/
struct device_node *np = of_node_get(pad->dev.of_node);
np = of_find_node_by_name(np, "lanes");
if (!np)
return NULL;
return of_find_node_by_name(np, pad->soc->lanes[index].name);
}
static int
tegra_xusb_lane_lookup_function(struct tegra_xusb_lane *lane,
const char *function)
{
unsigned int i;
for (i = 0; i < lane->soc->num_funcs; i++)
if (strcmp(function, lane->soc->funcs[i]) == 0)
return i;
return -EINVAL;
}
int tegra_xusb_lane_parse_dt(struct tegra_xusb_lane *lane,
struct device_node *np)
{
struct device *dev = &lane->pad->dev;
const char *function;
int err;
err = of_property_read_string(np, "nvidia,function", &function);
if (err < 0)
return err;
err = tegra_xusb_lane_lookup_function(lane, function);
if (err < 0) {
dev_err(dev, "invalid function \"%s\" for lane \"%s\"\n",
function, np->name);
return err;
}
lane->function = err;
return 0;
}
static void tegra_xusb_lane_destroy(struct phy *phy)
{
if (phy) {
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
lane->pad->ops->remove(lane);
phy_destroy(phy);
}
}
static void tegra_xusb_pad_release(struct device *dev)
{
struct tegra_xusb_pad *pad = to_tegra_xusb_pad(dev);
pad->soc->ops->remove(pad);
}
static struct device_type tegra_xusb_pad_type = {
.release = tegra_xusb_pad_release,
};
int tegra_xusb_pad_init(struct tegra_xusb_pad *pad,
struct tegra_xusb_padctl *padctl,
struct device_node *np)
{
int err;
device_initialize(&pad->dev);
INIT_LIST_HEAD(&pad->list);
pad->dev.parent = padctl->dev;
pad->dev.type = &tegra_xusb_pad_type;
pad->dev.of_node = np;
pad->padctl = padctl;
err = dev_set_name(&pad->dev, "%s", pad->soc->name);
if (err < 0)
goto unregister;
err = device_add(&pad->dev);
if (err < 0)
goto unregister;
return 0;
unregister:
device_unregister(&pad->dev);
return err;
}
int tegra_xusb_pad_register(struct tegra_xusb_pad *pad,
const struct phy_ops *ops)
{
struct device_node *children;
struct phy *lane;
unsigned int i;
int err;
children = of_find_node_by_name(pad->dev.of_node, "lanes");
if (!children)
return -ENODEV;
pad->lanes = devm_kcalloc(&pad->dev, pad->soc->num_lanes, sizeof(lane),
GFP_KERNEL);
if (!pad->lanes) {
of_node_put(children);
return -ENOMEM;
}
for (i = 0; i < pad->soc->num_lanes; i++) {
struct device_node *np = tegra_xusb_pad_find_phy_node(pad, i);
struct tegra_xusb_lane *lane;
/* skip disabled lanes */
if (!np || !of_device_is_available(np)) {
of_node_put(np);
continue;
}
pad->lanes[i] = phy_create(&pad->dev, np, ops);
if (IS_ERR(pad->lanes[i])) {
err = PTR_ERR(pad->lanes[i]);
of_node_put(np);
goto remove;
}
lane = pad->ops->probe(pad, np, i);
if (IS_ERR(lane)) {
phy_destroy(pad->lanes[i]);
err = PTR_ERR(lane);
goto remove;
}
list_add_tail(&lane->list, &pad->padctl->lanes);
phy_set_drvdata(pad->lanes[i], lane);
}
pad->provider = of_phy_provider_register_full(&pad->dev, children,
tegra_xusb_pad_of_xlate);
if (IS_ERR(pad->provider)) {
err = PTR_ERR(pad->provider);
goto remove;
}
return 0;
remove:
while (i--)
tegra_xusb_lane_destroy(pad->lanes[i]);
of_node_put(children);
return err;
}
void tegra_xusb_pad_unregister(struct tegra_xusb_pad *pad)
{
unsigned int i = pad->soc->num_lanes;
of_phy_provider_unregister(pad->provider);
while (i--)
tegra_xusb_lane_destroy(pad->lanes[i]);
device_unregister(&pad->dev);
}
static struct tegra_xusb_pad *
tegra_xusb_pad_create(struct tegra_xusb_padctl *padctl,
const struct tegra_xusb_pad_soc *soc)
{
struct tegra_xusb_pad *pad;
struct device_node *np;
int err;
np = tegra_xusb_find_pad_node(padctl, soc->name);
if (!np || !of_device_is_available(np))
return NULL;
pad = soc->ops->probe(padctl, soc, np);
if (IS_ERR(pad)) {
err = PTR_ERR(pad);
dev_err(padctl->dev, "failed to create pad %s: %d\n",
soc->name, err);
return ERR_PTR(err);
}
/* XXX move this into ->probe() to avoid string comparison */
if (strcmp(soc->name, "pcie") == 0)
padctl->pcie = pad;
if (strcmp(soc->name, "sata") == 0)
padctl->sata = pad;
if (strcmp(soc->name, "usb2") == 0)
padctl->usb2 = pad;
if (strcmp(soc->name, "ulpi") == 0)
padctl->ulpi = pad;
if (strcmp(soc->name, "hsic") == 0)
padctl->hsic = pad;
return pad;
}
static void __tegra_xusb_remove_pads(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_pad *pad, *tmp;
list_for_each_entry_safe_reverse(pad, tmp, &padctl->pads, list) {
list_del(&pad->list);
tegra_xusb_pad_unregister(pad);
}
}
static void tegra_xusb_remove_pads(struct tegra_xusb_padctl *padctl)
{
mutex_lock(&padctl->lock);
__tegra_xusb_remove_pads(padctl);
mutex_unlock(&padctl->lock);
}
static void tegra_xusb_lane_program(struct tegra_xusb_lane *lane)
{
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
const struct tegra_xusb_lane_soc *soc = lane->soc;
u32 value;
/* skip single function lanes */
if (soc->num_funcs < 2)
return;
/* choose function */
value = padctl_readl(padctl, soc->offset);
value &= ~(soc->mask << soc->shift);
value |= lane->function << soc->shift;
padctl_writel(padctl, value, soc->offset);
}
static void tegra_xusb_pad_program(struct tegra_xusb_pad *pad)
{
unsigned int i;
for (i = 0; i < pad->soc->num_lanes; i++) {
struct tegra_xusb_lane *lane;
if (pad->lanes[i]) {
lane = phy_get_drvdata(pad->lanes[i]);
tegra_xusb_lane_program(lane);
}
}
}
static int tegra_xusb_setup_pads(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_pad *pad;
unsigned int i;
mutex_lock(&padctl->lock);
for (i = 0; i < padctl->soc->num_pads; i++) {
const struct tegra_xusb_pad_soc *soc = padctl->soc->pads[i];
int err;
pad = tegra_xusb_pad_create(padctl, soc);
if (IS_ERR(pad)) {
err = PTR_ERR(pad);
dev_err(padctl->dev, "failed to create pad %s: %d\n",
soc->name, err);
__tegra_xusb_remove_pads(padctl);
mutex_unlock(&padctl->lock);
return err;
}
if (!pad)
continue;
list_add_tail(&pad->list, &padctl->pads);
}
list_for_each_entry(pad, &padctl->pads, list)
tegra_xusb_pad_program(pad);
mutex_unlock(&padctl->lock);
return 0;
}
bool tegra_xusb_lane_check(struct tegra_xusb_lane *lane,
const char *function)
{
const char *func = lane->soc->funcs[lane->function];
return strcmp(function, func) == 0;
}
struct tegra_xusb_lane *tegra_xusb_find_lane(struct tegra_xusb_padctl *padctl,
const char *type,
unsigned int index)
{
struct tegra_xusb_lane *lane, *hit = ERR_PTR(-ENODEV);
char *name;
name = kasprintf(GFP_KERNEL, "%s-%u", type, index);
if (!name)
return ERR_PTR(-ENOMEM);
list_for_each_entry(lane, &padctl->lanes, list) {
if (strcmp(lane->soc->name, name) == 0) {
hit = lane;
break;
}
}
kfree(name);
return hit;
}
struct tegra_xusb_lane *
tegra_xusb_port_find_lane(struct tegra_xusb_port *port,
const struct tegra_xusb_lane_map *map,
const char *function)
{
struct tegra_xusb_lane *lane, *match = ERR_PTR(-ENODEV);
for (; map->type; map++) {
if (port->index != map->port)
continue;
lane = tegra_xusb_find_lane(port->padctl, map->type,
map->index);
if (IS_ERR(lane))
continue;
if (!tegra_xusb_lane_check(lane, function))
continue;
if (!IS_ERR(match))
dev_err(&port->dev, "conflicting match: %s-%u / %s\n",
map->type, map->index, match->soc->name);
else
match = lane;
}
return match;
}
static struct device_node *
tegra_xusb_find_port_node(struct tegra_xusb_padctl *padctl, const char *type,
unsigned int index)
{
/*
* of_find_node_by_name() drops a reference, so make sure to grab one.
*/
struct device_node *np = of_node_get(padctl->dev->of_node);
np = of_find_node_by_name(np, "ports");
if (np) {
char *name;
name = kasprintf(GFP_KERNEL, "%s-%u", type, index);
np = of_find_node_by_name(np, name);
kfree(name);
}
return np;
}
struct tegra_xusb_port *
tegra_xusb_find_port(struct tegra_xusb_padctl *padctl, const char *type,
unsigned int index)
{
struct tegra_xusb_port *port;
struct device_node *np;
np = tegra_xusb_find_port_node(padctl, type, index);
if (!np)
return NULL;
list_for_each_entry(port, &padctl->ports, list) {
if (np == port->dev.of_node) {
of_node_put(np);
return port;
}
}
of_node_put(np);
return NULL;
}
struct tegra_xusb_usb2_port *
tegra_xusb_find_usb2_port(struct tegra_xusb_padctl *padctl, unsigned int index)
{
struct tegra_xusb_port *port;
port = tegra_xusb_find_port(padctl, "usb2", index);
if (port)
return to_usb2_port(port);
return NULL;
}
struct tegra_xusb_hsic_port *
tegra_xusb_find_hsic_port(struct tegra_xusb_padctl *padctl, unsigned int index)
{
struct tegra_xusb_port *port;
port = tegra_xusb_find_port(padctl, "hsic", index);
if (port)
return to_hsic_port(port);
return NULL;
}
struct tegra_xusb_usb3_port *
tegra_xusb_find_usb3_port(struct tegra_xusb_padctl *padctl, unsigned int index)
{
struct tegra_xusb_port *port;
port = tegra_xusb_find_port(padctl, "usb3", index);
if (port)
return to_usb3_port(port);
return NULL;
}
static void tegra_xusb_port_release(struct device *dev)
{
}
static struct device_type tegra_xusb_port_type = {
.release = tegra_xusb_port_release,
};
static int tegra_xusb_port_init(struct tegra_xusb_port *port,
struct tegra_xusb_padctl *padctl,
struct device_node *np,
const char *name,
unsigned int index)
{
int err;
INIT_LIST_HEAD(&port->list);
port->padctl = padctl;
port->index = index;
device_initialize(&port->dev);
port->dev.type = &tegra_xusb_port_type;
port->dev.of_node = of_node_get(np);
port->dev.parent = padctl->dev;
err = dev_set_name(&port->dev, "%s-%u", name, index);
if (err < 0)
goto unregister;
err = device_add(&port->dev);
if (err < 0)
goto unregister;
return 0;
unregister:
device_unregister(&port->dev);
return err;
}
static void tegra_xusb_port_unregister(struct tegra_xusb_port *port)
{
device_unregister(&port->dev);
}
static int tegra_xusb_usb2_port_parse_dt(struct tegra_xusb_usb2_port *usb2)
{
struct tegra_xusb_port *port = &usb2->base;
struct device_node *np = port->dev.of_node;
const char *prop_string;
int err = 0;
u32 value;
usb2->internal = of_property_read_bool(np, "nvidia,internal");
usb2->port_cap = USB_PORT_DISABLED; /* default */
if (!of_property_read_string(np, "mode", &prop_string)) {
if (!strcmp("host", prop_string))
usb2->port_cap = USB_HOST_CAP;
else if (!strcmp("device", prop_string))
usb2->port_cap = USB_DEVICE_CAP;
else if (!strcmp("otg", prop_string))
usb2->port_cap = USB_OTG_CAP;
}
if (usb2->port_cap == USB_OTG_CAP || usb2->port_cap == USB_DEVICE_CAP) {
usb2->vbus_id = 0;
err = of_property_read_u32(np, "vbus-id", &value);
if (!err)
usb2->vbus_id = value;
}
usb2->supply = devm_regulator_get(&port->dev, "vbus");
if (IS_ERR(usb2->supply))
return PTR_ERR(usb2->supply);
err = of_property_read_u32(np, "nvidia,oc-pin", &value);
if (!err)
usb2->oc_pin = value;
if (!of_property_read_u32(np, "nvidia,usb3-port-fake", &value))
usb2->usb3_port_fake = value;
else
usb2->usb3_port_fake = -1; /* default */
return 0;
}
static int tegra_xusb_add_usb2_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_usb2_port *usb2;
struct device_node *np;
int err = 0;
/*
* USB2 ports don't require additional properties, but if the port is
* marked as disabled there is no reason to register it.
*/
np = tegra_xusb_find_port_node(padctl, "usb2", index);
if (!np || !of_device_is_available(np))
goto out;
usb2 = devm_kzalloc(padctl->dev, sizeof(*usb2), GFP_KERNEL);
if (!usb2) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&usb2->base, padctl, np, "usb2", index);
if (err < 0)
goto out;
/* overcurrent disabled by default */
usb2->oc_pin = -1;
usb2->base.ops = padctl->soc->ports.usb2.ops;
usb2->base.lane = usb2->base.ops->map(&usb2->base);
if (IS_ERR(usb2->base.lane)) {
err = PTR_ERR(usb2->base.lane);
goto out;
}
err = tegra_xusb_usb2_port_parse_dt(usb2);
if (err < 0) {
tegra_xusb_port_unregister(&usb2->base);
goto out;
}
if (usb2->port_cap == USB_OTG_CAP || usb2->port_cap == USB_DEVICE_CAP) {
padctl->otg_vbus_usb2_port_base_1[usb2->vbus_id] = index + 1;
dev_dbg(padctl->dev, "vbus_id %d => usb2 %d\n", usb2->vbus_id,
padctl->otg_vbus_usb2_port_base_1[usb2->vbus_id]);
padctl->otg_port_num++;
}
if (usb2->oc_pin > 0 && usb2->oc_pin >= padctl->soc->num_oc_pins) {
dev_err(padctl->dev, "Invalid OC pin: %d\n", usb2->oc_pin);
usb2->oc_pin = -1;
} else
dev_dbg(padctl->dev,
"USB2 port %d OC pin %d\n", index, usb2->oc_pin);
list_add_tail(&usb2->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
static int tegra_xusb_ulpi_port_parse_dt(struct tegra_xusb_ulpi_port *ulpi)
{
struct tegra_xusb_port *port = &ulpi->base;
struct device_node *np = port->dev.of_node;
ulpi->internal = of_property_read_bool(np, "nvidia,internal");
return 0;
}
static int tegra_xusb_add_ulpi_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_ulpi_port *ulpi;
struct device_node *np;
int err = 0;
np = tegra_xusb_find_port_node(padctl, "ulpi", index);
if (!np || !of_device_is_available(np))
goto out;
ulpi = devm_kzalloc(padctl->dev, sizeof(*ulpi), GFP_KERNEL);
if (!ulpi) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&ulpi->base, padctl, np, "ulpi", index);
if (err < 0)
goto out;
ulpi->base.ops = padctl->soc->ports.ulpi.ops;
ulpi->base.lane = ulpi->base.ops->map(&ulpi->base);
if (IS_ERR(ulpi->base.lane)) {
err = PTR_ERR(ulpi->base.lane);
goto out;
}
err = tegra_xusb_ulpi_port_parse_dt(ulpi);
if (err < 0) {
tegra_xusb_port_unregister(&ulpi->base);
goto out;
}
list_add_tail(&ulpi->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
static int tegra_xusb_hsic_port_parse_dt(struct tegra_xusb_hsic_port *hsic)
{
/* XXX */
return 0;
}
static int tegra_xusb_add_hsic_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_hsic_port *hsic;
struct device_node *np;
int err = 0;
np = tegra_xusb_find_port_node(padctl, "hsic", index);
if (!np || !of_device_is_available(np))
goto out;
hsic = devm_kzalloc(padctl->dev, sizeof(*hsic), GFP_KERNEL);
if (!hsic) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&hsic->base, padctl, np, "hsic", index);
if (err < 0)
goto out;
hsic->base.ops = padctl->soc->ports.hsic.ops;
hsic->base.lane = hsic->base.ops->map(&hsic->base);
if (IS_ERR(hsic->base.lane)) {
err = PTR_ERR(hsic->base.lane);
goto out;
}
err = tegra_xusb_hsic_port_parse_dt(hsic);
if (err < 0) {
tegra_xusb_port_unregister(&hsic->base);
goto out;
}
list_add_tail(&hsic->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
static int tegra_xusb_usb3_port_parse_dt(struct tegra_xusb_usb3_port *usb3)
{
struct tegra_xusb_port *port = &usb3->base;
struct device_node *np = port->dev.of_node;
u32 value;
int err;
err = of_property_read_u32(np, "nvidia,usb2-companion", &value);
if (err < 0) {
dev_err(&port->dev, "failed to read port: %d\n", err);
return err;
}
usb3->port = value;
err = of_property_read_u32(np, "nvidia,usb3-gen1-only", &value);
if (!err && value == 1)
usb3->gen1_only = true;
else
usb3->gen1_only = false;
usb3->internal = of_property_read_bool(np, "nvidia,internal");
return 0;
}
static int tegra_xusb_add_usb3_port(struct tegra_xusb_padctl *padctl,
unsigned int index)
{
struct tegra_xusb_usb3_port *usb3;
struct tegra_xusb_usb2_port *usb2;
struct device_node *np;
int err = 0;
/*
* If there is no supplemental configuration in the device tree the
* port is unusable. But it is valid to configure only a single port,
* hence return 0 instead of an error to allow ports to be optional.
*/
np = tegra_xusb_find_port_node(padctl, "usb3", index);
if (!np || !of_device_is_available(np))
goto out;
usb3 = devm_kzalloc(padctl->dev, sizeof(*usb3), GFP_KERNEL);
if (!usb3) {
err = -ENOMEM;
goto out;
}
err = tegra_xusb_port_init(&usb3->base, padctl, np, "usb3", index);
if (err < 0)
goto out;
/* overcurrent disabled by default */
usb3->oc_pin = -1;
usb3->base.ops = padctl->soc->ports.usb3.ops;
usb3->base.lane = usb3->base.ops->map(&usb3->base);
if (IS_ERR(usb3->base.lane)) {
err = PTR_ERR(usb3->base.lane);
goto out;
}
err = tegra_xusb_usb3_port_parse_dt(usb3);
if (err < 0) {
tegra_xusb_port_unregister(&usb3->base);
goto out;
}
usb2 = tegra_xusb_find_usb2_port(padctl, usb3->port);
if (!usb2) {
tegra_xusb_port_unregister(&usb3->base);
goto out;
}
if (usb2->port_cap == USB_OTG_CAP || usb2->port_cap == USB_DEVICE_CAP) {
padctl->otg_vbus_usb3_port_base_1[usb2->vbus_id] = index + 1;
dev_dbg(padctl->dev, "vbus_id %d => usb3 %d\n", usb2->vbus_id,
padctl->otg_vbus_usb3_port_base_1[usb2->vbus_id]);
}
list_add_tail(&usb3->base.list, &padctl->ports);
out:
of_node_put(np);
return err;
}
static void __tegra_xusb_remove_ports(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_port *port, *tmp;
list_for_each_entry_safe_reverse(port, tmp, &padctl->ports, list) {
list_del(&port->list);
tegra_xusb_port_unregister(port);
}
}
static int tegra_xusb_setup_ports(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_port *port;
unsigned int i;
int err = 0;
mutex_lock(&padctl->lock);
for (i = 0; i < padctl->soc->ports.usb2.count; i++) {
err = tegra_xusb_add_usb2_port(padctl, i);
if (err < 0)
goto remove_ports;
}
for (i = 0; i < padctl->soc->ports.ulpi.count; i++) {
err = tegra_xusb_add_ulpi_port(padctl, i);
if (err < 0)
goto remove_ports;
}
for (i = 0; i < padctl->soc->ports.hsic.count; i++) {
err = tegra_xusb_add_hsic_port(padctl, i);
if (err < 0)
goto remove_ports;
}
for (i = 0; i < padctl->soc->ports.usb3.count; i++) {
err = tegra_xusb_add_usb3_port(padctl, i);
if (err < 0)
goto remove_ports;
}
list_for_each_entry(port, &padctl->ports, list) {
err = port->ops->enable(port);
if (err < 0)
dev_err(padctl->dev, "failed to enable port %s: %d\n",
dev_name(&port->dev), err);
}
goto unlock;
remove_ports:
__tegra_xusb_remove_ports(padctl);
unlock:
mutex_unlock(&padctl->lock);
return err;
}
static void tegra_xusb_remove_ports(struct tegra_xusb_padctl *padctl)
{
mutex_lock(&padctl->lock);
__tegra_xusb_remove_ports(padctl);
mutex_unlock(&padctl->lock);
}
static int tegra_xusb_padctl_suspend_noirq(struct device *dev)
{
struct tegra_xusb_padctl *padctl = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
if (padctl->soc->ops->suspend_noirq)
return padctl->soc->ops->suspend_noirq(padctl);
return 0;
}
static int tegra_xusb_padctl_resume_noirq(struct device *dev)
{
struct tegra_xusb_padctl *padctl = dev_get_drvdata(dev);
dev_dbg(dev, "%s\n", __func__);
if (padctl->soc->ops->resume_noirq)
return padctl->soc->ops->resume_noirq(padctl);
return 0;
}
static const struct dev_pm_ops tegra_xusb_padctl_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_xusb_padctl_suspend_noirq,
tegra_xusb_padctl_resume_noirq)
};
static void tegra_xusb_otg_vbus_work(struct work_struct *work)
{
struct tegra_xusb_padctl *padctl =
container_of(work, struct tegra_xusb_padctl, otg_vbus_work);
int i, port;
for (i = 0; i < XUSB_MAX_OTG_PORT_NUM; i++) {
if (!padctl->otg_vbus_updating[i])
continue;
port = padctl->otg_vbus_usb2_port_base_1[i];
if (!port)
continue;
padctl->soc->ops->otg_vbus_handle(padctl, i, port - 1);
padctl->otg_vbus_updating[i] = false;
}
}
static ssize_t otg_vbus_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb_padctl *padctl = platform_get_drvdata(pdev);
int index = padctl->otg_vbus_usb2_port_base_1[0] - 1;
if (!padctl->otg_vbus_usb2_port_base_1[0])
return sprintf(buf, "No UTMI OTG port\n");
return sprintf(buf, "OTG port %d vbus always-on: %s\n",
index, padctl->otg_vbus_alwayson ? "yes" : "no");
}
static ssize_t otg_vbus_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t n)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb_padctl *padctl = platform_get_drvdata(pdev);
int index = padctl->otg_vbus_usb2_port_base_1[0] - 1;
unsigned int on;
int err = 0;
if (kstrtouint(buf, 10, &on))
return -EINVAL;
if (!padctl->otg_vbus_usb2_port_base_1[0]) {
dev_err(dev, "No UTMI OTG port\n");
return -EINVAL;
}
if (on && !padctl->otg_vbus_alwayson) {
err = padctl->soc->ops->vbus_power_on(padctl, index);
if (!err)
padctl->otg_vbus_alwayson = true;
} else if (!on && padctl->otg_vbus_alwayson) {
/* pre-set this to make vbus power off really work */
padctl->otg_vbus_alwayson = false;
err = padctl->soc->ops->vbus_power_off(padctl, index);
if (!err)
padctl->otg_vbus_alwayson = false;
else
padctl->otg_vbus_alwayson = true;
}
if (err)
dev_err(dev, "failed to %s OTG port %d vbus always-on: %d\n",
on ? "enable" : "disable", index, err);
return n;
}
static DEVICE_ATTR(otg_vbus, 0644, otg_vbus_show, otg_vbus_store);
static struct attribute *padctl_attrs[] = {
&dev_attr_otg_vbus.attr,
NULL,
};
static struct attribute_group padctl_attr_group = {
.attrs = padctl_attrs,
};
int tegra_xusb_select_vbus_en_state(struct tegra_xusb_padctl *padctl,
int pin, bool tristate)
{
int err;
if (tristate)
err = pinctrl_select_state(
padctl->oc_pinctrl,
padctl->oc_tristate_enable[pin]);
else
err = pinctrl_select_state(
padctl->oc_pinctrl,
padctl->oc_passthrough_enable[pin]);
if (err < 0) {
dev_err(padctl->dev,
"setting pin %d OC state failed: %d\n", pin, err);
}
return err;
}
static int tegra_xusb_setup_oc(struct tegra_xusb_padctl *padctl)
{
struct tegra_xusb_usb2_port *usb2_port;
int i, err = 0;
bool oc_enabled = false;
bool isotg = false;
/* check oc_pin properties from USB2 phy */
for (i = 0; i < padctl->soc->ports.usb2.count; i++) {
usb2_port = tegra_xusb_find_usb2_port(padctl, i);
if (usb2_port && usb2_port->oc_pin >= 0) {
oc_enabled = true;
break;
}
}
if (!oc_enabled) {
dev_dbg(padctl->dev, "No OC pin defined for USB2/USB3 phys\n");
return -EINVAL;
}
/* getting pinctrl for controlling OC pins */
padctl->oc_pinctrl = devm_pinctrl_get(padctl->dev);
if (IS_ERR_OR_NULL(padctl->oc_pinctrl)) {
dev_info(padctl->dev, "Missing OC pinctrl device: %ld\n",
PTR_ERR(padctl->oc_pinctrl));
return PTR_ERR(padctl->oc_pinctrl);
}
/* OC enable state */
padctl->oc_tristate_enable = devm_kcalloc(padctl->dev,
padctl->soc->num_oc_pins,
sizeof(struct pinctrl_state *), GFP_KERNEL);
if (!padctl->oc_tristate_enable)
return -ENOMEM;
for (i = 0; i < padctl->soc->num_oc_pins; i++) {
char state_name[sizeof("vbus_enX_sfio_tristate")];
sprintf(state_name, "vbus_en%d_sfio_tristate", i);
padctl->oc_tristate_enable[i] = pinctrl_lookup_state(
padctl->oc_pinctrl, state_name);
if (IS_ERR(padctl->oc_tristate_enable[i])) {
dev_info(padctl->dev,
"Missing OC pin %d pinctrl state %s: %ld\n",
i, state_name,
PTR_ERR(padctl->oc_tristate_enable[i]));
return PTR_ERR(padctl->oc_tristate_enable[i]);
}
}
/* OC enable passthrough state */
padctl->oc_passthrough_enable = devm_kcalloc(padctl->dev,
padctl->soc->num_oc_pins,
sizeof(struct pinctrl_state *), GFP_KERNEL);
if (!padctl->oc_passthrough_enable)
return -ENOMEM;
for (i = 0; i < padctl->soc->num_oc_pins; i++) {
char state_name[sizeof("vbus_enX_sfio_passthrough")];
sprintf(state_name, "vbus_en%d_sfio_passthrough", i);
padctl->oc_passthrough_enable[i] = pinctrl_lookup_state(
padctl->oc_pinctrl, state_name);
if (IS_ERR(padctl->oc_passthrough_enable[i])) {
dev_info(padctl->dev,
"Missing OC pin %d pinctrl state %s: %ld\n",
i, state_name,
PTR_ERR(padctl->oc_passthrough_enable[i]));
return PTR_ERR(padctl->oc_passthrough_enable[i]);
}
}
/* OC disable state */
padctl->oc_disable = devm_kcalloc(padctl->dev,
padctl->soc->num_oc_pins,
sizeof(struct pinctrl_state *), GFP_KERNEL);
if (!padctl->oc_disable)
return -ENOMEM;
for (i = 0; i < padctl->soc->num_oc_pins; i++) {
char state_name[sizeof("vbus_enX_default")];
sprintf(state_name, "vbus_en%d_default", i);
padctl->oc_disable[i] = pinctrl_lookup_state(
padctl->oc_pinctrl, state_name);
if (IS_ERR(padctl->oc_disable[i])) {
dev_info(padctl->dev,
"Missing OC pin %d pinctrl state %s: %ld\n",
i, state_name,
PTR_ERR(padctl->oc_disable[i]));
return PTR_ERR(padctl->oc_disable[i]);
}
}
/* switch VBUS pin states to enable OC */
for (i = 0; i < padctl->soc->ports.usb2.count; i++) {
usb2_port = tegra_xusb_find_usb2_port(padctl, i);
if (!usb2_port)
continue;
isotg = (usb2_port->port_cap == USB_OTG_CAP);
if (usb2_port->oc_pin >= 0) {
/* this OC pin is in use, enable the pin
* as SFIO input pin for OC detection,
* for OTG port, the default state is
* device mode and VBUS off.
*/
if (isotg) {
err = tegra_xusb_select_vbus_en_state(
padctl, usb2_port->oc_pin, false);
}
if (err < 0)
return err;
}
}
return 0;
}
static int
tegra_xusb_padctl_regulators_init(struct tegra_xusb_padctl *padctl)
{
struct device *dev = padctl->dev;
size_t size;
int err;
int i;
size = padctl->soc->num_supplies * sizeof(struct regulator_bulk_data);
padctl->supplies = devm_kzalloc(dev, size, GFP_ATOMIC);
if (!padctl->supplies) {
dev_err(dev, "failed to alloc memory for regulators\n");
return -ENOMEM;
}
for (i = 0; i < padctl->soc->num_supplies; i++)
padctl->supplies[i].supply = padctl->soc->supply_names[i];
err = devm_regulator_bulk_get(dev, padctl->soc->num_supplies,
padctl->supplies);
if (err) {
dev_err(dev, "failed to request regulators %d\n", err);
return err;
}
return 0;
}
static int tegra_xusb_padctl_probe(struct platform_device *pdev)
{
struct device_node *np = of_node_get(pdev->dev.of_node);
const struct tegra_xusb_padctl_soc *soc;
struct tegra_xusb_padctl *padctl;
const struct of_device_id *match;
struct resource *res;
int err;
/* for backwards compatibility with old device trees */
np = of_find_node_by_name(np, "pads");
if (!np) {
dev_warn(&pdev->dev, "deprecated DT, using legacy driver\n");
return tegra_xusb_padctl_legacy_probe(pdev);
}
of_node_put(np);
match = of_match_node(tegra_xusb_padctl_of_match, pdev->dev.of_node);
soc = match->data;
padctl = soc->ops->probe(&pdev->dev, soc);
if (IS_ERR(padctl))
return PTR_ERR(padctl);
np = of_node_get(pdev->dev.of_node);
if (of_find_property(np, "is_xhci_iov", NULL))
padctl->is_xhci_iov = true;
else
padctl->is_xhci_iov = false;
of_node_put(np);
platform_set_drvdata(pdev, padctl);
INIT_LIST_HEAD(&padctl->ports);
INIT_LIST_HEAD(&padctl->lanes);
INIT_LIST_HEAD(&padctl->pads);
mutex_init(&padctl->lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
padctl->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(padctl->regs)) {
err = PTR_ERR(padctl->regs);
goto remove;
}
if (!padctl->is_xhci_iov) {
padctl->rst = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(padctl->rst)) {
err = PTR_ERR(padctl->rst);
goto remove;
}
err = reset_control_deassert(padctl->rst);
if (err < 0)
goto remove;
err = tegra_xusb_padctl_regulators_init(padctl);
if (err < 0)
goto remove;
err = regulator_bulk_enable(padctl->soc->num_supplies,
padctl->supplies);
if (err) {
dev_err(&pdev->dev, "failed to enable regulators %d\n",
err);
goto remove;
}
}
INIT_WORK(&padctl->otg_vbus_work, tegra_xusb_otg_vbus_work);
err = tegra_xusb_setup_pads(padctl);
if (err < 0) {
dev_err(&pdev->dev, "failed to setup pads: %d\n", err);
goto reset;
}
err = tegra_xusb_setup_ports(padctl);
if (err) {
const char *level = KERN_ERR;
if (err == -EPROBE_DEFER)
level = KERN_DEBUG;
dev_printk(level, &pdev->dev,
"failed to setup XUSB ports: %d\n", err);
goto remove_pads;
}
err = sysfs_create_group(&pdev->dev.kobj, &padctl_attr_group);
if (err) {
dev_err(&pdev->dev, "cannot create sysfs group: %d\n", err);
goto remove_pads;
}
err = tegra_xusb_setup_oc(padctl);
if (err)
padctl->oc_pinctrl = NULL;
else
dev_info(&pdev->dev, "VBUS over-current detection enabled\n");
return 0;
remove_pads:
tegra_xusb_remove_pads(padctl);
reset:
if (!padctl->is_xhci_iov)
reset_control_assert(padctl->rst);
remove:
platform_set_drvdata(pdev, NULL);
soc->ops->remove(padctl);
return err;
}
static int tegra_xusb_padctl_remove(struct platform_device *pdev)
{
struct tegra_xusb_padctl *padctl = platform_get_drvdata(pdev);
int err = 0;
tegra_xusb_remove_ports(padctl);
tegra_xusb_remove_pads(padctl);
if (!padctl->is_xhci_iov) {
err = reset_control_assert(padctl->rst);
if (err < 0)
dev_err(&pdev->dev, "failed to assert reset: %d\n",
err);
}
padctl->soc->ops->remove(padctl);
return err;
}
static struct platform_driver tegra_xusb_padctl_driver = {
.driver = {
.name = "tegra-xusb-padctl",
.of_match_table = tegra_xusb_padctl_of_match,
.pm = &tegra_xusb_padctl_pm_ops,
},
.probe = tegra_xusb_padctl_probe,
.remove = tegra_xusb_padctl_remove,
};
module_platform_driver(tegra_xusb_padctl_driver);
struct tegra_xusb_padctl *tegra_xusb_padctl_get(struct device *dev)
{
struct tegra_xusb_padctl *padctl;
struct platform_device *pdev;
struct device_node *np;
np = of_parse_phandle(dev->of_node, "nvidia,xusb-padctl", 0);
if (!np)
return ERR_PTR(-EINVAL);
/*
* This is slightly ugly. A better implementation would be to keep a
* registry of pad controllers, but since there will almost certainly
* only ever be one per SoC that would be a little overkill.
*/
pdev = of_find_device_by_node(np);
if (!pdev) {
of_node_put(np);
return ERR_PTR(-ENODEV);
}
of_node_put(np);
padctl = platform_get_drvdata(pdev);
if (!padctl) {
put_device(&pdev->dev);
return ERR_PTR(-EPROBE_DEFER);
}
return padctl;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_get);
void tegra_xusb_padctl_put(struct tegra_xusb_padctl *padctl)
{
if (padctl)
put_device(padctl->dev);
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_put);
int tegra_xusb_padctl_usb3_save_context(struct tegra_xusb_padctl *padctl,
unsigned int port)
{
if (padctl->soc->ops->usb3_save_context)
return padctl->soc->ops->usb3_save_context(padctl, port);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_usb3_save_context);
int tegra_xusb_padctl_hsic_set_idle(struct tegra_xusb_padctl *padctl,
unsigned int port, bool idle)
{
if (padctl->soc->ops->hsic_set_idle)
return padctl->soc->ops->hsic_set_idle(padctl, port, idle);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_hsic_set_idle);
int tegra_xusb_padctl_hsic_reset(struct tegra_xusb_padctl *padctl,
unsigned int port)
{
if (padctl->soc->ops->hsic_reset)
return padctl->soc->ops->hsic_reset(padctl, port);
return -ENODEV;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_hsic_reset);
int tegra_xusb_padctl_usb3_set_lfps_detect(struct tegra_xusb_padctl *padctl,
unsigned int port, bool enable)
{
if (padctl->soc->ops->usb3_set_lfps_detect)
return padctl->soc->ops->usb3_set_lfps_detect(padctl, port,
enable);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_usb3_set_lfps_detect);
int tegra_xusb_padctl_set_vbus_override_early(struct tegra_xusb_padctl *padctl,
unsigned int i)
{
if (padctl->soc->ops->vbus_override_early)
return padctl->soc->ops->vbus_override_early(padctl, i, true);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_set_vbus_override_early);
int tegra_xusb_padctl_set_vbus_override(struct tegra_xusb_padctl *padctl,
unsigned int i)
{
if (padctl->soc->ops->vbus_override)
return padctl->soc->ops->vbus_override(padctl, i, true);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_set_vbus_override);
int tegra_xusb_padctl_clear_vbus_override(struct tegra_xusb_padctl *padctl,
unsigned int i)
{
if (padctl->soc->ops->vbus_override)
return padctl->soc->ops->vbus_override(padctl, i, false);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_clear_vbus_override);
int tegra_xusb_padctl_set_id_override(struct tegra_xusb_padctl *padctl,
unsigned int i)
{
if (padctl->soc->ops->id_override)
return padctl->soc->ops->id_override(padctl, i, true);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_set_id_override);
int tegra_xusb_padctl_clear_id_override(struct tegra_xusb_padctl *padctl,
unsigned int i)
{
if (padctl->soc->ops->id_override)
return padctl->soc->ops->id_override(padctl, i, false);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_clear_id_override);
bool tegra_xusb_padctl_has_otg_cap(struct tegra_xusb_padctl *padctl,
struct phy *phy)
{
if (padctl->soc->ops->has_otg_cap)
return padctl->soc->ops->has_otg_cap(padctl, phy);
return false;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_has_otg_cap);
int tegra_xusb_padctl_vbus_power_on(struct tegra_xusb_padctl *padctl,
unsigned int port)
{
if (padctl->soc->ops->vbus_power_on)
return padctl->soc->ops->vbus_power_on(padctl, port);
return false;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_vbus_power_on);
int tegra_xusb_padctl_vbus_power_off(struct tegra_xusb_padctl *padctl,
unsigned int port)
{
if (padctl->soc->ops->vbus_power_off)
return padctl->soc->ops->vbus_power_off(padctl, port);
return false;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_vbus_power_off);
int tegra_xusb_padctl_enable_phy_sleepwalk(struct tegra_xusb_padctl *padctl,
struct phy *phy,
enum usb_device_speed speed)
{
if (padctl->soc->ops->phy_sleepwalk)
return padctl->soc->ops->phy_sleepwalk(padctl, phy, true,
speed);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_enable_phy_sleepwalk);
int tegra_xusb_padctl_disable_phy_sleepwalk(struct tegra_xusb_padctl *padctl,
struct phy *phy)
{
if (padctl->soc->ops->phy_sleepwalk)
return padctl->soc->ops->phy_sleepwalk(padctl, phy, false, 0);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_disable_phy_sleepwalk);
int tegra_xusb_padctl_enable_phy_wake(struct tegra_xusb_padctl *padctl,
struct phy *phy)
{
if (padctl->soc->ops->phy_wake)
return padctl->soc->ops->phy_wake(padctl, phy, true);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_enable_phy_wake);
int tegra_xusb_padctl_disable_phy_wake(struct tegra_xusb_padctl *padctl,
struct phy *phy)
{
if (padctl->soc->ops->phy_wake)
return padctl->soc->ops->phy_wake(padctl, phy, false);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_disable_phy_wake);
int tegra_xusb_padctl_remote_wake_detected(struct tegra_xusb_padctl *padctl,
struct phy *phy)
{
if (padctl->soc->ops->remote_wake_detected)
return padctl->soc->ops->remote_wake_detected(phy);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_remote_wake_detected);
int tegra_xusb_padctl_set_dcd_debounce_time(struct tegra_xusb_padctl *padctl,
struct phy *phy, u32 val)
{
if (padctl->soc->ops->set_debounce_time)
return padctl->soc->ops->set_debounce_time(padctl, phy, val);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_set_dcd_debounce_time);
int tegra_xusb_padctl_utmi_pad_charger_detect_on(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->utmi_pad_charger_detect_on)
return padctl->soc->ops->utmi_pad_charger_detect_on(padctl,
phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_charger_detect_on);
int tegra_xusb_padctl_utmi_pad_charger_detect_off(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->utmi_pad_charger_detect_off)
return padctl->soc->ops->utmi_pad_charger_detect_off(padctl,
phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_charger_detect_off);
int tegra_xusb_padctl_utmi_pad_enable_detect_filters(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->detect_filters)
return padctl->soc->ops->detect_filters(padctl, phy, true);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_enable_detect_filters);
int tegra_xusb_padctl_utmi_pad_disable_detect_filters(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->detect_filters)
return padctl->soc->ops->detect_filters(padctl, phy, false);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_disable_detect_filters);
int tegra_xusb_padctl_utmi_pad_set_protection_level(struct tegra_xusb_padctl
*padctl, struct phy *phy, int level, enum tegra_vbus_dir dir)
{
if (padctl->soc->ops->utmi_pad_set_protection_level)
return padctl->soc->ops->utmi_pad_set_protection_level
(padctl, phy, level, dir);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_set_protection_level);
int tegra_xusb_padctl_utmi_pad_dcd(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->utmi_pad_dcd)
return padctl->soc->ops->utmi_pad_dcd(padctl, phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_dcd);
int tegra_xusb_padctl_noncompliant_div_detect(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->noncompliant_div_detect)
return padctl->soc->ops->noncompliant_div_detect(padctl, phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_noncompliant_div_detect);
int tegra_xusb_padctl_utmi_pad_primary_charger_detect(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->utmi_pad_primary_charger_detect)
return padctl->soc->ops->utmi_pad_primary_charger_detect(padctl,
phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_primary_charger_detect);
int tegra_xusb_padctl_utmi_pad_secondary_charger_detect(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->utmi_pad_secondary_charger_detect)
return padctl->soc->ops->utmi_pad_secondary_charger_detect(
padctl, phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_utmi_pad_secondary_charger_detect);
int tegra_xusb_padctl_enable_host_cdp(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->set_host_cdp)
return padctl->soc->ops->set_host_cdp(padctl, phy, true);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_enable_host_cdp);
int tegra_xusb_padctl_disable_host_cdp(struct tegra_xusb_padctl
*padctl, struct phy *phy)
{
if (padctl->soc->ops->set_host_cdp)
return padctl->soc->ops->set_host_cdp(padctl, phy, false);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_disable_host_cdp);
int tegra_xusb_padctl_overcurrent_detected(struct tegra_xusb_padctl *padctl,
struct phy *phy)
{
if (padctl->soc->ops->overcurrent_detected)
return padctl->soc->ops->overcurrent_detected(phy);
return -ENOTSUPP;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_overcurrent_detected);
void tegra_xusb_padctl_handle_overcurrent(struct tegra_xusb_padctl *padctl)
{
if (padctl->soc->ops->handle_overcurrent)
padctl->soc->ops->handle_overcurrent(padctl);
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_handle_overcurrent);
void tegra_phy_xusb_utmi_pad_power_on(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
if (padctl->soc->ops->utmi_pad_power_on)
padctl->soc->ops->utmi_pad_power_on(phy);
}
EXPORT_SYMBOL_GPL(tegra_phy_xusb_utmi_pad_power_on);
void tegra_phy_xusb_utmi_pad_power_down(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
if (padctl->soc->ops->utmi_pad_power_down)
padctl->soc->ops->utmi_pad_power_down(phy);
}
EXPORT_SYMBOL_GPL(tegra_phy_xusb_utmi_pad_power_down);
int tegra_phy_xusb_utmi_port_reset_quirk(struct phy *phy)
{
struct tegra_xusb_lane *lane = phy_get_drvdata(phy);
struct tegra_xusb_padctl *padctl = lane->pad->padctl;
if (padctl->soc->ops->utmi_port_reset_quirk)
return padctl->soc->ops->utmi_port_reset_quirk(phy);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_phy_xusb_utmi_port_reset_quirk);
int tegra_xusb_padctl_get_vbus_id_num(struct tegra_xusb_padctl *padctl)
{
return padctl->otg_port_num;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_get_vbus_id_num);
void tegra_xusb_padctl_get_vbus_id_ports(struct tegra_xusb_padctl *padctl,
int i, int *usb2_port, int *usb3_port)
{
*usb2_port = *usb3_port = -1;
if (i < 0 || i >= padctl->otg_port_num)
return;
/* only check usb2 port for usb2-only otg port support */
if (!padctl->otg_vbus_usb2_port_base_1[i])
return;
*usb2_port = padctl->otg_vbus_usb2_port_base_1[i] - 1;
*usb3_port = padctl->otg_vbus_usb3_port_base_1[i] - 1;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_get_vbus_id_ports);
int tegra_xusb_padctl_usb3_port_gen1_only(struct phy *phy, bool gen1)
{
struct tegra_xusb_lane *lane;
struct tegra_xusb_padctl *padctl;
if (!phy)
return -ENODEV;
lane = phy_get_drvdata(phy);
padctl = lane->pad->padctl;
if (padctl->soc->ops->usb3_port_gen1_only)
return padctl->soc->ops->usb3_port_gen1_only(phy, gen1);
return -ENOSYS;
}
EXPORT_SYMBOL_GPL(tegra_xusb_padctl_usb3_port_gen1_only);
MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
MODULE_DESCRIPTION("Tegra XUSB Pad Controller driver");
MODULE_LICENSE("GPL v2");