495 lines
12 KiB
C
495 lines
12 KiB
C
|
/*
|
||
|
* helpers.c -- Voltage/Current Regulator framework helper functions.
|
||
|
*
|
||
|
* Copyright 2007, 2008 Wolfson Microelectronics PLC.
|
||
|
* Copyright 2008 SlimLogic Ltd.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/regmap.h>
|
||
|
#include <linux/regulator/consumer.h>
|
||
|
#include <linux/regulator/driver.h>
|
||
|
#include <linux/module.h>
|
||
|
|
||
|
/**
|
||
|
* regulator_is_enabled_regmap - standard is_enabled() for regmap users
|
||
|
*
|
||
|
* @rdev: regulator to operate on
|
||
|
*
|
||
|
* Regulators that use regmap for their register I/O can set the
|
||
|
* enable_reg and enable_mask fields in their descriptor and then use
|
||
|
* this as their is_enabled operation, saving some code.
|
||
|
*/
|
||
|
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
int ret;
|
||
|
|
||
|
ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
|
||
|
if (ret != 0)
|
||
|
return ret;
|
||
|
|
||
|
val &= rdev->desc->enable_mask;
|
||
|
|
||
|
if (rdev->desc->enable_is_inverted) {
|
||
|
if (rdev->desc->enable_val)
|
||
|
return val != rdev->desc->enable_val;
|
||
|
return val == 0;
|
||
|
} else {
|
||
|
if (rdev->desc->enable_val)
|
||
|
return val == rdev->desc->enable_val;
|
||
|
return val != 0;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_enable_regmap - standard enable() for regmap users
|
||
|
*
|
||
|
* @rdev: regulator to operate on
|
||
|
*
|
||
|
* Regulators that use regmap for their register I/O can set the
|
||
|
* enable_reg and enable_mask fields in their descriptor and then use
|
||
|
* this as their enable() operation, saving some code.
|
||
|
*/
|
||
|
int regulator_enable_regmap(struct regulator_dev *rdev)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
|
||
|
if (rdev->desc->enable_is_inverted) {
|
||
|
val = rdev->desc->disable_val;
|
||
|
} else {
|
||
|
val = rdev->desc->enable_val;
|
||
|
if (!val)
|
||
|
val = rdev->desc->enable_mask;
|
||
|
}
|
||
|
|
||
|
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
|
||
|
rdev->desc->enable_mask, val);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_enable_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_disable_regmap - standard disable() for regmap users
|
||
|
*
|
||
|
* @rdev: regulator to operate on
|
||
|
*
|
||
|
* Regulators that use regmap for their register I/O can set the
|
||
|
* enable_reg and enable_mask fields in their descriptor and then use
|
||
|
* this as their disable() operation, saving some code.
|
||
|
*/
|
||
|
int regulator_disable_regmap(struct regulator_dev *rdev)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
|
||
|
if (rdev->desc->enable_is_inverted) {
|
||
|
val = rdev->desc->enable_val;
|
||
|
if (!val)
|
||
|
val = rdev->desc->enable_mask;
|
||
|
} else {
|
||
|
val = rdev->desc->disable_val;
|
||
|
}
|
||
|
|
||
|
return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
|
||
|
rdev->desc->enable_mask, val);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_disable_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
|
||
|
*
|
||
|
* @rdev: regulator to operate on
|
||
|
*
|
||
|
* Regulators that use regmap for their register I/O can set the
|
||
|
* vsel_reg and vsel_mask fields in their descriptor and then use this
|
||
|
* as their get_voltage_vsel operation, saving some code.
|
||
|
*/
|
||
|
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
int ret;
|
||
|
|
||
|
ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
|
||
|
if (ret != 0)
|
||
|
return ret;
|
||
|
|
||
|
val &= rdev->desc->vsel_mask;
|
||
|
val >>= ffs(rdev->desc->vsel_mask) - 1;
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
|
||
|
*
|
||
|
* @rdev: regulator to operate on
|
||
|
* @sel: Selector to set
|
||
|
*
|
||
|
* Regulators that use regmap for their register I/O can set the
|
||
|
* vsel_reg and vsel_mask fields in their descriptor and then use this
|
||
|
* as their set_voltage_vsel operation, saving some code.
|
||
|
*/
|
||
|
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
sel <<= ffs(rdev->desc->vsel_mask) - 1;
|
||
|
|
||
|
ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
|
||
|
rdev->desc->vsel_mask, sel);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (rdev->desc->apply_bit)
|
||
|
ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
|
||
|
rdev->desc->apply_bit,
|
||
|
rdev->desc->apply_bit);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_map_voltage_iterate - map_voltage() based on list_voltage()
|
||
|
*
|
||
|
* @rdev: Regulator to operate on
|
||
|
* @min_uV: Lower bound for voltage
|
||
|
* @max_uV: Upper bound for voltage
|
||
|
*
|
||
|
* Drivers implementing set_voltage_sel() and list_voltage() can use
|
||
|
* this as their map_voltage() operation. It will find a suitable
|
||
|
* voltage by calling list_voltage() until it gets something in bounds
|
||
|
* for the requested voltages.
|
||
|
*/
|
||
|
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
|
||
|
int min_uV, int max_uV)
|
||
|
{
|
||
|
int best_val = INT_MAX;
|
||
|
int selector = 0;
|
||
|
int i, ret;
|
||
|
|
||
|
/* Find the smallest voltage that falls within the specified
|
||
|
* range.
|
||
|
*/
|
||
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
||
|
ret = rdev->desc->ops->list_voltage(rdev, i);
|
||
|
if (ret < 0)
|
||
|
continue;
|
||
|
|
||
|
if (ret < best_val && ret >= min_uV && ret <= max_uV) {
|
||
|
best_val = ret;
|
||
|
selector = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (best_val != INT_MAX)
|
||
|
return selector;
|
||
|
else
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
|
||
|
|
||
|
/**
|
||
|
* regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
|
||
|
*
|
||
|
* @rdev: Regulator to operate on
|
||
|
* @min_uV: Lower bound for voltage
|
||
|
* @max_uV: Upper bound for voltage
|
||
|
*
|
||
|
* Drivers that have ascendant voltage list can use this as their
|
||
|
* map_voltage() operation.
|
||
|
*/
|
||
|
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
|
||
|
int min_uV, int max_uV)
|
||
|
{
|
||
|
int i, ret;
|
||
|
|
||
|
for (i = 0; i < rdev->desc->n_voltages; i++) {
|
||
|
ret = rdev->desc->ops->list_voltage(rdev, i);
|
||
|
if (ret < 0)
|
||
|
continue;
|
||
|
|
||
|
if (ret > max_uV)
|
||
|
break;
|
||
|
|
||
|
if (ret >= min_uV && ret <= max_uV)
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
|
||
|
|
||
|
/**
|
||
|
* regulator_map_voltage_linear - map_voltage() for simple linear mappings
|
||
|
*
|
||
|
* @rdev: Regulator to operate on
|
||
|
* @min_uV: Lower bound for voltage
|
||
|
* @max_uV: Upper bound for voltage
|
||
|
*
|
||
|
* Drivers providing min_uV and uV_step in their regulator_desc can
|
||
|
* use this as their map_voltage() operation.
|
||
|
*/
|
||
|
int regulator_map_voltage_linear(struct regulator_dev *rdev,
|
||
|
int min_uV, int max_uV)
|
||
|
{
|
||
|
int ret, voltage;
|
||
|
|
||
|
/* Allow uV_step to be 0 for fixed voltage */
|
||
|
if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
|
||
|
if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
|
||
|
return 0;
|
||
|
else
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (!rdev->desc->uV_step) {
|
||
|
BUG_ON(!rdev->desc->uV_step);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (min_uV < rdev->desc->min_uV)
|
||
|
min_uV = rdev->desc->min_uV;
|
||
|
|
||
|
ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
ret += rdev->desc->linear_min_sel;
|
||
|
|
||
|
/* Map back into a voltage to verify we're still in bounds */
|
||
|
voltage = rdev->desc->ops->list_voltage(rdev, ret);
|
||
|
if (voltage < min_uV || voltage > max_uV)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
|
||
|
|
||
|
/**
|
||
|
* regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
|
||
|
*
|
||
|
* @rdev: Regulator to operate on
|
||
|
* @min_uV: Lower bound for voltage
|
||
|
* @max_uV: Upper bound for voltage
|
||
|
*
|
||
|
* Drivers providing linear_ranges in their descriptor can use this as
|
||
|
* their map_voltage() callback.
|
||
|
*/
|
||
|
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
|
||
|
int min_uV, int max_uV)
|
||
|
{
|
||
|
const struct regulator_linear_range *range;
|
||
|
int ret = -EINVAL;
|
||
|
int voltage, i;
|
||
|
|
||
|
if (!rdev->desc->n_linear_ranges) {
|
||
|
BUG_ON(!rdev->desc->n_linear_ranges);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
||
|
int linear_max_uV;
|
||
|
|
||
|
range = &rdev->desc->linear_ranges[i];
|
||
|
linear_max_uV = range->min_uV +
|
||
|
(range->max_sel - range->min_sel) * range->uV_step;
|
||
|
|
||
|
if (!(min_uV <= linear_max_uV && max_uV >= range->min_uV))
|
||
|
continue;
|
||
|
|
||
|
if (min_uV <= range->min_uV)
|
||
|
min_uV = range->min_uV;
|
||
|
|
||
|
/* range->uV_step == 0 means fixed voltage range */
|
||
|
if (range->uV_step == 0) {
|
||
|
ret = 0;
|
||
|
} else {
|
||
|
ret = DIV_ROUND_UP(min_uV - range->min_uV,
|
||
|
range->uV_step);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret += range->min_sel;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (i == rdev->desc->n_linear_ranges)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Map back into a voltage to verify we're still in bounds */
|
||
|
voltage = rdev->desc->ops->list_voltage(rdev, ret);
|
||
|
if (voltage < min_uV || voltage > max_uV)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
|
||
|
|
||
|
/**
|
||
|
* regulator_list_voltage_linear - List voltages with simple calculation
|
||
|
*
|
||
|
* @rdev: Regulator device
|
||
|
* @selector: Selector to convert into a voltage
|
||
|
*
|
||
|
* Regulators with a simple linear mapping between voltages and
|
||
|
* selectors can set min_uV and uV_step in the regulator descriptor
|
||
|
* and then use this function as their list_voltage() operation,
|
||
|
*/
|
||
|
int regulator_list_voltage_linear(struct regulator_dev *rdev,
|
||
|
unsigned int selector)
|
||
|
{
|
||
|
if (selector >= rdev->desc->n_voltages)
|
||
|
return -EINVAL;
|
||
|
if (selector < rdev->desc->linear_min_sel)
|
||
|
return 0;
|
||
|
|
||
|
selector -= rdev->desc->linear_min_sel;
|
||
|
|
||
|
return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
|
||
|
|
||
|
/**
|
||
|
* regulator_list_voltage_linear_range - List voltages for linear ranges
|
||
|
*
|
||
|
* @rdev: Regulator device
|
||
|
* @selector: Selector to convert into a voltage
|
||
|
*
|
||
|
* Regulators with a series of simple linear mappings between voltages
|
||
|
* and selectors can set linear_ranges in the regulator descriptor and
|
||
|
* then use this function as their list_voltage() operation,
|
||
|
*/
|
||
|
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
|
||
|
unsigned int selector)
|
||
|
{
|
||
|
const struct regulator_linear_range *range;
|
||
|
int i;
|
||
|
|
||
|
if (!rdev->desc->n_linear_ranges) {
|
||
|
BUG_ON(!rdev->desc->n_linear_ranges);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
|
||
|
range = &rdev->desc->linear_ranges[i];
|
||
|
|
||
|
if (!(selector >= range->min_sel &&
|
||
|
selector <= range->max_sel))
|
||
|
continue;
|
||
|
|
||
|
selector -= range->min_sel;
|
||
|
|
||
|
return range->min_uV + (range->uV_step * selector);
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
|
||
|
|
||
|
/**
|
||
|
* regulator_list_voltage_table - List voltages with table based mapping
|
||
|
*
|
||
|
* @rdev: Regulator device
|
||
|
* @selector: Selector to convert into a voltage
|
||
|
*
|
||
|
* Regulators with table based mapping between voltages and
|
||
|
* selectors can set volt_table in the regulator descriptor
|
||
|
* and then use this function as their list_voltage() operation.
|
||
|
*/
|
||
|
int regulator_list_voltage_table(struct regulator_dev *rdev,
|
||
|
unsigned int selector)
|
||
|
{
|
||
|
if (!rdev->desc->volt_table) {
|
||
|
BUG_ON(!rdev->desc->volt_table);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (selector >= rdev->desc->n_voltages)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return rdev->desc->volt_table[selector];
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
|
||
|
|
||
|
/**
|
||
|
* regulator_set_bypass_regmap - Default set_bypass() using regmap
|
||
|
*
|
||
|
* @rdev: device to operate on.
|
||
|
* @enable: state to set.
|
||
|
*/
|
||
|
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
|
||
|
if (enable) {
|
||
|
val = rdev->desc->bypass_val_on;
|
||
|
if (!val)
|
||
|
val = rdev->desc->bypass_mask;
|
||
|
} else {
|
||
|
val = rdev->desc->bypass_val_off;
|
||
|
}
|
||
|
|
||
|
return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
|
||
|
rdev->desc->bypass_mask, val);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_get_bypass_regmap - Default get_bypass() using regmap
|
||
|
*
|
||
|
* @rdev: device to operate on.
|
||
|
* @enable: current state.
|
||
|
*/
|
||
|
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
unsigned int val_on = rdev->desc->bypass_val_on;
|
||
|
int ret;
|
||
|
|
||
|
ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
|
||
|
if (ret != 0)
|
||
|
return ret;
|
||
|
|
||
|
if (!val_on)
|
||
|
val_on = rdev->desc->bypass_mask;
|
||
|
|
||
|
*enable = (val & rdev->desc->bypass_mask) == val_on;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
|
||
|
|
||
|
/**
|
||
|
* regulator_set_active_discharge_regmap - Default set_active_discharge()
|
||
|
* using regmap
|
||
|
*
|
||
|
* @rdev: device to operate on.
|
||
|
* @enable: state to set, 0 to disable and 1 to enable.
|
||
|
*/
|
||
|
int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
|
||
|
bool enable)
|
||
|
{
|
||
|
unsigned int val;
|
||
|
|
||
|
if (enable)
|
||
|
val = rdev->desc->active_discharge_on;
|
||
|
else
|
||
|
val = rdev->desc->active_discharge_off;
|
||
|
|
||
|
return regmap_update_bits(rdev->regmap,
|
||
|
rdev->desc->active_discharge_reg,
|
||
|
rdev->desc->active_discharge_mask, val);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
|