399 lines
14 KiB
C
399 lines
14 KiB
C
|
/*
|
||
|
* This file is part of the Chelsio FCoE driver for Linux.
|
||
|
*
|
||
|
* Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
|
||
|
*
|
||
|
* This software is available to you under a choice of one of two
|
||
|
* licenses. You may choose to be licensed under the terms of the GNU
|
||
|
* General Public License (GPL) Version 2, available from the file
|
||
|
* OpenIB.org BSD license below:
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or
|
||
|
* without modification, are permitted provided that the following
|
||
|
* conditions are met:
|
||
|
*
|
||
|
* - Redistributions of source code must retain the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer.
|
||
|
*
|
||
|
* - Redistributions in binary form must reproduce the above
|
||
|
* copyright notice, this list of conditions and the following
|
||
|
* disclaimer in the documentation and/or other materials
|
||
|
* provided with the distribution.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
* SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "csio_hw.h"
|
||
|
#include "csio_init.h"
|
||
|
|
||
|
static int
|
||
|
csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
|
||
|
{
|
||
|
u32 mem_win_base;
|
||
|
/*
|
||
|
* Truncation intentional: we only read the bottom 32-bits of the
|
||
|
* 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
|
||
|
* read BAR0 instead of using pci_resource_start() because we could be
|
||
|
* operating from within a Virtual Machine which is trapping our
|
||
|
* accesses to our Configuration Space and we need to set up the PCI-E
|
||
|
* Memory Window decoders with the actual addresses which will be
|
||
|
* coming across the PCI-E link.
|
||
|
*/
|
||
|
|
||
|
/* For T5, only relative offset inside the PCIe BAR is passed */
|
||
|
mem_win_base = MEMWIN_BASE;
|
||
|
|
||
|
/*
|
||
|
* Set up memory window for accessing adapter memory ranges. (Read
|
||
|
* back MA register to ensure that changes propagate before we attempt
|
||
|
* to use the new values.)
|
||
|
*/
|
||
|
csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
|
||
|
WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
|
||
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
|
||
|
csio_rd_reg32(hw,
|
||
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interrupt handler for the PCIE module.
|
||
|
*/
|
||
|
static void
|
||
|
csio_t5_pcie_intr_handler(struct csio_hw *hw)
|
||
|
{
|
||
|
static struct intr_info sysbus_intr_info[] = {
|
||
|
{ RNPP_F, "RXNP array parity error", -1, 1 },
|
||
|
{ RPCP_F, "RXPC array parity error", -1, 1 },
|
||
|
{ RCIP_F, "RXCIF array parity error", -1, 1 },
|
||
|
{ RCCP_F, "Rx completions control array parity error", -1, 1 },
|
||
|
{ RFTP_F, "RXFT array parity error", -1, 1 },
|
||
|
{ 0, NULL, 0, 0 }
|
||
|
};
|
||
|
static struct intr_info pcie_port_intr_info[] = {
|
||
|
{ TPCP_F, "TXPC array parity error", -1, 1 },
|
||
|
{ TNPP_F, "TXNP array parity error", -1, 1 },
|
||
|
{ TFTP_F, "TXFT array parity error", -1, 1 },
|
||
|
{ TCAP_F, "TXCA array parity error", -1, 1 },
|
||
|
{ TCIP_F, "TXCIF array parity error", -1, 1 },
|
||
|
{ RCAP_F, "RXCA array parity error", -1, 1 },
|
||
|
{ OTDD_F, "outbound request TLP discarded", -1, 1 },
|
||
|
{ RDPE_F, "Rx data parity error", -1, 1 },
|
||
|
{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
|
||
|
{ 0, NULL, 0, 0 }
|
||
|
};
|
||
|
|
||
|
static struct intr_info pcie_intr_info[] = {
|
||
|
{ MSTGRPPERR_F, "Master Response Read Queue parity error",
|
||
|
-1, 1 },
|
||
|
{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
|
||
|
{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
|
||
|
{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
|
||
|
{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
|
||
|
{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
|
||
|
{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
|
||
|
{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
|
||
|
-1, 1 },
|
||
|
{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
|
||
|
-1, 1 },
|
||
|
{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
|
||
|
{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
|
||
|
{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
|
||
|
{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
|
||
|
{ DREQWRPERR_F, "PCI DMA channel write request parity error",
|
||
|
-1, 1 },
|
||
|
{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
|
||
|
{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
|
||
|
{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
|
||
|
{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
|
||
|
{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
|
||
|
{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
|
||
|
{ FIDPERR_F, "PCI FID parity error", -1, 1 },
|
||
|
{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
|
||
|
{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
|
||
|
{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
|
||
|
{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
|
||
|
-1, 1 },
|
||
|
{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
|
||
|
-1, 1 },
|
||
|
{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
|
||
|
{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
|
||
|
{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
|
||
|
{ READRSPERR_F, "Outbound read error", -1, 0 },
|
||
|
{ 0, NULL, 0, 0 }
|
||
|
};
|
||
|
|
||
|
int fat;
|
||
|
fat = csio_handle_intr_status(hw,
|
||
|
PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
|
||
|
sysbus_intr_info) +
|
||
|
csio_handle_intr_status(hw,
|
||
|
PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
|
||
|
pcie_port_intr_info) +
|
||
|
csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
|
||
|
if (fat)
|
||
|
csio_hw_fatal_err(hw);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* csio_t5_flash_cfg_addr - return the address of the flash configuration file
|
||
|
* @hw: the HW module
|
||
|
*
|
||
|
* Return the address within the flash where the Firmware Configuration
|
||
|
* File is stored.
|
||
|
*/
|
||
|
static unsigned int
|
||
|
csio_t5_flash_cfg_addr(struct csio_hw *hw)
|
||
|
{
|
||
|
return FLASH_CFG_START;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* csio_t5_mc_read - read from MC through backdoor accesses
|
||
|
* @hw: the hw module
|
||
|
* @idx: index to the register
|
||
|
* @addr: address of first byte requested
|
||
|
* @data: 64 bytes of data containing the requested address
|
||
|
* @ecc: where to store the corresponding 64-bit ECC word
|
||
|
*
|
||
|
* Read 64 bytes of data from MC starting at a 64-byte-aligned address
|
||
|
* that covers the requested address @addr. If @parity is not %NULL it
|
||
|
* is assigned the 64-bit ECC word for the read data.
|
||
|
*/
|
||
|
static int
|
||
|
csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
|
||
|
uint64_t *ecc)
|
||
|
{
|
||
|
int i;
|
||
|
uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
|
||
|
uint32_t mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
|
||
|
|
||
|
mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
|
||
|
mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
|
||
|
mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
|
||
|
mc_bist_status_rdata_reg = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
|
||
|
mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
|
||
|
|
||
|
if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
|
||
|
return -EBUSY;
|
||
|
csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
|
||
|
csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
|
||
|
csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
|
||
|
csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
|
||
|
mc_bist_cmd_reg);
|
||
|
i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
|
||
|
0, 10, 1, NULL);
|
||
|
if (i)
|
||
|
return i;
|
||
|
|
||
|
#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
|
||
|
|
||
|
for (i = 15; i >= 0; i--)
|
||
|
*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
|
||
|
if (ecc)
|
||
|
*ecc = csio_rd_reg64(hw, MC_DATA(16));
|
||
|
#undef MC_DATA
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* csio_t5_edc_read - read from EDC through backdoor accesses
|
||
|
* @hw: the hw module
|
||
|
* @idx: which EDC to access
|
||
|
* @addr: address of first byte requested
|
||
|
* @data: 64 bytes of data containing the requested address
|
||
|
* @ecc: where to store the corresponding 64-bit ECC word
|
||
|
*
|
||
|
* Read 64 bytes of data from EDC starting at a 64-byte-aligned address
|
||
|
* that covers the requested address @addr. If @parity is not %NULL it
|
||
|
* is assigned the 64-bit ECC word for the read data.
|
||
|
*/
|
||
|
static int
|
||
|
csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
|
||
|
uint64_t *ecc)
|
||
|
{
|
||
|
int i;
|
||
|
uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
|
||
|
uint32_t edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
|
||
|
|
||
|
/*
|
||
|
* These macro are missing in t4_regs.h file.
|
||
|
*/
|
||
|
#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
|
||
|
#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
|
||
|
|
||
|
edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
|
||
|
edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
|
||
|
edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
|
||
|
edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
|
||
|
edc_bist_status_rdata_reg = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
|
||
|
#undef EDC_REG_T5
|
||
|
#undef EDC_STRIDE_T5
|
||
|
|
||
|
if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
|
||
|
return -EBUSY;
|
||
|
csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
|
||
|
csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
|
||
|
csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
|
||
|
csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
|
||
|
edc_bist_cmd_reg);
|
||
|
i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
|
||
|
0, 10, 1, NULL);
|
||
|
if (i)
|
||
|
return i;
|
||
|
|
||
|
#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
|
||
|
|
||
|
for (i = 15; i >= 0; i--)
|
||
|
*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
|
||
|
if (ecc)
|
||
|
*ecc = csio_rd_reg64(hw, EDC_DATA(16));
|
||
|
#undef EDC_DATA
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
|
||
|
* @hw: the csio_hw
|
||
|
* @win: PCI-E memory Window to use
|
||
|
* @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
|
||
|
* @addr: address within indicated memory type
|
||
|
* @len: amount of memory to transfer
|
||
|
* @buf: host memory buffer
|
||
|
* @dir: direction of transfer 1 => read, 0 => write
|
||
|
*
|
||
|
* Reads/writes an [almost] arbitrary memory region in the firmware: the
|
||
|
* firmware memory address, length and host buffer must be aligned on
|
||
|
* 32-bit boudaries. The memory is transferred as a raw byte sequence
|
||
|
* from/to the firmware's memory. If this memory contains data
|
||
|
* structures which contain multi-byte integers, it's the callers
|
||
|
* responsibility to perform appropriate byte order conversions.
|
||
|
*/
|
||
|
static int
|
||
|
csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
|
||
|
u32 len, uint32_t *buf, int dir)
|
||
|
{
|
||
|
u32 pos, start, offset, memoffset;
|
||
|
u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
|
||
|
|
||
|
/*
|
||
|
* Argument sanity checks ...
|
||
|
*/
|
||
|
if ((addr & 0x3) || (len & 0x3))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Offset into the region of memory which is being accessed
|
||
|
* MEM_EDC0 = 0
|
||
|
* MEM_EDC1 = 1
|
||
|
* MEM_MC = 2 -- T4
|
||
|
* MEM_MC0 = 2 -- For T5
|
||
|
* MEM_MC1 = 3 -- For T5
|
||
|
*/
|
||
|
edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
|
||
|
if (mtype != MEM_MC1)
|
||
|
memoffset = (mtype * (edc_size * 1024 * 1024));
|
||
|
else {
|
||
|
mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
|
||
|
MA_EXT_MEMORY_BAR_A));
|
||
|
memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
|
||
|
}
|
||
|
|
||
|
/* Determine the PCIE_MEM_ACCESS_OFFSET */
|
||
|
addr = addr + memoffset;
|
||
|
|
||
|
/*
|
||
|
* Each PCI-E Memory Window is programmed with a window size -- or
|
||
|
* "aperture" -- which controls the granularity of its mapping onto
|
||
|
* adapter memory. We need to grab that aperture in order to know
|
||
|
* how to use the specified window. The window is also programmed
|
||
|
* with the base address of the Memory Window in BAR0's address
|
||
|
* space. For T4 this is an absolute PCI-E Bus Address. For T5
|
||
|
* the address is relative to BAR0.
|
||
|
*/
|
||
|
mem_reg = csio_rd_reg32(hw,
|
||
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
|
||
|
mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
|
||
|
mem_base = PCIEOFST_G(mem_reg) << 10;
|
||
|
|
||
|
start = addr & ~(mem_aperture-1);
|
||
|
offset = addr - start;
|
||
|
win_pf = PFNUM_V(hw->pfn);
|
||
|
|
||
|
csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
|
||
|
mem_reg, mem_aperture);
|
||
|
csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
|
||
|
mem_base, memoffset);
|
||
|
csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
|
||
|
start, offset, win_pf);
|
||
|
csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
|
||
|
mtype, addr, len);
|
||
|
|
||
|
for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
|
||
|
/*
|
||
|
* Move PCI-E Memory Window to our current transfer
|
||
|
* position. Read it back to ensure that changes propagate
|
||
|
* before we attempt to use the new value.
|
||
|
*/
|
||
|
csio_wr_reg32(hw, pos | win_pf,
|
||
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
|
||
|
csio_rd_reg32(hw,
|
||
|
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
|
||
|
|
||
|
while (offset < mem_aperture && len > 0) {
|
||
|
if (dir)
|
||
|
*buf++ = csio_rd_reg32(hw, mem_base + offset);
|
||
|
else
|
||
|
csio_wr_reg32(hw, *buf++, mem_base + offset);
|
||
|
|
||
|
offset += sizeof(__be32);
|
||
|
len -= sizeof(__be32);
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
|
||
|
* @hw: the csio_hw
|
||
|
*
|
||
|
* This function creates files in the debugfs with external memory region
|
||
|
* MC0 & MC1.
|
||
|
*/
|
||
|
static void
|
||
|
csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
|
||
|
{
|
||
|
u32 size;
|
||
|
int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
|
||
|
|
||
|
if (i & EXT_MEM_ENABLE_F) {
|
||
|
size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
|
||
|
csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
|
||
|
EXT_MEM_SIZE_G(size));
|
||
|
}
|
||
|
if (i & EXT_MEM1_ENABLE_F) {
|
||
|
size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
|
||
|
csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
|
||
|
EXT_MEM_SIZE_G(size));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* T5 adapter specific function */
|
||
|
struct csio_hw_chip_ops t5_ops = {
|
||
|
.chip_set_mem_win = csio_t5_set_mem_win,
|
||
|
.chip_pcie_intr_handler = csio_t5_pcie_intr_handler,
|
||
|
.chip_flash_cfg_addr = csio_t5_flash_cfg_addr,
|
||
|
.chip_mc_read = csio_t5_mc_read,
|
||
|
.chip_edc_read = csio_t5_edc_read,
|
||
|
.chip_memory_rw = csio_t5_memory_rw,
|
||
|
.chip_dfs_create_ext_mem = csio_t5_dfs_create_ext_mem,
|
||
|
};
|