tegrakernel/kernel/kernel-4.9/drivers/soc/tegra/cvb.c

236 lines
7.0 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Utility functions for parsing Tegra CVB voltage tables
*
* Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/pm_opp.h>
#include <soc/tegra/cvb.h>
/* cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) */
int tegra_get_cvb_voltage(int speedo, int s_scale,
const struct cvb_coefficients *cvb)
{
int mv;
/* apply only speedo scale: output mv = cvb_mv * v_scale */
mv = DIV_ROUND_CLOSEST(cvb->c2 * speedo, s_scale);
mv = DIV_ROUND_CLOSEST((mv + cvb->c1) * speedo, s_scale) + cvb->c0;
return mv;
}
/* cvb_t_mv =
((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale) / v_scale */
int tegra_get_cvb_t_voltage(int speedo, int s_scale, int t, int t_scale,
struct cvb_coefficients *cvb)
{
/* apply speedo & temperature scales: output mv = cvb_t_mv * v_scale */
int mv;
mv = DIV_ROUND_CLOSEST(cvb->c3 * speedo, s_scale) + cvb->c4 +
DIV_ROUND_CLOSEST(cvb->c5 * t, t_scale);
mv = DIV_ROUND_CLOSEST(mv * t, t_scale);
return mv;
}
int tegra_round_cvb_voltage(int mv, int v_scale,
const struct rail_alignment *align)
{
/* combined: apply voltage scale and round to cvb alignment step */
int uv;
int step = (align->step_uv ? : 1000) * v_scale;
int offset = align->offset_uv * v_scale;
uv = max(mv * 1000, offset) - offset;
uv = DIV_ROUND_UP(uv, step) * align->step_uv + align->offset_uv;
return uv / 1000;
}
enum {
DOWN,
UP
};
int tegra_round_voltage(int mv, const struct rail_alignment *align, int up)
{
if (align->step_uv) {
int uv;
uv = max(mv * 1000, align->offset_uv) - align->offset_uv;
uv = (uv + (up ? align->step_uv - 1 : 0)) / align->step_uv;
return (uv * align->step_uv + align->offset_uv) / 1000;
}
return mv;
}
/**
* cvb_t_mv =
* ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) +
* ((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale)
*/
static inline int get_cvb_thermal_floor(int speedo, int temp,
int s_scale, int t_scale,
const struct thermal_coefficients *coef)
{
int cvb_mv, mv;
cvb_mv = tegra_get_cvb_voltage(speedo, s_scale, &coef->cvb_coef);
mv = DIV_ROUND_CLOSEST(coef->c3 * speedo, s_scale) + coef->c4 +
DIV_ROUND_CLOSEST(coef->c5 * temp, t_scale);
mv = DIV_ROUND_CLOSEST(mv * temp, t_scale) + cvb_mv;
return mv;
}
static int build_opp_table(struct device *dev, const struct cvb_table *table,
struct rail_alignment *align,
int speedo_value, unsigned long max_freq, int *vmin)
{
int i, ret, dfll_mv, min_mv, max_mv;
if (!align->step_uv)
align->step_uv = table->alignment.step_uv;
if (!align->step_uv)
return -EINVAL;
if (!align->offset_uv)
align->offset_uv = table->alignment.offset_uv;
min_mv = tegra_round_voltage(table->min_millivolts, align, UP);
max_mv = tegra_round_voltage(table->max_millivolts, align, DOWN);
dfll_mv = tegra_get_cvb_voltage(
speedo_value, table->speedo_scale, &table->vmin_coefficients);
dfll_mv = tegra_round_cvb_voltage(dfll_mv, table->voltage_scale, align);
min_mv = max(min_mv, dfll_mv);
for (i = 0; i < MAX_DVFS_FREQS; i++) {
const struct cvb_table_freq_entry *entry = &table->entries[i];
if (!entry->freq || (entry->freq > max_freq))
break;
dfll_mv = tegra_get_cvb_voltage(
speedo_value, table->speedo_scale, &entry->coefficients);
dfll_mv = tegra_round_cvb_voltage(dfll_mv, table->voltage_scale, align);
dfll_mv = clamp(dfll_mv, min_mv, max_mv);
ret = dev_pm_opp_add(dev, entry->freq, dfll_mv * 1000);
if (ret)
return ret;
}
if (vmin)
*vmin = min_mv;
return 0;
}
/**
* tegra_cvb_add_opp_table - build OPP table from Tegra CVB tables
* @cvb_tables: array of CVB tables
* @sz: size of the previously mentioned array
* @process_id: process id of the HW module
* @speedo_id: speedo id of the HW module
* @speedo_value: speedo value of the HW module
* @max_rate: highest safe clock rate
* @opp_dev: the struct device * for which the OPP table is built
* @vmin: final minimum voltage returned to the caller
*
* On Tegra, a CVB table encodes the relationship between operating voltage
* and safe maximal frequency for a given module (e.g. GPU or CPU). This
* function calculates the optimal voltage-frequency operating points
* for the given arguments and exports them via the OPP library for the
* given @opp_dev. Returns a pointer to the struct cvb_table that matched
* or an ERR_PTR on failure.
*/
const struct cvb_table *
tegra_cvb_add_opp_table(struct device *dev, const struct cvb_table *tables,
size_t count, struct rail_alignment *align,
int process_id, int speedo_id, int speedo_value,
unsigned long max_freq, int *vmin)
{
size_t i;
int ret;
for (i = 0; i < count; i++) {
const struct cvb_table *table = &tables[i];
if (table->speedo_id != -1 && table->speedo_id != speedo_id)
continue;
if (table->process_id != -1 && table->process_id != process_id)
continue;
ret = build_opp_table(dev, table, align, speedo_value,
max_freq, vmin);
return ret ? ERR_PTR(ret) : table;
}
return ERR_PTR(-EINVAL);
}
void tegra_cvb_remove_opp_table(struct device *dev,
const struct cvb_table *table,
unsigned long max_freq)
{
unsigned int i;
for (i = 0; i < MAX_DVFS_FREQS; i++) {
const struct cvb_table_freq_entry *entry = &table->entries[i];
if (!entry->freq || (entry->freq > max_freq))
break;
dev_pm_opp_remove(dev, entry->freq);
}
}
/**
* tegra_cvb_build_thermal_table - build thermal table from Tegra CVB tables
* @table: the hardware characterization thermal table
* @speedo_value: speedo value of the HW module
* @soc_min_mv: minimum voltage applied across all temperature ranges
*
* The minimum voltage for the IP blocks inside Tegra SoCs might depend on
* the current temperature. This function calculates the voltage-thermal
* relations according to the given coefficients. Note that if the
* coefficients are not defined, the fixed thermal floors in the @table will
* be used. Returns 0 on success or a negative error code on failure.
*/
int tegra_cvb_build_thermal_table(const struct thermal_table *table,
int speedo_value, unsigned int soc_min_mv)
{
int i;
if (!table)
return -EINVAL;
/* The vmin for the lowest trip point is fixed */
for (i = 1; i < table->thermal_floor_table_size; i++) {
unsigned int mv;
mv = get_cvb_thermal_floor(speedo_value,
table->thermal_floor_table[i-1].temp,
table->speedo_scale,
table->temp_scale,
&table->coefficients);
mv = DIV_ROUND_UP(mv, table->voltage_scale);
mv = max(mv, soc_min_mv);
table->thermal_floor_table[i].millivolts = max(mv,
table->thermal_floor_table[i].millivolts);
}
return 0;
}