843 lines
21 KiB
C
843 lines
21 KiB
C
|
/*
|
||
|
* Wireless Host Controller (WHC) qset management.
|
||
|
*
|
||
|
* Copyright (C) 2007 Cambridge Silicon Radio Ltd.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License version
|
||
|
* 2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/uwb/umc.h>
|
||
|
#include <linux/usb.h>
|
||
|
|
||
|
#include "../../wusbcore/wusbhc.h"
|
||
|
|
||
|
#include "whcd.h"
|
||
|
|
||
|
struct whc_qset *qset_alloc(struct whc *whc, gfp_t mem_flags)
|
||
|
{
|
||
|
struct whc_qset *qset;
|
||
|
dma_addr_t dma;
|
||
|
|
||
|
qset = dma_pool_zalloc(whc->qset_pool, mem_flags, &dma);
|
||
|
if (qset == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
qset->qset_dma = dma;
|
||
|
qset->whc = whc;
|
||
|
|
||
|
INIT_LIST_HEAD(&qset->list_node);
|
||
|
INIT_LIST_HEAD(&qset->stds);
|
||
|
|
||
|
return qset;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_fill_qh - fill the static endpoint state in a qset's QHead
|
||
|
* @qset: the qset whose QH needs initializing with static endpoint
|
||
|
* state
|
||
|
* @urb: an urb for a transfer to this endpoint
|
||
|
*/
|
||
|
static void qset_fill_qh(struct whc *whc, struct whc_qset *qset, struct urb *urb)
|
||
|
{
|
||
|
struct usb_device *usb_dev = urb->dev;
|
||
|
struct wusb_dev *wusb_dev = usb_dev->wusb_dev;
|
||
|
struct usb_wireless_ep_comp_descriptor *epcd;
|
||
|
bool is_out;
|
||
|
uint8_t phy_rate;
|
||
|
|
||
|
is_out = usb_pipeout(urb->pipe);
|
||
|
|
||
|
qset->max_packet = le16_to_cpu(urb->ep->desc.wMaxPacketSize);
|
||
|
|
||
|
epcd = (struct usb_wireless_ep_comp_descriptor *)qset->ep->extra;
|
||
|
if (epcd) {
|
||
|
qset->max_seq = epcd->bMaxSequence;
|
||
|
qset->max_burst = epcd->bMaxBurst;
|
||
|
} else {
|
||
|
qset->max_seq = 2;
|
||
|
qset->max_burst = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initial PHY rate is 53.3 Mbit/s for control endpoints or
|
||
|
* the maximum supported by the device for other endpoints
|
||
|
* (unless limited by the user).
|
||
|
*/
|
||
|
if (usb_pipecontrol(urb->pipe))
|
||
|
phy_rate = UWB_PHY_RATE_53;
|
||
|
else {
|
||
|
uint16_t phy_rates;
|
||
|
|
||
|
phy_rates = le16_to_cpu(wusb_dev->wusb_cap_descr->wPHYRates);
|
||
|
phy_rate = fls(phy_rates) - 1;
|
||
|
if (phy_rate > whc->wusbhc.phy_rate)
|
||
|
phy_rate = whc->wusbhc.phy_rate;
|
||
|
}
|
||
|
|
||
|
qset->qh.info1 = cpu_to_le32(
|
||
|
QH_INFO1_EP(usb_pipeendpoint(urb->pipe))
|
||
|
| (is_out ? QH_INFO1_DIR_OUT : QH_INFO1_DIR_IN)
|
||
|
| usb_pipe_to_qh_type(urb->pipe)
|
||
|
| QH_INFO1_DEV_INFO_IDX(wusb_port_no_to_idx(usb_dev->portnum))
|
||
|
| QH_INFO1_MAX_PKT_LEN(qset->max_packet)
|
||
|
);
|
||
|
qset->qh.info2 = cpu_to_le32(
|
||
|
QH_INFO2_BURST(qset->max_burst)
|
||
|
| QH_INFO2_DBP(0)
|
||
|
| QH_INFO2_MAX_COUNT(3)
|
||
|
| QH_INFO2_MAX_RETRY(3)
|
||
|
| QH_INFO2_MAX_SEQ(qset->max_seq - 1)
|
||
|
);
|
||
|
/* FIXME: where can we obtain these Tx parameters from? Why
|
||
|
* doesn't the chip know what Tx power to use? It knows the Rx
|
||
|
* strength and can presumably guess the Tx power required
|
||
|
* from that? */
|
||
|
qset->qh.info3 = cpu_to_le32(
|
||
|
QH_INFO3_TX_RATE(phy_rate)
|
||
|
| QH_INFO3_TX_PWR(0) /* 0 == max power */
|
||
|
);
|
||
|
|
||
|
qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_clear - clear fields in a qset so it may be reinserted into a
|
||
|
* schedule.
|
||
|
*
|
||
|
* The sequence number and current window are not cleared (see
|
||
|
* qset_reset()).
|
||
|
*/
|
||
|
void qset_clear(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
qset->td_start = qset->td_end = qset->ntds = 0;
|
||
|
|
||
|
qset->qh.link = cpu_to_le64(QH_LINK_NTDS(8) | QH_LINK_T);
|
||
|
qset->qh.status = qset->qh.status & QH_STATUS_SEQ_MASK;
|
||
|
qset->qh.err_count = 0;
|
||
|
qset->qh.scratch[0] = 0;
|
||
|
qset->qh.scratch[1] = 0;
|
||
|
qset->qh.scratch[2] = 0;
|
||
|
|
||
|
memset(&qset->qh.overlay, 0, sizeof(qset->qh.overlay));
|
||
|
|
||
|
init_completion(&qset->remove_complete);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_reset - reset endpoint state in a qset.
|
||
|
*
|
||
|
* Clears the sequence number and current window. This qset must not
|
||
|
* be in the ASL or PZL.
|
||
|
*/
|
||
|
void qset_reset(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
qset->reset = 0;
|
||
|
|
||
|
qset->qh.status &= ~QH_STATUS_SEQ_MASK;
|
||
|
qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* get_qset - get the qset for an async endpoint
|
||
|
*
|
||
|
* A new qset is created if one does not already exist.
|
||
|
*/
|
||
|
struct whc_qset *get_qset(struct whc *whc, struct urb *urb,
|
||
|
gfp_t mem_flags)
|
||
|
{
|
||
|
struct whc_qset *qset;
|
||
|
|
||
|
qset = urb->ep->hcpriv;
|
||
|
if (qset == NULL) {
|
||
|
qset = qset_alloc(whc, mem_flags);
|
||
|
if (qset == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
qset->ep = urb->ep;
|
||
|
urb->ep->hcpriv = qset;
|
||
|
qset_fill_qh(whc, qset, urb);
|
||
|
}
|
||
|
return qset;
|
||
|
}
|
||
|
|
||
|
void qset_remove_complete(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
qset->remove = 0;
|
||
|
list_del_init(&qset->list_node);
|
||
|
complete(&qset->remove_complete);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_add_qtds - add qTDs for an URB to a qset
|
||
|
*
|
||
|
* Returns true if the list (ASL/PZL) must be updated because (for a
|
||
|
* WHCI 0.95 controller) an activated qTD was pointed to be iCur.
|
||
|
*/
|
||
|
enum whc_update qset_add_qtds(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
struct whc_std *std;
|
||
|
enum whc_update update = 0;
|
||
|
|
||
|
list_for_each_entry(std, &qset->stds, list_node) {
|
||
|
struct whc_qtd *qtd;
|
||
|
uint32_t status;
|
||
|
|
||
|
if (qset->ntds >= WHCI_QSET_TD_MAX
|
||
|
|| (qset->pause_after_urb && std->urb != qset->pause_after_urb))
|
||
|
break;
|
||
|
|
||
|
if (std->qtd)
|
||
|
continue; /* already has a qTD */
|
||
|
|
||
|
qtd = std->qtd = &qset->qtd[qset->td_end];
|
||
|
|
||
|
/* Fill in setup bytes for control transfers. */
|
||
|
if (usb_pipecontrol(std->urb->pipe))
|
||
|
memcpy(qtd->setup, std->urb->setup_packet, 8);
|
||
|
|
||
|
status = QTD_STS_ACTIVE | QTD_STS_LEN(std->len);
|
||
|
|
||
|
if (whc_std_last(std) && usb_pipeout(std->urb->pipe))
|
||
|
status |= QTD_STS_LAST_PKT;
|
||
|
|
||
|
/*
|
||
|
* For an IN transfer the iAlt field should be set so
|
||
|
* the h/w will automatically advance to the next
|
||
|
* transfer. However, if there are 8 or more TDs
|
||
|
* remaining in this transfer then iAlt cannot be set
|
||
|
* as it could point to somewhere in this transfer.
|
||
|
*/
|
||
|
if (std->ntds_remaining < WHCI_QSET_TD_MAX) {
|
||
|
int ialt;
|
||
|
ialt = (qset->td_end + std->ntds_remaining) % WHCI_QSET_TD_MAX;
|
||
|
status |= QTD_STS_IALT(ialt);
|
||
|
} else if (usb_pipein(std->urb->pipe))
|
||
|
qset->pause_after_urb = std->urb;
|
||
|
|
||
|
if (std->num_pointers)
|
||
|
qtd->options = cpu_to_le32(QTD_OPT_IOC);
|
||
|
else
|
||
|
qtd->options = cpu_to_le32(QTD_OPT_IOC | QTD_OPT_SMALL);
|
||
|
qtd->page_list_ptr = cpu_to_le64(std->dma_addr);
|
||
|
|
||
|
qtd->status = cpu_to_le32(status);
|
||
|
|
||
|
if (QH_STATUS_TO_ICUR(qset->qh.status) == qset->td_end)
|
||
|
update = WHC_UPDATE_UPDATED;
|
||
|
|
||
|
if (++qset->td_end >= WHCI_QSET_TD_MAX)
|
||
|
qset->td_end = 0;
|
||
|
qset->ntds++;
|
||
|
}
|
||
|
|
||
|
return update;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_remove_qtd - remove the first qTD from a qset.
|
||
|
*
|
||
|
* The qTD might be still active (if it's part of a IN URB that
|
||
|
* resulted in a short read) so ensure it's deactivated.
|
||
|
*/
|
||
|
static void qset_remove_qtd(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
qset->qtd[qset->td_start].status = 0;
|
||
|
|
||
|
if (++qset->td_start >= WHCI_QSET_TD_MAX)
|
||
|
qset->td_start = 0;
|
||
|
qset->ntds--;
|
||
|
}
|
||
|
|
||
|
static void qset_copy_bounce_to_sg(struct whc *whc, struct whc_std *std)
|
||
|
{
|
||
|
struct scatterlist *sg;
|
||
|
void *bounce;
|
||
|
size_t remaining, offset;
|
||
|
|
||
|
bounce = std->bounce_buf;
|
||
|
remaining = std->len;
|
||
|
|
||
|
sg = std->bounce_sg;
|
||
|
offset = std->bounce_offset;
|
||
|
|
||
|
while (remaining) {
|
||
|
size_t len;
|
||
|
|
||
|
len = min(sg->length - offset, remaining);
|
||
|
memcpy(sg_virt(sg) + offset, bounce, len);
|
||
|
|
||
|
bounce += len;
|
||
|
remaining -= len;
|
||
|
|
||
|
offset += len;
|
||
|
if (offset >= sg->length) {
|
||
|
sg = sg_next(sg);
|
||
|
offset = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_free_std - remove an sTD and free it.
|
||
|
* @whc: the WHCI host controller
|
||
|
* @std: the sTD to remove and free.
|
||
|
*/
|
||
|
void qset_free_std(struct whc *whc, struct whc_std *std)
|
||
|
{
|
||
|
list_del(&std->list_node);
|
||
|
if (std->bounce_buf) {
|
||
|
bool is_out = usb_pipeout(std->urb->pipe);
|
||
|
dma_addr_t dma_addr;
|
||
|
|
||
|
if (std->num_pointers)
|
||
|
dma_addr = le64_to_cpu(std->pl_virt[0].buf_ptr);
|
||
|
else
|
||
|
dma_addr = std->dma_addr;
|
||
|
|
||
|
dma_unmap_single(whc->wusbhc.dev, dma_addr,
|
||
|
std->len, is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
||
|
if (!is_out)
|
||
|
qset_copy_bounce_to_sg(whc, std);
|
||
|
kfree(std->bounce_buf);
|
||
|
}
|
||
|
if (std->pl_virt) {
|
||
|
if (!dma_mapping_error(whc->wusbhc.dev, std->dma_addr))
|
||
|
dma_unmap_single(whc->wusbhc.dev, std->dma_addr,
|
||
|
std->num_pointers * sizeof(struct whc_page_list_entry),
|
||
|
DMA_TO_DEVICE);
|
||
|
kfree(std->pl_virt);
|
||
|
std->pl_virt = NULL;
|
||
|
}
|
||
|
kfree(std);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_remove_qtds - remove an URB's qTDs (and sTDs).
|
||
|
*/
|
||
|
static void qset_remove_qtds(struct whc *whc, struct whc_qset *qset,
|
||
|
struct urb *urb)
|
||
|
{
|
||
|
struct whc_std *std, *t;
|
||
|
|
||
|
list_for_each_entry_safe(std, t, &qset->stds, list_node) {
|
||
|
if (std->urb != urb)
|
||
|
break;
|
||
|
if (std->qtd != NULL)
|
||
|
qset_remove_qtd(whc, qset);
|
||
|
qset_free_std(whc, std);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_free_stds - free any remaining sTDs for an URB.
|
||
|
*/
|
||
|
static void qset_free_stds(struct whc_qset *qset, struct urb *urb)
|
||
|
{
|
||
|
struct whc_std *std, *t;
|
||
|
|
||
|
list_for_each_entry_safe(std, t, &qset->stds, list_node) {
|
||
|
if (std->urb == urb)
|
||
|
qset_free_std(qset->whc, std);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int qset_fill_page_list(struct whc *whc, struct whc_std *std, gfp_t mem_flags)
|
||
|
{
|
||
|
dma_addr_t dma_addr = std->dma_addr;
|
||
|
dma_addr_t sp, ep;
|
||
|
size_t pl_len;
|
||
|
int p;
|
||
|
|
||
|
/* Short buffers don't need a page list. */
|
||
|
if (std->len <= WHCI_PAGE_SIZE) {
|
||
|
std->num_pointers = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
sp = dma_addr & ~(WHCI_PAGE_SIZE-1);
|
||
|
ep = dma_addr + std->len;
|
||
|
std->num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE);
|
||
|
|
||
|
pl_len = std->num_pointers * sizeof(struct whc_page_list_entry);
|
||
|
std->pl_virt = kmalloc(pl_len, mem_flags);
|
||
|
if (std->pl_virt == NULL)
|
||
|
return -ENOMEM;
|
||
|
std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt, pl_len, DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(whc->wusbhc.dev, std->dma_addr)) {
|
||
|
kfree(std->pl_virt);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
for (p = 0; p < std->num_pointers; p++) {
|
||
|
std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr);
|
||
|
dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* urb_dequeue_work - executes asl/pzl update and gives back the urb to the system.
|
||
|
*/
|
||
|
static void urb_dequeue_work(struct work_struct *work)
|
||
|
{
|
||
|
struct whc_urb *wurb = container_of(work, struct whc_urb, dequeue_work);
|
||
|
struct whc_qset *qset = wurb->qset;
|
||
|
struct whc *whc = qset->whc;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (wurb->is_async)
|
||
|
asl_update(whc, WUSBCMD_ASYNC_UPDATED
|
||
|
| WUSBCMD_ASYNC_SYNCED_DB
|
||
|
| WUSBCMD_ASYNC_QSET_RM);
|
||
|
else
|
||
|
pzl_update(whc, WUSBCMD_PERIODIC_UPDATED
|
||
|
| WUSBCMD_PERIODIC_SYNCED_DB
|
||
|
| WUSBCMD_PERIODIC_QSET_RM);
|
||
|
|
||
|
spin_lock_irqsave(&whc->lock, flags);
|
||
|
qset_remove_urb(whc, qset, wurb->urb, wurb->status);
|
||
|
spin_unlock_irqrestore(&whc->lock, flags);
|
||
|
}
|
||
|
|
||
|
static struct whc_std *qset_new_std(struct whc *whc, struct whc_qset *qset,
|
||
|
struct urb *urb, gfp_t mem_flags)
|
||
|
{
|
||
|
struct whc_std *std;
|
||
|
|
||
|
std = kzalloc(sizeof(struct whc_std), mem_flags);
|
||
|
if (std == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
std->urb = urb;
|
||
|
std->qtd = NULL;
|
||
|
|
||
|
INIT_LIST_HEAD(&std->list_node);
|
||
|
list_add_tail(&std->list_node, &qset->stds);
|
||
|
|
||
|
return std;
|
||
|
}
|
||
|
|
||
|
static int qset_add_urb_sg(struct whc *whc, struct whc_qset *qset, struct urb *urb,
|
||
|
gfp_t mem_flags)
|
||
|
{
|
||
|
size_t remaining;
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
int ntds = 0;
|
||
|
struct whc_std *std = NULL;
|
||
|
struct whc_page_list_entry *new_pl_virt;
|
||
|
dma_addr_t prev_end = 0;
|
||
|
size_t pl_len;
|
||
|
int p = 0;
|
||
|
|
||
|
remaining = urb->transfer_buffer_length;
|
||
|
|
||
|
for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
|
||
|
dma_addr_t dma_addr;
|
||
|
size_t dma_remaining;
|
||
|
dma_addr_t sp, ep;
|
||
|
int num_pointers;
|
||
|
|
||
|
if (remaining == 0) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
dma_addr = sg_dma_address(sg);
|
||
|
dma_remaining = min_t(size_t, sg_dma_len(sg), remaining);
|
||
|
|
||
|
while (dma_remaining) {
|
||
|
size_t dma_len;
|
||
|
|
||
|
/*
|
||
|
* We can use the previous std (if it exists) provided that:
|
||
|
* - the previous one ended on a page boundary.
|
||
|
* - the current one begins on a page boundary.
|
||
|
* - the previous one isn't full.
|
||
|
*
|
||
|
* If a new std is needed but the previous one
|
||
|
* was not a whole number of packets then this
|
||
|
* sg list cannot be mapped onto multiple
|
||
|
* qTDs. Return an error and let the caller
|
||
|
* sort it out.
|
||
|
*/
|
||
|
if (!std
|
||
|
|| (prev_end & (WHCI_PAGE_SIZE-1))
|
||
|
|| (dma_addr & (WHCI_PAGE_SIZE-1))
|
||
|
|| std->len + WHCI_PAGE_SIZE > QTD_MAX_XFER_SIZE) {
|
||
|
if (std && std->len % qset->max_packet != 0)
|
||
|
return -EINVAL;
|
||
|
std = qset_new_std(whc, qset, urb, mem_flags);
|
||
|
if (std == NULL) {
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
ntds++;
|
||
|
p = 0;
|
||
|
}
|
||
|
|
||
|
dma_len = dma_remaining;
|
||
|
|
||
|
/*
|
||
|
* If the remainder of this element doesn't
|
||
|
* fit in a single qTD, limit the qTD to a
|
||
|
* whole number of packets. This allows the
|
||
|
* remainder to go into the next qTD.
|
||
|
*/
|
||
|
if (std->len + dma_len > QTD_MAX_XFER_SIZE) {
|
||
|
dma_len = (QTD_MAX_XFER_SIZE / qset->max_packet)
|
||
|
* qset->max_packet - std->len;
|
||
|
}
|
||
|
|
||
|
std->len += dma_len;
|
||
|
std->ntds_remaining = -1; /* filled in later */
|
||
|
|
||
|
sp = dma_addr & ~(WHCI_PAGE_SIZE-1);
|
||
|
ep = dma_addr + dma_len;
|
||
|
num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE);
|
||
|
std->num_pointers += num_pointers;
|
||
|
|
||
|
pl_len = std->num_pointers * sizeof(struct whc_page_list_entry);
|
||
|
|
||
|
new_pl_virt = krealloc(std->pl_virt, pl_len, mem_flags);
|
||
|
if (new_pl_virt == NULL) {
|
||
|
kfree(std->pl_virt);
|
||
|
std->pl_virt = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
std->pl_virt = new_pl_virt;
|
||
|
|
||
|
for (;p < std->num_pointers; p++) {
|
||
|
std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr);
|
||
|
dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1);
|
||
|
}
|
||
|
|
||
|
prev_end = dma_addr = ep;
|
||
|
dma_remaining -= dma_len;
|
||
|
remaining -= dma_len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Now the number of stds is know, go back and fill in
|
||
|
std->ntds_remaining. */
|
||
|
list_for_each_entry(std, &qset->stds, list_node) {
|
||
|
if (std->ntds_remaining == -1) {
|
||
|
pl_len = std->num_pointers * sizeof(struct whc_page_list_entry);
|
||
|
std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt,
|
||
|
pl_len, DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(whc->wusbhc.dev, std->dma_addr))
|
||
|
return -EFAULT;
|
||
|
std->ntds_remaining = ntds--;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_add_urb_sg_linearize - add an urb with sg list, copying the data
|
||
|
*
|
||
|
* If the URB contains an sg list whose elements cannot be directly
|
||
|
* mapped to qTDs then the data must be transferred via bounce
|
||
|
* buffers.
|
||
|
*/
|
||
|
static int qset_add_urb_sg_linearize(struct whc *whc, struct whc_qset *qset,
|
||
|
struct urb *urb, gfp_t mem_flags)
|
||
|
{
|
||
|
bool is_out = usb_pipeout(urb->pipe);
|
||
|
size_t max_std_len;
|
||
|
size_t remaining;
|
||
|
int ntds = 0;
|
||
|
struct whc_std *std = NULL;
|
||
|
void *bounce = NULL;
|
||
|
struct scatterlist *sg;
|
||
|
int i;
|
||
|
|
||
|
/* limit maximum bounce buffer to 16 * 3.5 KiB ~= 28 k */
|
||
|
max_std_len = qset->max_burst * qset->max_packet;
|
||
|
|
||
|
remaining = urb->transfer_buffer_length;
|
||
|
|
||
|
for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
|
||
|
size_t len;
|
||
|
size_t sg_remaining;
|
||
|
void *orig;
|
||
|
|
||
|
if (remaining == 0) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
sg_remaining = min_t(size_t, remaining, sg->length);
|
||
|
orig = sg_virt(sg);
|
||
|
|
||
|
while (sg_remaining) {
|
||
|
if (!std || std->len == max_std_len) {
|
||
|
std = qset_new_std(whc, qset, urb, mem_flags);
|
||
|
if (std == NULL)
|
||
|
return -ENOMEM;
|
||
|
std->bounce_buf = kmalloc(max_std_len, mem_flags);
|
||
|
if (std->bounce_buf == NULL)
|
||
|
return -ENOMEM;
|
||
|
std->bounce_sg = sg;
|
||
|
std->bounce_offset = orig - sg_virt(sg);
|
||
|
bounce = std->bounce_buf;
|
||
|
ntds++;
|
||
|
}
|
||
|
|
||
|
len = min(sg_remaining, max_std_len - std->len);
|
||
|
|
||
|
if (is_out)
|
||
|
memcpy(bounce, orig, len);
|
||
|
|
||
|
std->len += len;
|
||
|
std->ntds_remaining = -1; /* filled in later */
|
||
|
|
||
|
bounce += len;
|
||
|
orig += len;
|
||
|
sg_remaining -= len;
|
||
|
remaining -= len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For each of the new sTDs, map the bounce buffers, create
|
||
|
* page lists (if necessary), and fill in std->ntds_remaining.
|
||
|
*/
|
||
|
list_for_each_entry(std, &qset->stds, list_node) {
|
||
|
if (std->ntds_remaining != -1)
|
||
|
continue;
|
||
|
|
||
|
std->dma_addr = dma_map_single(&whc->umc->dev, std->bounce_buf, std->len,
|
||
|
is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
|
||
|
if (dma_mapping_error(&whc->umc->dev, std->dma_addr))
|
||
|
return -EFAULT;
|
||
|
|
||
|
if (qset_fill_page_list(whc, std, mem_flags) < 0)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
std->ntds_remaining = ntds--;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_add_urb - add an urb to the qset's queue.
|
||
|
*
|
||
|
* The URB is chopped into sTDs, one for each qTD that will required.
|
||
|
* At least one qTD (and sTD) is required even if the transfer has no
|
||
|
* data (e.g., for some control transfers).
|
||
|
*/
|
||
|
int qset_add_urb(struct whc *whc, struct whc_qset *qset, struct urb *urb,
|
||
|
gfp_t mem_flags)
|
||
|
{
|
||
|
struct whc_urb *wurb;
|
||
|
int remaining = urb->transfer_buffer_length;
|
||
|
u64 transfer_dma = urb->transfer_dma;
|
||
|
int ntds_remaining;
|
||
|
int ret;
|
||
|
|
||
|
wurb = kzalloc(sizeof(struct whc_urb), mem_flags);
|
||
|
if (wurb == NULL)
|
||
|
goto err_no_mem;
|
||
|
urb->hcpriv = wurb;
|
||
|
wurb->qset = qset;
|
||
|
wurb->urb = urb;
|
||
|
INIT_WORK(&wurb->dequeue_work, urb_dequeue_work);
|
||
|
|
||
|
if (urb->num_sgs) {
|
||
|
ret = qset_add_urb_sg(whc, qset, urb, mem_flags);
|
||
|
if (ret == -EINVAL) {
|
||
|
qset_free_stds(qset, urb);
|
||
|
ret = qset_add_urb_sg_linearize(whc, qset, urb, mem_flags);
|
||
|
}
|
||
|
if (ret < 0)
|
||
|
goto err_no_mem;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ntds_remaining = DIV_ROUND_UP(remaining, QTD_MAX_XFER_SIZE);
|
||
|
if (ntds_remaining == 0)
|
||
|
ntds_remaining = 1;
|
||
|
|
||
|
while (ntds_remaining) {
|
||
|
struct whc_std *std;
|
||
|
size_t std_len;
|
||
|
|
||
|
std_len = remaining;
|
||
|
if (std_len > QTD_MAX_XFER_SIZE)
|
||
|
std_len = QTD_MAX_XFER_SIZE;
|
||
|
|
||
|
std = qset_new_std(whc, qset, urb, mem_flags);
|
||
|
if (std == NULL)
|
||
|
goto err_no_mem;
|
||
|
|
||
|
std->dma_addr = transfer_dma;
|
||
|
std->len = std_len;
|
||
|
std->ntds_remaining = ntds_remaining;
|
||
|
|
||
|
if (qset_fill_page_list(whc, std, mem_flags) < 0)
|
||
|
goto err_no_mem;
|
||
|
|
||
|
ntds_remaining--;
|
||
|
remaining -= std_len;
|
||
|
transfer_dma += std_len;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err_no_mem:
|
||
|
qset_free_stds(qset, urb);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_remove_urb - remove an URB from the urb queue.
|
||
|
*
|
||
|
* The URB is returned to the USB subsystem.
|
||
|
*/
|
||
|
void qset_remove_urb(struct whc *whc, struct whc_qset *qset,
|
||
|
struct urb *urb, int status)
|
||
|
{
|
||
|
struct wusbhc *wusbhc = &whc->wusbhc;
|
||
|
struct whc_urb *wurb = urb->hcpriv;
|
||
|
|
||
|
usb_hcd_unlink_urb_from_ep(&wusbhc->usb_hcd, urb);
|
||
|
/* Drop the lock as urb->complete() may enqueue another urb. */
|
||
|
spin_unlock(&whc->lock);
|
||
|
wusbhc_giveback_urb(wusbhc, urb, status);
|
||
|
spin_lock(&whc->lock);
|
||
|
|
||
|
kfree(wurb);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* get_urb_status_from_qtd - get the completed urb status from qTD status
|
||
|
* @urb: completed urb
|
||
|
* @status: qTD status
|
||
|
*/
|
||
|
static int get_urb_status_from_qtd(struct urb *urb, u32 status)
|
||
|
{
|
||
|
if (status & QTD_STS_HALTED) {
|
||
|
if (status & QTD_STS_DBE)
|
||
|
return usb_pipein(urb->pipe) ? -ENOSR : -ECOMM;
|
||
|
else if (status & QTD_STS_BABBLE)
|
||
|
return -EOVERFLOW;
|
||
|
else if (status & QTD_STS_RCE)
|
||
|
return -ETIME;
|
||
|
return -EPIPE;
|
||
|
}
|
||
|
if (usb_pipein(urb->pipe)
|
||
|
&& (urb->transfer_flags & URB_SHORT_NOT_OK)
|
||
|
&& urb->actual_length < urb->transfer_buffer_length)
|
||
|
return -EREMOTEIO;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* process_inactive_qtd - process an inactive (but not halted) qTD.
|
||
|
*
|
||
|
* Update the urb with the transfer bytes from the qTD, if the urb is
|
||
|
* completely transferred or (in the case of an IN only) the LPF is
|
||
|
* set, then the transfer is complete and the urb should be returned
|
||
|
* to the system.
|
||
|
*/
|
||
|
void process_inactive_qtd(struct whc *whc, struct whc_qset *qset,
|
||
|
struct whc_qtd *qtd)
|
||
|
{
|
||
|
struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node);
|
||
|
struct urb *urb = std->urb;
|
||
|
uint32_t status;
|
||
|
bool complete;
|
||
|
|
||
|
status = le32_to_cpu(qtd->status);
|
||
|
|
||
|
urb->actual_length += std->len - QTD_STS_TO_LEN(status);
|
||
|
|
||
|
if (usb_pipein(urb->pipe) && (status & QTD_STS_LAST_PKT))
|
||
|
complete = true;
|
||
|
else
|
||
|
complete = whc_std_last(std);
|
||
|
|
||
|
qset_remove_qtd(whc, qset);
|
||
|
qset_free_std(whc, std);
|
||
|
|
||
|
/*
|
||
|
* Transfers for this URB are complete? Then return it to the
|
||
|
* USB subsystem.
|
||
|
*/
|
||
|
if (complete) {
|
||
|
qset_remove_qtds(whc, qset, urb);
|
||
|
qset_remove_urb(whc, qset, urb, get_urb_status_from_qtd(urb, status));
|
||
|
|
||
|
/*
|
||
|
* If iAlt isn't valid then the hardware didn't
|
||
|
* advance iCur. Adjust the start and end pointers to
|
||
|
* match iCur.
|
||
|
*/
|
||
|
if (!(status & QTD_STS_IALT_VALID))
|
||
|
qset->td_start = qset->td_end
|
||
|
= QH_STATUS_TO_ICUR(le16_to_cpu(qset->qh.status));
|
||
|
qset->pause_after_urb = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* process_halted_qtd - process a qset with a halted qtd
|
||
|
*
|
||
|
* Remove all the qTDs for the failed URB and return the failed URB to
|
||
|
* the USB subsystem. Then remove all other qTDs so the qset can be
|
||
|
* removed.
|
||
|
*
|
||
|
* FIXME: this is the point where rate adaptation can be done. If a
|
||
|
* transfer failed because it exceeded the maximum number of retries
|
||
|
* then it could be reactivated with a slower rate without having to
|
||
|
* remove the qset.
|
||
|
*/
|
||
|
void process_halted_qtd(struct whc *whc, struct whc_qset *qset,
|
||
|
struct whc_qtd *qtd)
|
||
|
{
|
||
|
struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node);
|
||
|
struct urb *urb = std->urb;
|
||
|
int urb_status;
|
||
|
|
||
|
urb_status = get_urb_status_from_qtd(urb, le32_to_cpu(qtd->status));
|
||
|
|
||
|
qset_remove_qtds(whc, qset, urb);
|
||
|
qset_remove_urb(whc, qset, urb, urb_status);
|
||
|
|
||
|
list_for_each_entry(std, &qset->stds, list_node) {
|
||
|
if (qset->ntds == 0)
|
||
|
break;
|
||
|
qset_remove_qtd(whc, qset);
|
||
|
std->qtd = NULL;
|
||
|
}
|
||
|
|
||
|
qset->remove = 1;
|
||
|
}
|
||
|
|
||
|
void qset_free(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
dma_pool_free(whc->qset_pool, qset, qset->qset_dma);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* qset_delete - wait for a qset to be unused, then free it.
|
||
|
*/
|
||
|
void qset_delete(struct whc *whc, struct whc_qset *qset)
|
||
|
{
|
||
|
wait_for_completion(&qset->remove_complete);
|
||
|
qset_free(whc, qset);
|
||
|
}
|