tegrakernel/kernel/kernel-4.9/drivers/usb/host/xhci-tegra.c

5470 lines
140 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* NVIDIA Tegra xHCI host controller driver
*
* Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.
* Copyright (C) 2014 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/phy/tegra/xusb.h>
#include <linux/platform_device.h>
#include <linux/usb/ch9.h>
#include <linux/pm.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/circ_buf.h>
#include <linux/extcon.h>
#include <linux/pm_qos.h>
#include <linux/tegra-ivc.h>
#include <linux/tegra_pm_domains.h>
#include <linux/tegra-powergate.h>
#include <soc/tegra/chip-id.h>
#include <linux/tegra-firmwares.h>
#include <linux/usb/quirks.h>
#include "xhci.h"
#include "../core/hub.h"
static bool en_hcd_reinit = false;
module_param(en_hcd_reinit, bool, 0644);
MODULE_PARM_DESC(en_hcd_reinit, "Enable hcd reinit when hc died");
static void xhci_reinit_work(struct work_struct *work);
static int tegra_xhci_hcd_reinit(struct usb_hcd *hcd);
static bool max_burst_war_enable = true;
module_param(max_burst_war_enable, bool, 0644);
MODULE_PARM_DESC(max_burst_war_enable, "Max burst WAR");
#define BLACKLIST_SIZE 100
static uint downgraded_usb3[BLACKLIST_SIZE];
static int downgraded_count;
/* S_IRUGO | S_IWUSR | S_IWGRP */
module_param_array(downgraded_usb3, uint, &downgraded_count, 0664);
MODULE_PARM_DESC(downgraded_usb3,
"Downgraded USB3 devices with idVendoridProduct,e.g., 0x11112222,0x33334444");
static LIST_HEAD(hub_downgraded_list);
#define TEGRA_XHCI_SS_HIGH_SPEED 120000000
#define TEGRA_XHCI_SS_LOW_SPEED 12000000
/* FPCI CFG registers */
#define XUSB_CFG_1 0x004
#define XUSB_IO_SPACE_EN BIT(0)
#define XUSB_MEM_SPACE_EN BIT(1)
#define XUSB_BUS_MASTER_EN BIT(2)
#define XUSB_CFG_4 0x010
#define XUSB_BASE_ADDR_SHIFT 15
#define XUSB_BASE_ADDR_MASK 0x1ffff
#define XUSB_T194_BASE_ADDR_SHIFT 18
#define XUSB_T194_BASE_ADDR_MASK 0x3fff
#define XUSB_CFG_16 0x040
#define XUSB_CFG_24 0x060
#define XUSB_CFG_AXI_CFG 0x0f8
#define XUSB_CFG_ARU_C11PAGESEL 0x404
#define XUSB_HSP0 BIT(12)
#define XUSB_CFG_ARU_C11_CSBRANGE 0x41c
#define XUSB_CFG_ARU_CONTEXT 0x43c
#define XUSB_CFG_ARU_CONTEXT_HS_PLS 0x478
#define XUSB_CFG_ARU_CONTEXT_FS_PLS 0x47c
#define XUSB_CFG_ARU_CONTEXT_HSFS_SPEED 0x480
#define XUSB_CFG_ARU_CONTEXT_HSFS_PP 0x484
#define XUSB_CFG_ARU_FW_SCRATCH 0x00000440
#define XUSB_CFG_HSPX_CORE_CTRL 0x600
#define XUSB_HSIC_PLLCLK_VLD BIT(24)
#define XUSB_CFG_CSB_BASE_ADDR 0x800
/* FPCI mailbox registers */
#define XUSB_CFG_ARU_MBOX_CMD 0x0e4
#define MBOX_DEST_FALC BIT(27)
#define MBOX_DEST_PME BIT(28)
#define MBOX_DEST_SMI BIT(29)
#define MBOX_DEST_XHCI BIT(30)
#define MBOX_INT_EN BIT(31)
#define XUSB_CFG_ARU_MBOX_DATA_IN 0x0e8
#define CMD_DATA_SHIFT 0
#define CMD_DATA_MASK 0xffffff
#define CMD_TYPE_SHIFT 24
#define CMD_TYPE_MASK 0xff
#define XUSB_CFG_ARU_MBOX_DATA_OUT 0x0ec
#define XUSB_CFG_ARU_MBOX_OWNER 0x0f0
#define MBOX_OWNER_NONE 0
#define MBOX_OWNER_FW 1
#define MBOX_OWNER_SW 2
#define XUSB_CFG_ARU_SMI_INTR 0x428
#define MBOX_SMI_INTR_FW_HANG BIT(1)
#define MBOX_SMI_INTR_EN BIT(3)
#define XUSB_CFG_ARU_T194_MBOX_CMD 0x068
#define XUSB_CFG_ARU_T194_MBOX_DATA_IN 0x06c
#define XUSB_CFG_ARU_T194_MBOX_DATA_OUT 0x070
#define XUSB_CFG_ARU_T194_MBOX_OWNER 0x074
/* IPFS registers */
#define XUSB_HOST_MSI_BAR_SZ_0 0x0c0
#define XUSB_HOST_MSI_AXI_BAR_ST_0 0x0c4
#define XUSB_HOST_MSI_FPCI_BAR_ST_0 0x0c8
#define XUSB_HOST_MSI_VEC0_0 0x100
#define XUSB_HOST_MSI_EN_VEC0_0 0x140
#define XUSB_HOST_CONFIGURATION_0 0x180
#define IPFS_EN_FPCI BIT(0)
#define XUSB_HOST_FPCI_ERROR_MASKS_0 0x184
#define XUSB_HOST_INTR_MASK_0 0x188
#define IPFS_IP_INT_MASK BIT(16)
#define XUSB_HOST_IPFS_INTR_ENABLE_0 0x198
#define XUSB_HOST_UFPCI_CONFIG_0 0x19c
#define XUSB_HOST_CLKGATE_HYSTERESIS_0 0x1bc
#define XUSB_HOST_MCCIF_FIFOCTRL_0 0x1dc
#define CSB_PAGE_SELECT_MASK 0x7fffff
#define CSB_PAGE_SELECT_SHIFT 9
#define CSB_PAGE_OFFSET_MASK 0x1ff
#define CSB_PAGE_SELECT(addr) ((addr) >> (CSB_PAGE_SELECT_SHIFT) & \
CSB_PAGE_SELECT_MASK)
#define CSB_PAGE_OFFSET(addr) ((addr) & CSB_PAGE_OFFSET_MASK)
/* Falcon CSB registers */
#define XUSB_FALC_CPUCTL 0x100
#define CPUCTL_STARTCPU BIT(1)
#define CPUCTL_STATE_HALTED BIT(4)
#define CPUCTL_STATE_STOPPED BIT(5)
#define XUSB_FALC_BOOTVEC 0x104
#define XUSB_FALC_DMACTL 0x10c
#define XUSB_FALC_IMFILLRNG1 0x154
#define IMFILLRNG1_TAG_MASK 0xffff
#define IMFILLRNG1_TAG_LO_SHIFT 0
#define IMFILLRNG1_TAG_HI_SHIFT 16
#define XUSB_FALC_IMFILLCTL 0x158
/* MP CSB registers */
#define XUSB_CSB_MP_ILOAD_ATTR 0x101a00
#define XUSB_CSB_MP_ILOAD_BASE_LO 0x101a04
#define XUSB_CSB_MP_ILOAD_BASE_HI 0x101a08
#define XUSB_CSB_MP_L2IMEMOP_SIZE 0x101a10
#define L2IMEMOP_SIZE_SRC_OFFSET_SHIFT 8
#define L2IMEMOP_SIZE_SRC_OFFSET_MASK 0x3ff
#define L2IMEMOP_SIZE_SRC_COUNT_SHIFT 24
#define L2IMEMOP_SIZE_SRC_COUNT_MASK 0xff
#define XUSB_CSB_MP_L2IMEMOP_TRIG 0x101a14
#define L2IMEMOP_ACTION_SHIFT 24
#define L2IMEMOP_INVALIDATE_ALL (0x40 << L2IMEMOP_ACTION_SHIFT)
#define L2IMEMOP_LOAD_LOCKED_RESULT (0x11 << L2IMEMOP_ACTION_SHIFT)
#define XUSB_CSB_MEMPOOL_L2IMEMOP_RESULT 0x00101A18
#define L2IMEMOP_RESULT_VLD (1 << 31)
#define XUSB_CSB_MP_APMAP 0x10181c
#define APMAP_BOOTPATH BIT(31)
#define IMEM_BLOCK_SIZE 256
/* firmware retry limit */
#define FW_RETRY_COUNT (5)
/* device quirks */
#define QUIRK_FOR_SS_DEVICE BIT(0)
#define QUIRK_FOR_HS_DEVICE BIT(1)
#define QUIRK_FOR_FS_DEVICE BIT(2)
#define QUIRK_FOR_LS_DEVICE BIT(3)
#define QUIRK_FOR_USB2_DEVICE \
(QUIRK_FOR_HS_DEVICE | QUIRK_FOR_FS_DEVICE | QUIRK_FOR_LS_DEVICE)
#define USB_DEVICE_USB3(vid, pid) \
USB_DEVICE(vid, pid), \
.driver_info = (QUIRK_FOR_USB2_DEVICE | QUIRK_FOR_SS_DEVICE),
#define USB_DEVICE_USB2(vid, pid) \
USB_DEVICE(vid, pid), \
.driver_info = QUIRK_FOR_USB2_DEVICE,
#define USB_DEVICE_SS(vid, pid) \
USB_DEVICE(vid, pid), \
.driver_info = QUIRK_FOR_SS_DEVICE,
#define USB_DEVICE_HS(vid, pid) \
USB_DEVICE(vid, pid), \
.driver_info = QUIRK_FOR_HS_DEVICE,
#define USB_DEVICE_FS(vid, pid) \
USB_DEVICE(vid, pid), \
.driver_info = QUIRK_FOR_FS_DEVICE,
#define USB_DEVICE_LS(vid, pid) \
USB_DEVICE(vid, pid), \
.driver_info = QUIRK_FOR_LS_DEVICE,
/* Device ID */
#define XHCI_DEVICE_ID_T124 0x0fa3
#define XHCI_DEVICE_ID_T210 0x0fad
#define XHCI_DEVICE_ID_T186 0x10e2
#define XHCI_DEVICE_ID_T194 0x10fe
#define XHCI_IS_T210(t) (t->soc ? \
(t->soc->device_id == XHCI_DEVICE_ID_T210) : false)
#define XHCI_IS_T186(t) (t->soc ? \
(t->soc->device_id == XHCI_DEVICE_ID_T186) : false)
#define XHCI_IS_T194(t) (t->soc ? \
(t->soc->device_id == XHCI_DEVICE_ID_T194) : false)
/* default parameters for boosting CPU freq */
#define XHCI_BOOST_TIMEOUT 2000 /* 2 seconds */
#define XHCI_BOOST_TRIGGER_SIZE 4096 /* 4KB */
static struct usb_device_id disable_usb_persist_quirk_list[] = {
/* Sandisk Extreme USB 3.0 pen drive, SuperSpeed */
{ USB_DEVICE_SS(0x0781, 0x5580) },
{ } /* terminating entry must be last */
};
static int usb_match_speed(struct usb_device *udev,
const struct usb_device_id *id)
{
if (!id)
return 0;
if ((id->driver_info & QUIRK_FOR_SS_DEVICE) &&
udev->speed == USB_SPEED_SUPER)
return 1;
if ((id->driver_info & QUIRK_FOR_HS_DEVICE) &&
udev->speed == USB_SPEED_HIGH)
return 1;
if ((id->driver_info & QUIRK_FOR_FS_DEVICE) &&
udev->speed == USB_SPEED_FULL)
return 1;
if ((id->driver_info & QUIRK_FOR_LS_DEVICE) &&
udev->speed == USB_SPEED_LOW)
return 1;
return 0;
}
#define FW_IOCTL_LOG_DEQUEUE_LOW (4)
#define FW_IOCTL_LOG_DEQUEUE_HIGH (5)
#define FW_IOCTL_DATA_SHIFT (0)
#define FW_IOCTL_DATA_MASK (0x00ffffff)
#define FW_IOCTL_TYPE_SHIFT (24)
#define FW_IOCTL_TYPE_MASK (0xff000000)
#define FW_LOG_SIZE ((int) sizeof(struct log_entry))
#define FW_LOG_COUNT (4096)
#define FW_LOG_RING_SIZE (FW_LOG_SIZE * FW_LOG_COUNT)
#define FW_LOG_PAYLOAD_SIZE (27)
#define DRIVER (0x01)
#define CIRC_BUF_SIZE (4 * (1 << 20)) /* 4MB */
#define FW_LOG_THREAD_RELAX (msecs_to_jiffies(500))
/* tegra_xhci_firmware_log.flags bits */
#define FW_LOG_CONTEXT_VALID (0)
#define FW_LOG_FILE_OPENED (1)
#define FW_MAJOR_VERSION(x) (((x) >> 24) & 0xff)
#define FW_MINOR_VERSION(x) (((x) >> 16) & 0xff)
#define DEGRADED_PORT_COUNT 2
enum build_info_log {
LOG_NONE = 0,
LOG_MEMORY
};
struct tegra_xusb_fw_header {
u32 boot_loadaddr_in_imem;
u32 boot_codedfi_offset;
u32 boot_codetag;
u32 boot_codesize;
u32 phys_memaddr;
u16 reqphys_memsize;
u16 alloc_phys_memsize;
u32 rodata_img_offset;
u32 rodata_section_start;
u32 rodata_section_end;
u32 main_fnaddr;
u32 fwimg_cksum;
u32 fwimg_created_time;
u32 imem_resident_start;
u32 imem_resident_end;
u32 idirect_start;
u32 idirect_end;
u32 l2_imem_start;
u32 l2_imem_end;
u32 version_id;
u8 init_ddirect;
u8 reserved[3];
u32 phys_addr_log_buffer;
u32 total_log_entries;
u32 dequeue_ptr;
u32 dummy_var[2];
u32 fwimg_len;
u8 magic[8];
u32 ss_low_power_entry_timeout;
u8 num_hsic_port;
u8 ss_portmap;
u8 build_log:4;
u8 build_type:4;
u8 padding[137]; /* Pad to 256 bytes */
};
enum tegra_xhci_phy_type {
USB3_PHY,
USB2_PHY,
HSIC_PHY,
MAX_PHY_TYPES,
};
static const char * const tegra_xhci_phy_names[] = {
[USB3_PHY] = "usb3",
[USB2_PHY] = "usb2",
[HSIC_PHY] = "hsic",
};
struct tegra_xusb_soc {
u16 device_id;
const char *firmware;
const char * const *supply_names;
unsigned int num_supplies;
unsigned int num_typed_phys[MAX_PHY_TYPES];
struct {
struct {
unsigned int offset;
unsigned int count;
} usb2, hsic, usb3;
} ports;
u32 cfg_4_addr_shift;
u32 cfg_4_addr_mask;
u32 cfg_aru_mbox_cmd;
u32 cfg_aru_mbox_data_in;
u32 cfg_aru_mbox_data_out;
u32 cfg_aru_mbox_owner;
bool scale_ss_clock;
bool has_ipfs;
bool ss_lfps_detector_war;
bool is_xhci_vf;
u8 vf_id;
bool lpm_support;
bool handle_oc;
bool disable_hsic_wake;
bool disable_elpg;
bool otg_set_port_power;
};
struct tegra_xhci_ipfs_context {
u32 msi_bar_sz;
u32 msi_axi_barst;
u32 msi_fpci_barst;
u32 msi_vec0;
u32 msi_en_vec0;
u32 fpci_error_masks;
u32 intr_mask;
u32 ipfs_intr_enable;
u32 ufpci_config;
u32 clkgate_hysteresis;
u32 xusb_host_mccif_fifo_cntrl;
};
struct tegra_xhci_fpci_context {
u32 hs_pls;
u32 fs_pls;
u32 hsfs_speed;
u32 hsfs_pp;
u32 cfg_aru;
u32 cfg_order;
u32 cfg_fladj;
u32 cfg_sid;
};
struct log_entry {
u32 sequence_no;
u8 data[FW_LOG_PAYLOAD_SIZE];
u8 owner;
};
struct tegra_xhci_firmware_log {
dma_addr_t phys_addr; /* dma-able address */
void *virt_addr; /* kernel va of the shared log buffer */
struct log_entry *dequeue; /* current dequeue pointer (va) */
struct circ_buf circ; /* big circular buffer */
u32 seq; /* log sequence number */
struct task_struct *thread; /* a thread to consume log */
struct mutex mutex;
wait_queue_head_t read_wait;
wait_queue_head_t write_wait;
wait_queue_head_t intr_wait;
struct dentry *log_file;
unsigned long flags;
};
struct xusb_otg_port {
int usb2_otg_port_base_1; /* one based usb2 port number */
int usb3_otg_port_base_1; /* one based usb3 port number */
struct extcon_dev *edev;
bool changed;
bool host_mode;
bool inited;
};
struct usb_downgraded_port {
int portnum;
u16 id_vendor;
u16 id_product;
char serial[31];
struct list_head downgraded_list;
};
struct tegra_xusb {
struct device *dev;
void __iomem *regs;
struct usb_hcd *hcd;
struct mutex lock;
int xhci_irq;
int mbox_irq;
int padctl_irq;
void __iomem *ipfs_base;
void __iomem *fpci_base;
resource_size_t fpci_start;
resource_size_t fpci_len;
const struct tegra_xusb_soc *soc;
struct regulator_bulk_data *supplies;
struct tegra_xusb_padctl *padctl;
struct clk *host_clk;
struct clk *falcon_clk;
struct clk *ss_clk;
struct clk *ss_src_clk;
struct clk *hs_src_clk;
struct clk *fs_src_clk;
struct clk *pll_u_480m;
struct clk *clk_m;
struct clk *pll_e;
struct clk *core_superspeed_clk;
struct clk *falcon_host_clk;
struct clk *falcon_superspeed_clk;
struct clk *fs_host_clk;
bool clk_enabled;
struct phy **phys;
struct phy **typed_phys[MAX_PHY_TYPES];
struct phy **cdp_ext_phys; /* external cdp phys */
/* Used to store the port to phy mapping in the
* virtualization scenario
*/
int *port_phy_map;
int *port_to_phy[MAX_PHY_TYPES];
unsigned int num_phys;
unsigned int num_hsic_port; /* count */
/* Firmware loading related */
struct delayed_work firmware_retry_work;
int fw_retry_count;
bool fw_loaded;
struct {
size_t size;
void *virt;
dma_addr_t phys;
} fw;
struct dentry *debugfs_dir;
struct dentry *dump_ring_file;
struct tegra_xhci_firmware_log log;
int pgid_ss;
int pgid_host;
bool suspended;
struct tegra_xhci_fpci_context fpci_ctx;
struct tegra_xhci_ipfs_context ipfs_ctx;
u32 enable_utmi_pad_after_lp0_exit;
struct xusb_otg_port otg_ports[XUSB_MAX_OTG_PORT_NUM];
int otg_port_num;
struct notifier_block id_extcons_nb;
struct work_struct id_extcons_work;
u8 *connected_usb2_ports; /* keep track of connected UTMI ports */
bool cdp_enabled;
bool cdp_internal;
struct work_struct oc_work;
struct mutex boost_cpufreq_lock;
struct pm_qos_request core_req;
struct pm_qos_request boost_cpufreq_req;
struct work_struct boost_cpufreq_work;
unsigned int boost_cpu_freq;
unsigned int boost_cpu_trigger;
unsigned long cpufreq_last_boosted;
bool cpu_boost_enabled;
struct tegra_hv_ivc_cookie *ivck;
char ivc_rx[128]; /* Buffer to receive pad ivc message */
struct work_struct ivc_work;
bool hsic_power_on;
bool hsic_set_idle;
bool xhci_err_init;
struct usb_downgraded_port degraded_port[DEGRADED_PORT_COUNT];
unsigned int downgrade_enabled;
struct device *fwdev;
};
static struct hc_driver __read_mostly tegra_xhci_hc_driver;
#if IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)
static const struct of_device_id tegra_xusba_pd[] = {
{ .compatible = "nvidia,tegra194-xusba-pd", },
{ .compatible = "nvidia,tegra186-xusba-pd", },
{ .compatible = "nvidia,tegra210-xusba-pd", },
{},
};
static const struct of_device_id tegra_xusbc_pd[] = {
{ .compatible = "nvidia,tegra194-xusbc-pd", },
{ .compatible = "nvidia,tegra186-xusbc-pd", },
{ .compatible = "nvidia,tegra210-xusbc-pd", },
{},
};
#endif
static inline struct tegra_xusb *hcd_to_tegra_xusb(struct usb_hcd *hcd)
{
return (struct tegra_xusb *) dev_get_drvdata(hcd->self.controller);
}
static struct xusb_otg_port *find_otg_port(struct tegra_xusb *tegra,
enum tegra_xhci_phy_type type, int index)
{
int i;
struct xusb_otg_port *port;
for (i = 0; i < tegra->otg_port_num; i++) {
port = &tegra->otg_ports[i];
if ((type == USB2_PHY) &&
(index != port->usb2_otg_port_base_1 - 1))
continue;
if ((type == USB3_PHY) &&
(index != port->usb3_otg_port_base_1 - 1))
continue;
return port;
}
return NULL;
}
static bool is_otg_phy(struct tegra_xusb *tegra,
enum tegra_xhci_phy_type type, int index)
{
struct xusb_otg_port *otg_port;
otg_port = find_otg_port(tegra, type, index);
return otg_port != NULL;
}
static bool is_host_mode_phy(struct tegra_xusb *tegra,
enum tegra_xhci_phy_type type, int index)
{
struct xusb_otg_port *otg_port;
if (!tegra->typed_phys[type][index])
return false;
if ((type == HSIC_PHY))
return true;
otg_port = find_otg_port(tegra, type, index);
if (otg_port)
return otg_port->host_mode;
return true;
}
static void tegra_xusb_boost_cpu_freq_fn(struct work_struct *work)
{
struct tegra_xusb *tegra = container_of(work, struct tegra_xusb,
boost_cpufreq_work);
unsigned long delay = XHCI_BOOST_TIMEOUT;
s32 cpufreq = tegra->boost_cpu_freq * 1000;
mutex_lock(&tegra->boost_cpufreq_lock);
dev_dbg(tegra->dev, "boost cpu freq %d kHz, with timeout %lu ms\n",
cpufreq, delay);
if (XHCI_IS_T210(tegra))
pm_qos_update_request_timeout(&tegra->core_req,
PM_QOS_MAX_ONLINE_CPUS_DEFAULT_VALUE, delay * 1000);
pm_qos_update_request_timeout(&tegra->boost_cpufreq_req,
cpufreq, delay * 1000);
tegra->cpufreq_last_boosted = jiffies;
mutex_unlock(&tegra->boost_cpufreq_lock);
}
static void tegra_xusb_boost_cpu_init(struct tegra_xusb *tegra)
{
INIT_WORK(&tegra->boost_cpufreq_work, tegra_xusb_boost_cpu_freq_fn);
if (XHCI_IS_T210(tegra))
pm_qos_add_request(&tegra->core_req, PM_QOS_MIN_ONLINE_CPUS,
PM_QOS_DEFAULT_VALUE);
pm_qos_add_request(&tegra->boost_cpufreq_req,
PM_QOS_CPU_FREQ_MIN, PM_QOS_DEFAULT_VALUE);
mutex_init(&tegra->boost_cpufreq_lock);
}
static void tegra_xusb_boost_cpu_deinit(struct tegra_xusb *tegra)
{
cancel_work_sync(&tegra->boost_cpufreq_work);
if (XHCI_IS_T210(tegra))
pm_qos_remove_request(&tegra->core_req);
pm_qos_remove_request(&tegra->boost_cpufreq_req);
mutex_destroy(&tegra->boost_cpufreq_lock);
}
static ssize_t show_xhci_stats(struct device *dev,
struct device_attribute *attr, char *buf) {
struct tegra_xusb *tegra = NULL;
struct xhci_hcd *xhci = NULL;
ssize_t ret;
if (dev != NULL)
tegra = dev_get_drvdata(dev);
if (tegra != NULL) {
xhci = hcd_to_xhci(tegra->hcd);
ret = snprintf(buf, PAGE_SIZE, "comp_tx_err:%u\nversion:%u\n",
xhci->xhci_ereport.comp_tx_err,
xhci->xhci_ereport.version);
} else
ret = snprintf(buf, PAGE_SIZE, "comp_tx_err:0\nversion:0\n");
return ret;
}
static DEVICE_ATTR(xhci_stats, 0444, show_xhci_stats, NULL);
/* sysfs node for fw check*/
static ssize_t fw_version_show(struct device *dev, char *buf, size_t size)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
struct tegra_xusb_fw_header *header = NULL;
time_t timestamp;
struct tm fw_tm;
if (!tegra)
return scnprintf(buf, size, "device is not available\n");
header = (struct tegra_xusb_fw_header *)tegra->fw.virt;
timestamp = le32_to_cpu(header->fwimg_created_time);
time_to_tm(timestamp, 0, &fw_tm);
return scnprintf(buf, size,
"Firmware timestamp: %ld-%02d-%02d %02d:%02d:%02d UTC, "
"Version: %02x.%02x %s\n",
fw_tm.tm_year + 1900,
fw_tm.tm_mon + 1, fw_tm.tm_mday, fw_tm.tm_hour,
fw_tm.tm_min, fw_tm.tm_sec,
FW_MAJOR_VERSION(header->version_id),
FW_MINOR_VERSION(header->version_id),
(header->build_log == LOG_MEMORY) ?
"debug" : "release");
}
static struct attribute *tegra_sysfs_entries_errs[] = {
&dev_attr_xhci_stats.attr,
NULL,
};
static struct attribute_group tegra_sysfs_group_errors = {
.name = "xhci-stats",
.attrs = tegra_sysfs_entries_errs,
};
static inline u32 fpci_readl(struct tegra_xusb *tegra, unsigned int offset)
{
return readl(tegra->fpci_base + offset);
}
static inline void fpci_writel(struct tegra_xusb *tegra, u32 value,
unsigned int offset)
{
writel(value, tegra->fpci_base + offset);
}
static inline u32 ipfs_readl(struct tegra_xusb *tegra, unsigned int offset)
{
return readl(tegra->ipfs_base + offset);
}
static inline void ipfs_writel(struct tegra_xusb *tegra, u32 value,
unsigned int offset)
{
writel(value, tegra->ipfs_base + offset);
}
static u32 csb_readl(struct tegra_xusb *tegra, unsigned int offset)
{
u32 page = CSB_PAGE_SELECT(offset);
u32 ofs = CSB_PAGE_OFFSET(offset);
fpci_writel(tegra, page, XUSB_CFG_ARU_C11_CSBRANGE);
return fpci_readl(tegra, XUSB_CFG_CSB_BASE_ADDR + ofs);
}
static void csb_writel(struct tegra_xusb *tegra, u32 value,
unsigned int offset)
{
u32 page = CSB_PAGE_SELECT(offset);
u32 ofs = CSB_PAGE_OFFSET(offset);
fpci_writel(tegra, page, XUSB_CFG_ARU_C11_CSBRANGE);
fpci_writel(tegra, value, XUSB_CFG_CSB_BASE_ADDR + ofs);
}
/**
* fw_log_next - find next log entry in a tegra_xhci_firmware_log context.
* This function takes care of wrapping. That means when current log entry
* is the last one, it returns with the first one.
*
* @param log The tegra_xhci_firmware_log context.
* @param this The current log entry.
* @return The log entry which is next to the current one.
*/
static inline struct log_entry *fw_log_next(
struct tegra_xhci_firmware_log *log, struct log_entry *this)
{
struct log_entry *first = (struct log_entry *) log->virt_addr;
struct log_entry *last = first + FW_LOG_COUNT - 1;
WARN((this < first) || (this > last), "%s: invalid input\n", __func__);
return (this == last) ? first : (this + 1);
}
/**
* fw_log_update_dequeue_pointer - update dequeue pointer to both firmware and
* tegra_xhci_firmware_log.dequeue.
*
* @param log The tegra_xhci_firmware_log context.
* @param n Counts of log entries to fast-forward.
*/
static inline void fw_log_update_deq_pointer(
struct tegra_xhci_firmware_log *log, int n)
{
struct tegra_xusb *tegra =
container_of(log, struct tegra_xusb, log);
struct device *dev = tegra->dev;
struct log_entry *deq = tegra->log.dequeue;
dma_addr_t physical_addr;
u32 reg;
dev_vdbg(dev, "curr 0x%p fast-forward %d entries\n", deq, n);
while (n-- > 0)
deq = fw_log_next(log, deq);
tegra->log.dequeue = deq;
physical_addr = tegra->log.phys_addr +
((u8 *)deq - (u8 *)tegra->log.virt_addr);
/* update dequeue pointer to firmware */
reg = (FW_IOCTL_LOG_DEQUEUE_LOW << FW_IOCTL_TYPE_SHIFT);
reg |= (physical_addr & 0xffff); /* lower 16-bits */
iowrite32(reg, tegra->fpci_base + XUSB_CFG_ARU_FW_SCRATCH);
reg = (FW_IOCTL_LOG_DEQUEUE_HIGH << FW_IOCTL_TYPE_SHIFT);
reg |= ((physical_addr >> 16) & 0xffff); /* higher 16-bits */
iowrite32(reg, tegra->fpci_base + XUSB_CFG_ARU_FW_SCRATCH);
dev_vdbg(dev, "new 0x%p physical addr 0x%x\n", deq, (u32)physical_addr);
}
static inline bool circ_buffer_full(struct circ_buf *circ)
{
int space = CIRC_SPACE(circ->head, circ->tail, CIRC_BUF_SIZE);
return (space <= FW_LOG_SIZE);
}
static inline bool fw_log_available(struct tegra_xusb *tegra)
{
return (tegra->log.dequeue->owner == DRIVER);
}
/**
* fw_log_wait_empty_timeout - wait firmware log thread to clean up shared
* log buffer.
* @param tegra: tegra_xusb context
* @param msec: timeout value in millisecond
* @return true: shared log buffer is empty,
* false: shared log buffer isn't empty.
*/
static inline bool fw_log_wait_empty_timeout(struct tegra_xusb *tegra,
unsigned timeout)
{
unsigned long target = jiffies + msecs_to_jiffies(timeout);
struct circ_buf *circ = &tegra->log.circ;
bool ret;
mutex_lock(&tegra->log.mutex);
while (fw_log_available(tegra) && time_is_after_jiffies(target)) {
if (circ_buffer_full(circ) &&
!test_bit(FW_LOG_FILE_OPENED, &tegra->log.flags))
break; /* buffer is full but nobody is reading log */
mutex_unlock(&tegra->log.mutex);
usleep_range(1000, 2000);
mutex_lock(&tegra->log.mutex);
}
ret = fw_log_available(tegra);
mutex_unlock(&tegra->log.mutex);
return ret;
}
/**
* fw_log_copy - copy firmware log from device's buffer to driver's circular
* buffer.
* @param tegra tegra_xusb context
* @return true, We still have firmware log in device's buffer to copy.
* This function returned due the driver's circular buffer
* is full. Caller should invoke this function again as
* soon as there is space in driver's circular buffer.
* false, Device's buffer is empty.
*/
static inline bool fw_log_copy(struct tegra_xusb *tegra)
{
struct device *dev = tegra->dev;
struct circ_buf *circ = &tegra->log.circ;
int head, tail;
int buffer_len, copy_len;
struct log_entry *entry;
struct log_entry *first = tegra->log.virt_addr;
while (fw_log_available(tegra)) {
/* calculate maximum contiguous driver buffer length */
head = circ->head;
tail = ACCESS_ONCE(circ->tail);
buffer_len = CIRC_SPACE_TO_END(head, tail, CIRC_BUF_SIZE);
/* round down to FW_LOG_SIZE */
buffer_len -= (buffer_len % FW_LOG_SIZE);
if (!buffer_len)
return true; /* log available but no space left */
/* calculate maximum contiguous log copy length */
entry = tegra->log.dequeue;
copy_len = 0;
do {
if (tegra->log.seq != entry->sequence_no) {
dev_warn(dev,
"%s: discontinuous seq no, expect %u get %u\n",
__func__, tegra->log.seq, entry->sequence_no);
}
tegra->log.seq = entry->sequence_no + 1;
copy_len += FW_LOG_SIZE;
buffer_len -= FW_LOG_SIZE;
if (!buffer_len)
break; /* no space left */
entry = fw_log_next(&tegra->log, entry);
} while ((entry->owner == DRIVER) && (entry != first));
memcpy(&circ->buf[head], tegra->log.dequeue, copy_len);
memset(tegra->log.dequeue, 0, copy_len);
circ->head = (circ->head + copy_len) & (CIRC_BUF_SIZE - 1);
mb(); /* make sure controller sees it */
fw_log_update_deq_pointer(&tegra->log, copy_len/FW_LOG_SIZE);
dev_vdbg(dev, "copied %d entries, new dequeue 0x%p\n",
copy_len/FW_LOG_SIZE, tegra->log.dequeue);
wake_up_interruptible(&tegra->log.read_wait);
}
return false;
}
static int fw_log_thread(void *data)
{
struct tegra_xusb *tegra = data;
struct device *dev = tegra->dev;
struct circ_buf *circ = &tegra->log.circ;
bool logs_left;
dev_dbg(dev, "start firmware log thread\n");
do {
mutex_lock(&tegra->log.mutex);
if (circ_buffer_full(circ)) {
mutex_unlock(&tegra->log.mutex);
dev_info(dev, "%s: circ buffer full\n", __func__);
wait_event_interruptible(tegra->log.write_wait,
kthread_should_stop() || !circ_buffer_full(circ));
mutex_lock(&tegra->log.mutex);
}
logs_left = fw_log_copy(tegra);
mutex_unlock(&tegra->log.mutex);
/* relax if no logs left */
if (!logs_left)
wait_event_interruptible_timeout(tegra->log.intr_wait,
fw_log_available(tegra), FW_LOG_THREAD_RELAX);
} while (!kthread_should_stop());
dev_dbg(dev, "stop firmware log thread\n");
return 0;
}
static inline bool circ_buffer_empty(struct circ_buf *circ)
{
return (CIRC_CNT(circ->head, circ->tail, CIRC_BUF_SIZE) == 0);
}
static ssize_t fw_log_file_read(struct file *file, char __user *buf,
size_t count, loff_t *offp)
{
struct tegra_xusb *tegra = file->private_data;
struct device *dev = tegra->dev;
struct circ_buf *circ = &tegra->log.circ;
int head, tail;
size_t n = 0;
int s;
mutex_lock(&tegra->log.mutex);
while (circ_buffer_empty(circ)) {
mutex_unlock(&tegra->log.mutex);
if (file->f_flags & O_NONBLOCK)
return -EAGAIN; /* non-blocking read */
dev_dbg(dev, "%s: nothing to read\n", __func__);
if (wait_event_interruptible(tegra->log.read_wait,
!circ_buffer_empty(circ)))
return -ERESTARTSYS;
if (mutex_lock_interruptible(&tegra->log.mutex))
return -ERESTARTSYS;
}
while (count > 0) {
head = ACCESS_ONCE(circ->head);
tail = circ->tail;
s = min_t(int, count,
CIRC_CNT_TO_END(head, tail, CIRC_BUF_SIZE));
if (s > 0) {
if (copy_to_user(&buf[n], &circ->buf[tail], s)) {
dev_warn(dev, "copy_to_user failed\n");
mutex_unlock(&tegra->log.mutex);
return -EFAULT;
}
circ->tail = (circ->tail + s) & (CIRC_BUF_SIZE - 1);
count -= s;
n += s;
} else
break;
}
mutex_unlock(&tegra->log.mutex);
wake_up_interruptible(&tegra->log.write_wait);
dev_dbg(dev, "%s: %zu bytes\n", __func__, n);
return n;
}
static int fw_log_file_open(struct inode *inode, struct file *file)
{
struct tegra_xusb *tegra;
file->private_data = inode->i_private;
tegra = file->private_data;
if (test_and_set_bit(FW_LOG_FILE_OPENED, &tegra->log.flags)) {
dev_info(tegra->dev, "%s: already opened\n", __func__);
return -EBUSY;
}
return 0;
}
static int fw_log_file_close(struct inode *inode, struct file *file)
{
struct tegra_xusb *tegra = file->private_data;
clear_bit(FW_LOG_FILE_OPENED, &tegra->log.flags);
return 0;
}
static const struct file_operations firmware_log_fops = {
.open = fw_log_file_open,
.release = fw_log_file_close,
.read = fw_log_file_read,
.owner = THIS_MODULE,
};
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
static ssize_t dump_ring_file_write(struct file *file, const char __user *buf,
size_t count, loff_t *offp)
{
struct tegra_xusb *tegra = file->private_data;
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
/* trigger xhci_event_ring_work() for debug */
del_timer_sync(&xhci->event_ring_timer);
xhci->event_ring_timer.expires = jiffies;
add_timer(&xhci->event_ring_timer);
return count;
}
static const struct file_operations dump_ring_fops = {
.write = dump_ring_file_write,
.owner = THIS_MODULE,
};
#endif
static int fw_log_init(struct tegra_xusb *tegra)
{
struct device *dev = tegra->dev;
int rc = 0;
if (!tegra->debugfs_dir)
return -ENODEV; /* no debugfs support */
if (test_bit(FW_LOG_CONTEXT_VALID, &tegra->log.flags))
return 0; /* already done */
/* allocate buffer to be shared between driver and firmware */
tegra->log.virt_addr = dma_alloc_coherent(dev,
FW_LOG_RING_SIZE, &tegra->log.phys_addr, GFP_KERNEL);
if (!tegra->log.virt_addr) {
dev_err(dev, "dma_alloc_coherent() size %d failed\n",
FW_LOG_RING_SIZE);
return -ENOMEM;
}
dev_info(dev, "%d bytes log buffer physical 0x%u virtual 0x%p\n",
FW_LOG_RING_SIZE, (u32)tegra->log.phys_addr,
tegra->log.virt_addr);
memset(tegra->log.virt_addr, 0, FW_LOG_RING_SIZE);
tegra->log.dequeue = tegra->log.virt_addr;
tegra->log.circ.buf = vmalloc(CIRC_BUF_SIZE);
if (!tegra->log.circ.buf) {
rc = -ENOMEM;
goto error_free_dma;
}
tegra->log.circ.head = 0;
tegra->log.circ.tail = 0;
init_waitqueue_head(&tegra->log.read_wait);
init_waitqueue_head(&tegra->log.write_wait);
init_waitqueue_head(&tegra->log.intr_wait);
mutex_init(&tegra->log.mutex);
tegra->log.log_file = debugfs_create_file("firmware_log", S_IRUGO,
tegra->debugfs_dir, tegra, &firmware_log_fops);
if ((!tegra->log.log_file) ||
(tegra->log.log_file == ERR_PTR(-ENODEV))) {
dev_warn(dev, "debugfs_create_file() failed\n");
rc = -ENOMEM;
goto error_free_mem;
}
tegra->log.thread = kthread_run(fw_log_thread, tegra, "xusb-fw-log");
if (IS_ERR(tegra->log.thread)) {
dev_warn(dev, "kthread_run() failed\n");
rc = -ENOMEM;
goto error_remove_debugfs_file;
}
set_bit(FW_LOG_CONTEXT_VALID, &tegra->log.flags);
return rc;
error_remove_debugfs_file:
debugfs_remove(tegra->log.log_file);
error_free_mem:
vfree(tegra->log.circ.buf);
error_free_dma:
dma_free_coherent(dev, FW_LOG_RING_SIZE,
tegra->log.virt_addr, tegra->log.phys_addr);
memset(&tegra->log, 0, sizeof(tegra->log));
return rc;
}
static void fw_log_deinit(struct tegra_xusb *tegra)
{
struct device *dev = tegra->dev;
if (test_and_clear_bit(FW_LOG_CONTEXT_VALID, &tegra->log.flags)) {
debugfs_remove(tegra->log.log_file);
wake_up_interruptible(&tegra->log.read_wait);
wake_up_interruptible(&tegra->log.write_wait);
kthread_stop(tegra->log.thread);
mutex_lock(&tegra->log.mutex);
dma_free_coherent(dev, FW_LOG_RING_SIZE,
tegra->log.virt_addr, tegra->log.phys_addr);
vfree(tegra->log.circ.buf);
tegra->log.circ.head = tegra->log.circ.tail = 0;
mutex_unlock(&tegra->log.mutex);
mutex_destroy(&tegra->log.mutex);
}
}
static void tegra_xusb_debugfs_init(struct tegra_xusb *tegra)
{
struct device *dev = tegra->dev;
char xhcivf[16];
if (tegra->soc->is_xhci_vf) {
snprintf(xhcivf, sizeof(xhcivf), "tegra_xhci_vf%d",
tegra->soc->vf_id);
tegra->debugfs_dir = debugfs_create_dir(xhcivf, NULL);
} else {
tegra->debugfs_dir = debugfs_create_dir("tegra_xhci", NULL);
}
if (IS_ERR_OR_NULL(tegra->debugfs_dir)) {
tegra->debugfs_dir = NULL;
dev_warn(dev, "debugfs_create_dir() for tegra_xhci failed\n");
return;
}
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
tegra->dump_ring_file = debugfs_create_file("dump_ring",
(S_IWUSR|S_IWGRP), tegra->debugfs_dir, tegra, &dump_ring_fops);
if (IS_ERR_OR_NULL(tegra->dump_ring_file)) {
tegra->dump_ring_file = NULL;
dev_warn(dev, "debugfs_create_file() for dump_ring failed\n");
return;
}
#endif
}
static void tegra_xusb_debugfs_deinit(struct tegra_xusb *tegra)
{
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
debugfs_remove(tegra->dump_ring_file);
tegra->dump_ring_file = NULL;
#endif
debugfs_remove(tegra->debugfs_dir);
tegra->debugfs_dir = NULL;
}
static void tegra_xusb_disable_hsic_wake(struct tegra_xusb *tegra)
{
u32 reg;
reg = fpci_readl(tegra, XUSB_CFG_ARU_C11PAGESEL);
reg |= XUSB_HSP0;
fpci_writel(tegra, reg, XUSB_CFG_ARU_C11PAGESEL);
reg = fpci_readl(tegra, XUSB_CFG_HSPX_CORE_CTRL);
reg &= ~XUSB_HSIC_PLLCLK_VLD;
fpci_writel(tegra, reg, XUSB_CFG_HSPX_CORE_CTRL);
reg = fpci_readl(tegra, XUSB_CFG_ARU_C11PAGESEL);
reg &= ~XUSB_HSP0;
fpci_writel(tegra, reg, XUSB_CFG_ARU_C11PAGESEL);
}
static int tegra_xusb_set_ss_clk(struct tegra_xusb *tegra,
unsigned long rate)
{
unsigned long new_parent_rate, old_parent_rate;
struct clk *clk = tegra->ss_src_clk;
unsigned int div;
int err;
if (clk_get_rate(clk) == rate)
return 0;
switch (rate) {
case TEGRA_XHCI_SS_HIGH_SPEED:
/*
* Reparent to PLLU_480M. Set divider first to avoid
* overclocking.
*/
if (!tegra->pll_u_480m) {
dev_err(tegra->dev, "tegra->pll_u_480m is NULL\n");
return -EINVAL;
}
old_parent_rate = clk_get_rate(clk_get_parent(clk));
new_parent_rate = clk_get_rate(tegra->pll_u_480m);
if (new_parent_rate == 0) {
dev_err(tegra->dev, "new_parent_rate is zero\n");
return -EINVAL;
}
div = new_parent_rate / rate;
err = clk_set_rate(clk, old_parent_rate / div);
if (err)
return err;
err = clk_set_parent(clk, tegra->pll_u_480m);
if (err)
return err;
/*
* The rate should already be correct, but set it again just
* to be sure.
*/
err = clk_set_rate(clk, rate);
if (err)
return err;
break;
case TEGRA_XHCI_SS_LOW_SPEED:
/* Reparent to CLK_M */
err = clk_set_parent(clk, tegra->clk_m);
if (err)
return err;
err = clk_set_rate(clk, rate);
if (err)
return err;
break;
default:
dev_err(tegra->dev, "Invalid SS rate: %lu Hz\n", rate);
return -EINVAL;
}
if (clk_get_rate(clk) != rate) {
dev_err(tegra->dev, "SS clock doesn't match requested rate\n");
return -EINVAL;
}
return 0;
}
static unsigned long extract_field(u32 value, unsigned int start,
unsigned int count)
{
return (value >> start) & ((1 << count) - 1);
}
/* Command requests from the firmware */
enum tegra_xusb_mbox_cmd {
MBOX_CMD_MSG_ENABLED = 1,
MBOX_CMD_INC_FALC_CLOCK,
MBOX_CMD_DEC_FALC_CLOCK,
MBOX_CMD_INC_SSPI_CLOCK,
MBOX_CMD_DEC_SSPI_CLOCK,
MBOX_CMD_SET_BW, /* no ACK/NAK required */
MBOX_CMD_SET_SS_PWR_GATING,
MBOX_CMD_SET_SS_PWR_UNGATING,
MBOX_CMD_SAVE_DFE_CTLE_CTX,
MBOX_CMD_AIRPLANE_MODE_ENABLED,
MBOX_CMD_AIRPLANE_MODE_DISABLED,
MBOX_CMD_START_HSIC_IDLE,
MBOX_CMD_STOP_HSIC_IDLE,
MBOX_CMD_DBC_WAKE_STACK, /* unused */
MBOX_CMD_HSIC_PRETEND_CONNECT,
MBOX_CMD_RESET_SSPI,
MBOX_CMD_DISABLE_SS_LFPS_DETECTION,
MBOX_CMD_ENABLE_SS_LFPS_DETECTION,
MBOX_CMD_MAX,
/* Response message to above commands */
MBOX_CMD_ACK = 128,
MBOX_CMD_NAK
};
static const char * const mbox_cmd_name[] = {
[ 1] = "MSG_ENABLE",
[ 2] = "INC_FALCON_CLOCK",
[ 3] = "DEC_FALCON_CLOCK",
[ 4] = "INC_SSPI_CLOCK",
[ 5] = "DEC_SSPI_CLOCK",
[ 6] = "SET_BW",
[ 7] = "SET_SS_PWR_GATING",
[ 8] = "SET_SS_PWR_UNGATING",
[ 9] = "SAVE_DFE_CTLE_CTX",
[ 10] = "AIRPLANE_MODE_ENABLED",
[ 11] = "AIRPLANE_MODE_DISABLED",
[ 12] = "START_HSIC_IDLE",
[ 13] = "STOP_HSIC_IDLE",
[ 14] = "DBC_WAKE_STACK",
[ 15] = "HSIC_PRETEND_CONNECT",
[ 16] = "RESET_SSPI",
[ 17] = "DISABLE_SS_LFPS_DETECTION",
[ 18] = "ENABLE_SS_LFPS_DETECTION",
[128] = "ACK",
[129] = "NAK",
};
struct tegra_xusb_mbox_msg {
u32 cmd;
u32 data;
};
static inline u32 tegra_xusb_mbox_pack(const struct tegra_xusb_mbox_msg *msg)
{
return (msg->cmd & CMD_TYPE_MASK) << CMD_TYPE_SHIFT |
(msg->data & CMD_DATA_MASK) << CMD_DATA_SHIFT;
}
static inline void tegra_xusb_mbox_unpack(struct tegra_xusb_mbox_msg *msg,
u32 value)
{
msg->cmd = (value >> CMD_TYPE_SHIFT) & CMD_TYPE_MASK;
msg->data = (value >> CMD_DATA_SHIFT) & CMD_DATA_MASK;
}
static bool tegra_xusb_mbox_cmd_requires_ack(enum tegra_xusb_mbox_cmd cmd)
{
switch (cmd) {
case MBOX_CMD_SET_BW:
case MBOX_CMD_ACK:
case MBOX_CMD_NAK:
return false;
default:
return true;
}
}
static int tegra_xusb_mbox_send(struct tegra_xusb *tegra,
const struct tegra_xusb_mbox_msg *msg)
{
bool wait_for_idle = false;
u32 value;
/*
* Acquire the mailbox. The firmware still owns the mailbox for
* ACK/NAK messages.
*/
if (!(msg->cmd == MBOX_CMD_ACK || msg->cmd == MBOX_CMD_NAK)) {
value = fpci_readl(tegra, tegra->soc->cfg_aru_mbox_owner);
if (value != MBOX_OWNER_NONE) {
dev_err(tegra->dev, "mailbox is busy\n");
return -EBUSY;
}
fpci_writel(tegra, MBOX_OWNER_SW,
tegra->soc->cfg_aru_mbox_owner);
value = fpci_readl(tegra, tegra->soc->cfg_aru_mbox_owner);
if (value != MBOX_OWNER_SW) {
dev_err(tegra->dev, "failed to acquire mailbox\n");
return -EBUSY;
}
wait_for_idle = true;
}
value = tegra_xusb_mbox_pack(msg);
fpci_writel(tegra, value, tegra->soc->cfg_aru_mbox_data_in);
value = fpci_readl(tegra, tegra->soc->cfg_aru_mbox_cmd);
value |= MBOX_INT_EN | MBOX_DEST_FALC;
fpci_writel(tegra, value, tegra->soc->cfg_aru_mbox_cmd);
if (wait_for_idle) {
unsigned long timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
value = fpci_readl(tegra,
tegra->soc->cfg_aru_mbox_owner);
if (value == MBOX_OWNER_NONE)
break;
/*
* fpga WAR: SW is too slow to see OWNER=NONE before
* FW issues next mbox command.
*/
if (tegra_platform_is_fpga() &&
value != MBOX_OWNER_SW)
break;
usleep_range(10, 20);
}
if (!tegra_platform_is_fpga()) {
if (time_after(jiffies, timeout))
value = fpci_readl(tegra,
tegra->soc->cfg_aru_mbox_owner);
if (value != MBOX_OWNER_NONE)
return -ETIMEDOUT;
}
}
return 0;
}
static irqreturn_t tegra_xusb_mbox_irq(int irq, void *data)
{
struct tegra_xusb *tegra = data;
struct usb_hcd *hcd = tegra->hcd;
u32 value, value2;
/* clear mailbox interrupts */
value = fpci_readl(tegra, XUSB_CFG_ARU_SMI_INTR);
fpci_writel(tegra, value, XUSB_CFG_ARU_SMI_INTR);
/* read again to avoid spurious ARU SMI interrupt */
value2 = fpci_readl(tegra, XUSB_CFG_ARU_SMI_INTR);
if (value & MBOX_SMI_INTR_FW_HANG) {
dev_err(tegra->dev, "controller firmware hang\n");
tegra_xhci_hcd_reinit(hcd);
return IRQ_HANDLED;
}
if (value & MBOX_SMI_INTR_EN)
return IRQ_WAKE_THREAD;
dev_warn(tegra->dev, "unhandled mbox irq: %08x %08x\n", value, value2);
return value ? IRQ_HANDLED : IRQ_NONE;
}
static void tegra_xusb_mbox_handle(struct tegra_xusb *tegra,
const struct tegra_xusb_mbox_msg *msg)
{
struct tegra_xusb_padctl *padctl = tegra->padctl;
const struct tegra_xusb_soc *soc = tegra->soc;
struct device *dev = tegra->dev;
struct tegra_xusb_mbox_msg rsp;
unsigned long mask;
unsigned int port;
bool idle, enable;
int err = 0;
memset(&rsp, 0, sizeof(rsp));
switch (msg->cmd) {
case MBOX_CMD_INC_FALC_CLOCK:
case MBOX_CMD_DEC_FALC_CLOCK:
rsp.data = clk_get_rate(tegra->falcon_clk) / 1000;
if (rsp.data != msg->data)
rsp.cmd = MBOX_CMD_NAK;
else
rsp.cmd = MBOX_CMD_ACK;
break;
case MBOX_CMD_INC_SSPI_CLOCK:
case MBOX_CMD_DEC_SSPI_CLOCK:
if (tegra->soc->scale_ss_clock) {
err = tegra_xusb_set_ss_clk(tegra, msg->data * 1000);
if (err < 0)
rsp.cmd = MBOX_CMD_NAK;
else
rsp.cmd = MBOX_CMD_ACK;
rsp.data = clk_get_rate(tegra->ss_src_clk) / 1000;
} else {
rsp.cmd = MBOX_CMD_ACK;
rsp.data = msg->data;
}
break;
case MBOX_CMD_SET_BW:
/*
* TODO: Request bandwidth once EMC scaling is supported.
* Ignore for now since ACK/NAK is not required for SET_BW
* messages.
*/
break;
case MBOX_CMD_SAVE_DFE_CTLE_CTX:
err = tegra_xusb_padctl_usb3_save_context(padctl, msg->data);
if (err < 0) {
dev_err(dev, "failed to save context for USB3#%u: %d\n",
msg->data, err);
rsp.cmd = MBOX_CMD_NAK;
} else {
rsp.cmd = MBOX_CMD_ACK;
}
rsp.data = msg->data;
break;
case MBOX_CMD_START_HSIC_IDLE:
case MBOX_CMD_STOP_HSIC_IDLE:
if (msg->cmd == MBOX_CMD_STOP_HSIC_IDLE)
idle = false;
else
idle = true;
mask = extract_field(msg->data, 1 + soc->ports.hsic.offset,
soc->ports.hsic.count);
for_each_set_bit(port, &mask, 32) {
err = tegra_xusb_padctl_hsic_set_idle(padctl, port,
idle);
if (err < 0)
break;
}
if (err < 0) {
dev_err(dev, "failed to set HSIC#%u %s: %d\n", port,
idle ? "idle" : "busy", err);
rsp.cmd = MBOX_CMD_NAK;
} else {
rsp.cmd = MBOX_CMD_ACK;
}
rsp.data = msg->data;
break;
case MBOX_CMD_DISABLE_SS_LFPS_DETECTION:
case MBOX_CMD_ENABLE_SS_LFPS_DETECTION:
if (msg->cmd == MBOX_CMD_DISABLE_SS_LFPS_DETECTION)
enable = false;
else
enable = true;
mask = extract_field(msg->data, 1 + soc->ports.usb3.offset,
soc->ports.usb3.count);
for_each_set_bit(port, &mask, soc->ports.usb3.count) {
err = tegra_xusb_padctl_usb3_set_lfps_detect(padctl,
port,
enable);
if (err < 0)
break;
if (XHCI_IS_T210(tegra) && !enable) {
/*
* Add this delay to increase stability of
* directing U3.
*/
usleep_range(500, 1000);
}
}
if (err < 0) {
dev_err(dev,
"failed to %s LFPS detection on USB3#%u: %d\n",
enable ? "enable" : "disable", port, err);
rsp.cmd = MBOX_CMD_NAK;
} else {
rsp.cmd = MBOX_CMD_ACK;
}
rsp.data = msg->data;
break;
case MBOX_CMD_ACK:
break;
default:
dev_warn(dev, "unknown message: %#x\n", msg->cmd);
break;
}
if (rsp.cmd) {
const char *cmd = (rsp.cmd == MBOX_CMD_ACK) ? "ACK" : "NAK";
err = tegra_xusb_mbox_send(tegra, &rsp);
if (err < 0)
dev_err(dev, "failed to send %s: %d\n", cmd, err);
}
}
static irqreturn_t tegra_xusb_mbox_thread(int irq, void *data)
{
struct tegra_xusb *tegra = data;
struct tegra_xusb_mbox_msg msg;
u32 value;
mutex_lock(&tegra->lock);
if (tegra->suspended || pm_runtime_suspended(tegra->dev)) {
mutex_unlock(&tegra->lock);
return IRQ_HANDLED;
}
value = fpci_readl(tegra, tegra->soc->cfg_aru_mbox_data_out);
tegra_xusb_mbox_unpack(&msg, value);
value = fpci_readl(tegra, tegra->soc->cfg_aru_mbox_cmd);
value &= ~MBOX_DEST_SMI;
fpci_writel(tegra, value, tegra->soc->cfg_aru_mbox_cmd);
/* clear mailbox owner if no ACK/NAK is required */
if (!tegra_xusb_mbox_cmd_requires_ack(msg.cmd))
fpci_writel(tegra, MBOX_OWNER_NONE,
tegra->soc->cfg_aru_mbox_owner);
tegra_xusb_mbox_handle(tegra, &msg);
mutex_unlock(&tegra->lock);
return IRQ_HANDLED;
}
static void tegra_xusb_config(struct tegra_xusb *tegra)
{
struct resource *regs;
u32 value;
regs = platform_get_resource(to_platform_device(tegra->dev),
IORESOURCE_MEM, 0);
if (tegra->soc->has_ipfs) {
value = ipfs_readl(tegra, XUSB_HOST_CONFIGURATION_0);
value |= IPFS_EN_FPCI;
ipfs_writel(tegra, value, XUSB_HOST_CONFIGURATION_0);
usleep_range(10, 20);
}
/* Program BAR0 space */
value = fpci_readl(tegra, XUSB_CFG_4);
value &= ~(tegra->soc->cfg_4_addr_mask << tegra->soc->cfg_4_addr_shift);
value |= regs->start &
(tegra->soc->cfg_4_addr_mask << tegra->soc->cfg_4_addr_shift);
fpci_writel(tegra, value, XUSB_CFG_4);
usleep_range(100, 200);
/* Enable bus master */
value = fpci_readl(tegra, XUSB_CFG_1);
value |= XUSB_IO_SPACE_EN | XUSB_MEM_SPACE_EN | XUSB_BUS_MASTER_EN;
fpci_writel(tegra, value, XUSB_CFG_1);
if (tegra->soc->has_ipfs) {
/* Enable interrupt assertion */
value = ipfs_readl(tegra, XUSB_HOST_INTR_MASK_0);
value |= IPFS_IP_INT_MASK;
ipfs_writel(tegra, value, XUSB_HOST_INTR_MASK_0);
/* Set hysteresis */
ipfs_writel(tegra, 0x80, XUSB_HOST_CLKGATE_HYSTERESIS_0);
}
}
static irqreturn_t tegra_xusb_padctl_irq(int irq, void *data)
{
struct tegra_xusb *tegra = data;
int i;
bool oc = false;
if (tegra->suspended)
return IRQ_HANDLED;
if (tegra->soc->handle_oc) {
for (i = 0; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
if (tegra_xusb_padctl_overcurrent_detected(
tegra->padctl,
tegra->typed_phys[USB2_PHY][i]) > 0) {
dev_warn(tegra->dev,
"port %d over-current detected\n", i);
oc = true;
break;
}
}
/* call padctl API to clear OC condition */
if (oc)
schedule_work(&tegra->oc_work);
}
pm_runtime_resume(tegra->dev);
return IRQ_HANDLED;
}
static void tegra_xusb_parse_dt(struct platform_device *pdev,
struct tegra_xusb *tegra)
{
struct device_node *node = pdev->dev.of_node;
tegra->cdp_internal = of_property_read_bool(node,
"nvidia,enable-internal-cdp");
if (tegra->cdp_internal) {
dev_info(tegra->dev, "Enable CDP with internal USB2 phy\n");
tegra->cdp_enabled = true;
}
of_property_read_u32(node, "nvidia,boost_cpu_freq",
&tegra->boost_cpu_freq);
of_property_read_u32(node, "nvidia,boost_cpu_trigger",
&tegra->boost_cpu_trigger);
tegra->hsic_set_idle = of_property_read_bool(node,
"nvidia,hsic-set-idle");
}
static int tegra_xusb_clk_enable(struct tegra_xusb *tegra)
{
int err;
if (tegra->clk_enabled)
return 0;
err = clk_prepare_enable(tegra->pll_e);
if (err < 0)
return err;
err = clk_prepare_enable(tegra->host_clk);
if (err < 0)
goto disable_plle;
err = clk_prepare_enable(tegra->ss_clk);
if (err < 0)
goto disable_host;
err = clk_prepare_enable(tegra->falcon_clk);
if (err < 0)
goto disable_ss;
err = clk_prepare_enable(tegra->fs_src_clk);
if (err < 0)
goto disable_falc;
err = clk_prepare_enable(tegra->hs_src_clk);
if (err < 0)
goto disable_fs_src;
if (XHCI_IS_T194(tegra)) {
err = clk_prepare_enable(tegra->core_superspeed_clk);
if (err < 0)
goto disable_hs_src;
err = clk_prepare_enable(tegra->falcon_host_clk);
if (err < 0)
goto disable_core_superspeed;
err = clk_prepare_enable(tegra->falcon_superspeed_clk);
if (err < 0)
goto disable_falcon_host;
err = clk_prepare_enable(tegra->fs_host_clk);
if (err < 0)
goto disable_falcon_superspeed;
}
if (tegra->soc->scale_ss_clock) {
err = tegra_xusb_set_ss_clk(tegra, TEGRA_XHCI_SS_HIGH_SPEED);
if (err < 0)
goto disable_fs_host;
}
tegra->clk_enabled = true;
return 0;
disable_fs_host:
clk_disable_unprepare(tegra->fs_host_clk);
disable_falcon_superspeed:
clk_disable_unprepare(tegra->falcon_superspeed_clk);
disable_falcon_host:
clk_disable_unprepare(tegra->falcon_host_clk);
disable_core_superspeed:
clk_disable_unprepare(tegra->core_superspeed_clk);
disable_hs_src:
clk_disable_unprepare(tegra->hs_src_clk);
disable_fs_src:
clk_disable_unprepare(tegra->fs_src_clk);
disable_falc:
clk_disable_unprepare(tegra->falcon_clk);
disable_ss:
clk_disable_unprepare(tegra->ss_clk);
disable_host:
clk_disable_unprepare(tegra->host_clk);
disable_plle:
clk_disable_unprepare(tegra->pll_e);
return err;
}
static void tegra_xusb_clk_disable(struct tegra_xusb *tegra)
{
if (tegra->clk_enabled) {
if (XHCI_IS_T194(tegra)) {
clk_disable_unprepare(tegra->core_superspeed_clk);
clk_disable_unprepare(tegra->falcon_host_clk);
clk_disable_unprepare(tegra->falcon_superspeed_clk);
clk_disable_unprepare(tegra->fs_host_clk);
}
clk_disable_unprepare(tegra->pll_e);
clk_disable_unprepare(tegra->host_clk);
clk_disable_unprepare(tegra->ss_clk);
clk_disable_unprepare(tegra->falcon_clk);
clk_disable_unprepare(tegra->fs_src_clk);
clk_disable_unprepare(tegra->hs_src_clk);
tegra->clk_enabled = false;
}
}
static int tegra_xusb_phy_enable(struct tegra_xusb *tegra)
{
int i, j, err;
/* enable CDP on non-OTG port */
for (j = 0; j < tegra->soc->num_typed_phys[USB2_PHY]; j++) {
if (is_otg_phy(tegra, USB2_PHY, j))
continue;
err = phy_init(tegra->cdp_ext_phys[j]);
if (err)
continue;
err = phy_power_on(tegra->cdp_ext_phys[j]);
if (err) {
dev_err(tegra->dev, "phy_power_on failed");
err = phy_exit(tegra->cdp_ext_phys[j]);
if (err)
dev_err(tegra->dev, "phy_exit failed");
}
}
for (i = 0; i < MAX_PHY_TYPES; i++) {
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
err = phy_init(tegra->typed_phys[i][j]);
if (err)
goto disable_phy;
err = phy_power_on(tegra->typed_phys[i][j]);
if (err) {
phy_exit(tegra->typed_phys[i][j]);
goto disable_phy;
}
}
}
return 0;
disable_phy:
for (; i >= 0; i--) {
for (j = j - 1; j >= 0; j--) {
phy_power_off(tegra->typed_phys[i][j]);
phy_exit(tegra->typed_phys[i][j]);
}
if (i)
j = tegra->soc->num_typed_phys[i - 1];
}
return err;
}
static void tegra_xusb_phy_disable(struct tegra_xusb *tegra)
{
unsigned int i, j;
for (i = 0; i < MAX_PHY_TYPES; i++) {
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
phy_power_off(tegra->typed_phys[i][j]);
phy_exit(tegra->typed_phys[i][j]);
}
}
/* disable CDP on non-OTG ports */
for (i = 0; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
if (is_otg_phy(tegra, USB2_PHY, i))
continue;
phy_power_off(tegra->cdp_ext_phys[i]);
phy_exit(tegra->cdp_ext_phys[i]);
}
}
static int tegra_xhci_unpowergate_partitions(struct tegra_xusb *tegra)
{
int ret;
ret = tegra_unpowergate_partition(tegra->pgid_ss);
if (ret) {
dev_err(tegra->dev, "can't unpowergate SS partition\n");
return ret;
}
ret = tegra_unpowergate_partition(tegra->pgid_host);
if (ret) {
dev_err(tegra->dev,
"can't unpowergate Host partition\n");
tegra_powergate_partition(tegra->pgid_ss);
}
return ret;
}
static int tegra_xhci_powergate_partitions(struct tegra_xusb *tegra)
{
int ret;
int err;
ret = tegra_powergate_partition(tegra->pgid_host);
if (ret) {
dev_err(tegra->dev, "can't powergate Host partition\n");
goto out;
}
ret = tegra_powergate_partition(tegra->pgid_ss);
if (ret) {
dev_err(tegra->dev, "can't powergate SS partition\n");
err = tegra_unpowergate_partition(tegra->pgid_host);
if (err) {
dev_err(tegra->dev,
"can't unpowergate host partition\n");
goto out;
}
}
out:
return ret;
}
static int tegra_xhci_load_firmware(struct tegra_xusb *tegra)
{
unsigned int code_tag_blocks, code_size_blocks, code_blocks;
struct xhci_cap_regs __iomem *cap_regs;
struct xhci_op_regs __iomem *op_regs;
struct tegra_xusb_fw_header *header;
struct device *dev = tegra->dev;
unsigned long timeout;
time_t timestamp;
struct tm time;
u64 address;
u32 value;
header = (struct tegra_xusb_fw_header *)tegra->fw.virt;
header->num_hsic_port = tegra->num_hsic_port;
if (csb_readl(tegra, XUSB_CSB_MP_ILOAD_BASE_LO) != 0) {
dev_info(dev, "Firmware already loaded, Falcon state %#x\n",
csb_readl(tegra, XUSB_FALC_CPUCTL));
return 0;
}
if (header->build_log == LOG_MEMORY)
fw_log_init(tegra);
/* update the phys_log_buffer and total_entries here */
if (test_bit(FW_LOG_CONTEXT_VALID, &tegra->log.flags)) {
header->phys_addr_log_buffer = tegra->log.phys_addr;
header->total_log_entries = FW_LOG_COUNT;
}
/* Program the size of DFI into ILOAD_ATTR. */
csb_writel(tegra, tegra->fw.size, XUSB_CSB_MP_ILOAD_ATTR);
/*
* Boot code of the firmware reads the ILOAD_BASE registers
* to get to the start of the DFI in system memory.
*/
address = tegra->fw.phys + sizeof(*header);
csb_writel(tegra, address >> 32, XUSB_CSB_MP_ILOAD_BASE_HI);
csb_writel(tegra, address, XUSB_CSB_MP_ILOAD_BASE_LO);
/* Set BOOTPATH to 1 in APMAP. */
csb_writel(tegra, APMAP_BOOTPATH, XUSB_CSB_MP_APMAP);
/* Invalidate L2IMEM. */
csb_writel(tegra, L2IMEMOP_INVALIDATE_ALL, XUSB_CSB_MP_L2IMEMOP_TRIG);
/*
* Initiate fetch of bootcode from system memory into L2IMEM.
* Program bootcode location and size in system memory.
*/
code_tag_blocks = DIV_ROUND_UP(le32_to_cpu(header->boot_codetag),
IMEM_BLOCK_SIZE);
code_size_blocks = DIV_ROUND_UP(le32_to_cpu(header->boot_codesize),
IMEM_BLOCK_SIZE);
code_blocks = code_tag_blocks + code_size_blocks;
value = ((code_tag_blocks & L2IMEMOP_SIZE_SRC_OFFSET_MASK) <<
L2IMEMOP_SIZE_SRC_OFFSET_SHIFT) |
((code_size_blocks & L2IMEMOP_SIZE_SRC_COUNT_MASK) <<
L2IMEMOP_SIZE_SRC_COUNT_SHIFT);
csb_writel(tegra, value, XUSB_CSB_MP_L2IMEMOP_SIZE);
/* Trigger L2IMEM load operation. */
csb_writel(tegra, L2IMEMOP_LOAD_LOCKED_RESULT,
XUSB_CSB_MP_L2IMEMOP_TRIG);
/* Setup Falcon auto-fill. */
csb_writel(tegra, code_size_blocks, XUSB_FALC_IMFILLCTL);
value = ((code_tag_blocks & IMFILLRNG1_TAG_MASK) <<
IMFILLRNG1_TAG_LO_SHIFT) |
((code_blocks & IMFILLRNG1_TAG_MASK) <<
IMFILLRNG1_TAG_HI_SHIFT);
csb_writel(tegra, value, XUSB_FALC_IMFILLRNG1);
csb_writel(tegra, 0, XUSB_FALC_DMACTL);
/* wait for RESULT_VLD to get set */
timeout = jiffies + msecs_to_jiffies(10);
do {
value = csb_readl(tegra, XUSB_CSB_MEMPOOL_L2IMEMOP_RESULT);
if (value & L2IMEMOP_RESULT_VLD)
break;
usleep_range(50, 60);
} while (time_is_after_jiffies(timeout));
value = csb_readl(tegra, XUSB_CSB_MEMPOOL_L2IMEMOP_RESULT);
if (!(value & L2IMEMOP_RESULT_VLD)) {
dev_err(dev, "DMA controller not ready 0x08%x\n", value);
return -EFAULT;
}
csb_writel(tegra, le32_to_cpu(header->boot_codetag),
XUSB_FALC_BOOTVEC);
/* Boot Falcon CPU and wait for USBSTS_CNR to get cleared. */
csb_writel(tegra, CPUCTL_STARTCPU, XUSB_FALC_CPUCTL);
cap_regs = tegra->regs;
op_regs = tegra->regs + HC_LENGTH(ioread32(&cap_regs->hc_capbase));
timeout = jiffies + msecs_to_jiffies(200);
do {
value = ioread32(&op_regs->status);
if (!(value & STS_CNR))
break;
usleep_range(1000, 2000);
} while (time_is_after_jiffies(timeout));
value = ioread32(&op_regs->status);
if (value & STS_CNR) {
dev_err(dev, "XHCI Controller not ready. Falcon state: 0x%x\n",
csb_readl(tegra, XUSB_FALC_CPUCTL));
return -EIO;
}
timestamp = le32_to_cpu(header->fwimg_created_time);
time_to_tm(timestamp, 0, &time);
dev_info(dev, "Firmware timestamp: %ld-%02d-%02d %02d:%02d:%02d UTC, Version: %2x.%02x %s\n",
time.tm_year + 1900, time.tm_mon + 1, time.tm_mday,
time.tm_hour, time.tm_min, time.tm_sec,
FW_MAJOR_VERSION(header->version_id),
FW_MINOR_VERSION(header->version_id),
(header->build_log == LOG_MEMORY) ? "debug" : "release");
return 0;
}
static void tegra_xusb_probe_finish(const struct firmware *fw, void *context);
static void tegra_firmware_retry_work(struct work_struct *work)
{
struct tegra_xusb *tegra;
struct device *dev;
int ret;
bool uevent = true;
tegra = container_of(to_delayed_work(work),
struct tegra_xusb, firmware_retry_work);
dev = tegra->dev;
if (++tegra->fw_retry_count >= FW_RETRY_COUNT) {
/*
* Last retry. If CONFIG_FW_LOADER_USER_HELPER_FALLBACK=y and
* uevent=true, in udev based systems, userspace will not get
* any chance to provide firmware file. This happens due to
* udev stubs aborting firmware requests made by kernel.
*
* Hence try now with uevent=false so that udev does not abort
* syfs based firmware loading interface. User can load the
* firmware later at any point.
*
* NOTE: If !CONFIG_FW_LOADER_USER_HELPER &&
* !CONFIG_FW_LOADER_USER_HELPER_FALLBACK, last retry will
* be a direct try from rootfs like the previous retries.
*/
uevent = false;
dev_err(dev, "Leaving it upto user to load firmware!\n");
}
ret = request_firmware_nowait(THIS_MODULE, uevent,
tegra->soc->firmware,
tegra->dev, GFP_KERNEL, tegra,
tegra_xusb_probe_finish);
if (ret) {
dev_err(dev,
"Could not submit async request for firmware load %d\n"
, ret);
usb_put_hcd(tegra->hcd);
tegra->hcd = NULL;
}
}
static void downgrade_usb3(struct device *dev, unsigned int downgrade_enabled);
static void tegra_xhci_set_host_mode(struct tegra_xusb *tegra, int i, bool on)
{
struct xhci_hcd *xhci;
u32 status;
int wait;
struct tegra_xusb_mbox_msg msg;
int ret;
struct xusb_otg_port *port;
port = &tegra->otg_ports[i];
dev_dbg(tegra->dev, "%s: vbus_id #%d, usb2 #%d\n", __func__,
i, port ? port->usb2_otg_port_base_1 - 1 : -1);
if (!port)
return;
if (!tegra->fw_loaded && !tegra->soc->is_xhci_vf)
return;
xhci = hcd_to_xhci(tegra->hcd);
if (xhci->recovery_in_progress == true)
return;
mutex_lock(&tegra->lock);
if (tegra->suspended) {
mutex_unlock(&tegra->lock);
return;
}
if (!on)
tegra_xusb_padctl_clear_id_override(tegra->padctl, i);
if (!port->inited && on)
goto role_update;
if ((port->host_mode && on) || (!port->host_mode && !on)) {
mutex_unlock(&tegra->lock);
return;
}
role_update:
port->host_mode = on;
port->inited = true;
dev_dbg(tegra->dev, "host mode %s on #%d\n", on ? "on" : "off", i);
if (!pm_runtime_suspended(tegra->dev)) {
if (on)
tegra_xusb_padctl_set_id_override(tegra->padctl, i);
}
mutex_unlock(&tegra->lock);
if (!tegra->soc->otg_set_port_power) {
pm_runtime_get_sync(tegra->dev);
if (on)
pm_runtime_mark_last_busy(tegra->dev);
pm_runtime_put_autosuspend(tegra->dev);
return;
}
pm_runtime_get_sync(tegra->dev);
if (on) {
/* switch to host mode */
if (port->usb3_otg_port_base_1) {
if (XHCI_IS_T210(tegra)) {
/* set PP=0 */
xhci_hub_control(xhci->shared_hcd, GetPortStatus
, 0, port->usb3_otg_port_base_1
, (char *) &status, sizeof(status));
if (status & USB_SS_PORT_STAT_POWER) {
xhci_hub_control(xhci->shared_hcd,
ClearPortFeature,
USB_PORT_FEAT_POWER,
port->usb3_otg_port_base_1,
NULL, 0);
}
wait = 10;
do {
xhci_hub_control(xhci->shared_hcd
, GetPortStatus, 0
, port->usb3_otg_port_base_1
, (char *) &status
, sizeof(status));
if (!(status & USB_SS_PORT_STAT_POWER))
break;
usleep_range(10, 20);
} while (--wait > 0);
/* reset OTG port SSPI */
msg.cmd = MBOX_CMD_RESET_SSPI;
msg.data = port->usb3_otg_port_base_1;
ret = tegra_xusb_mbox_send(tegra, &msg);
if (ret < 0) {
dev_err(tegra->dev,
"failed to RESET_SSPI %d\n",
ret);
}
}
xhci_hub_control(xhci->shared_hcd, SetPortFeature,
USB_PORT_FEAT_POWER, port->usb3_otg_port_base_1
, NULL, 0);
wait = 10;
do {
xhci_hub_control(xhci->shared_hcd, GetPortStatus
, 0, port->usb3_otg_port_base_1
, (char *) &status, sizeof(status));
if (status & USB_SS_PORT_STAT_POWER)
break;
usleep_range(10, 20);
} while (--wait > 0);
if (!(status & USB_SS_PORT_STAT_POWER))
dev_info(tegra->dev, "failed to set SS PP\n");
downgrade_usb3(tegra->dev, tegra->downgrade_enabled);
}
xhci_hub_control(xhci->main_hcd, SetPortFeature,
USB_PORT_FEAT_POWER, port->usb2_otg_port_base_1,
NULL, 0);
wait = 10;
do {
xhci_hub_control(xhci->main_hcd, GetPortStatus
, 0, port->usb2_otg_port_base_1
, (char *) &status, sizeof(status));
if (status & USB_PORT_STAT_POWER)
break;
usleep_range(10, 20);
} while (--wait > 0);
if (!(status & USB_PORT_STAT_POWER))
dev_info(tegra->dev, "failed to set HS PP\n");
pm_runtime_mark_last_busy(tegra->dev);
} else {
if (port->usb3_otg_port_base_1) {
xhci_hub_control(xhci->shared_hcd, ClearPortFeature,
USB_PORT_FEAT_POWER, port->usb3_otg_port_base_1
, NULL, 0);
wait = 1000;
do {
xhci_hub_control(xhci->shared_hcd, GetPortStatus
, 0, port->usb3_otg_port_base_1
, (char *) &status, sizeof(status));
if (!(status & USB_SS_PORT_STAT_POWER))
break;
usleep_range(600, 700);
} while (--wait > 0);
if (status & USB_SS_PORT_STAT_POWER)
dev_info(tegra->dev, "failed to clear SS PP\n");
}
xhci_hub_control(xhci->main_hcd, ClearPortFeature,
USB_PORT_FEAT_POWER, port->usb2_otg_port_base_1,
NULL, 0);
wait = 10;
do {
xhci_hub_control(xhci->main_hcd, GetPortStatus
, 0, port->usb2_otg_port_base_1
, (char *) &status, sizeof(status));
if (!(status & USB_PORT_STAT_POWER))
break;
usleep_range(10, 20);
} while (--wait > 0);
if (status & USB_PORT_STAT_POWER)
dev_info(tegra->dev, "failed to clear HS PP\n");
}
pm_runtime_put_autosuspend(tegra->dev);
}
static void tegra_xhci_update_otg_role(struct tegra_xusb *tegra, bool check)
{
int state;
struct xusb_otg_port *port;
int i;
if (tegra_platform_is_fpga()) {
tegra_xhci_set_host_mode(tegra, 0, true);
return;
}
if (check) {
for (i = 0; i < tegra->otg_port_num; i++) {
port = &tegra->otg_ports[i];
if (port->edev == NULL)
return;
if (extcon_get_cable_state_(port->edev,
EXTCON_USB_HOST))
port->changed = true;
}
}
for (i = 0; i < tegra->otg_port_num; i++) {
port = &tegra->otg_ports[i];
if (port->edev == NULL)
return;
if (!port->changed)
continue;
state = extcon_get_cable_state_(port->edev, EXTCON_USB_HOST);
tegra_xhci_set_host_mode(tegra, i, !!state);
port->changed = false;
}
}
static void tegra_xhci_id_extcon_work(struct work_struct *work)
{
struct tegra_xusb *tegra = container_of(work, struct tegra_xusb,
id_extcons_work);
tegra_xhci_update_otg_role(tegra, false);
}
static int tegra_xhci_id_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct extcon_dev *edev = (struct extcon_dev *) data;
struct tegra_xusb *tegra = container_of(nb, struct tegra_xusb,
id_extcons_nb);
int i;
struct xusb_otg_port *port;
for (i = 0; i < tegra->otg_port_num; i++) {
port = &tegra->otg_ports[i];
if (port->edev == edev) {
port->changed = true;
schedule_work(&tegra->id_extcons_work);
break;
}
}
return NOTIFY_OK;
}
static irqreturn_t tegra_xhci_pad_ivc_irq(int irq, void *data)
{
struct tegra_xusb *tegra = data;
int ret;
if (tegra_hv_ivc_channel_notified(tegra->ivck) != 0) {
dev_info(tegra->dev, "ivc channel not usable\n");
return IRQ_HANDLED;
}
if (tegra_hv_ivc_can_read(tegra->ivck)) {
/* Read the current message for the xhci_server to be
* able to send further messages on next pad interrupt
*/
ret = tegra_hv_ivc_read(tegra->ivck, tegra->ivc_rx, 128);
if (ret < 0) {
dev_err(tegra->dev,
"IVC Read of PAD Interrupt Failed: %d\n", ret);
} else {
/* Schedule work to execute the PADCTL IRQ Function
* which takes the appropriate action.
*/
schedule_work(&tegra->ivc_work);
}
} else {
dev_info(tegra->dev, "Can not read ivc channel: %d\n",
tegra->ivck->irq);
}
return IRQ_HANDLED;
}
static void tegra_xhci_ivc_work(struct work_struct *work)
{
struct tegra_xusb *tegra = container_of(work, struct tegra_xusb,
ivc_work);
tegra_xusb_padctl_irq(tegra->ivck->irq, tegra);
}
static int init_ivc_communication(struct platform_device *pdev)
{
uint32_t id;
int ret;
struct device *dev = &pdev->dev;
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
struct device_node *np, *hv_np;
np = dev->of_node;
if (!np) {
dev_err(dev, "init_ivc: couldnt get of_node handle\n");
return -EINVAL;
}
hv_np = of_parse_phandle(np, "ivc", 0);
if (!hv_np) {
dev_err(dev, "ivc_init: couldnt find ivc DT node\n");
return -EINVAL;
}
ret = of_property_read_u32_index(np, "ivc", 1, &id);
if (ret) {
dev_err(dev, "ivc_init: Error in reading IVC DT\n");
of_node_put(hv_np);
return -EINVAL;
}
tegra->ivck = tegra_hv_ivc_reserve(hv_np, id, NULL);
of_node_put(hv_np);
if (IS_ERR_OR_NULL(tegra->ivck)) {
dev_err(dev, "Failed to reserve ivc channel:%d\n", id);
ret = PTR_ERR(tegra->ivck);
tegra->ivck = NULL;
return ret;
}
dev_info(dev, "Reserved IVC channel #%d - frame_size=%d irq %d\n",
id, tegra->ivck->frame_size, tegra->ivck->irq);
tegra_hv_ivc_channel_reset(tegra->ivck);
INIT_WORK(&tegra->ivc_work, tegra_xhci_ivc_work);
ret = devm_request_irq(dev, tegra->ivck->irq, tegra_xhci_pad_ivc_irq,
0, dev_name(dev), tegra);
if (ret) {
dev_err(dev, "Unable to request irq(%d)\n", tegra->ivck->irq);
tegra_hv_ivc_unreserve(tegra->ivck);
return ret;
}
return 0;
}
static ssize_t store_reload_hcd(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
struct usb_hcd *hcd = tegra->hcd;
int ret, reload;
ret = kstrtoint(buf, 0, &reload);
if (ret != 0 || reload < 0 || reload > 1)
return -EINVAL;
if (reload)
tegra_xhci_hcd_reinit(hcd);
return count;
}
static DEVICE_ATTR(reload_hcd, 0200, NULL, store_reload_hcd);
static int tegra_xusb_power(struct tegra_xusb *tegra, bool on)
{
struct tegra_xusb_mbox_msg msg;
int rc;
if (on == tegra->hsic_power_on)
return 0;
if (on)
msg.cmd = MBOX_CMD_AIRPLANE_MODE_DISABLED;
else
msg.cmd = MBOX_CMD_AIRPLANE_MODE_ENABLED;
msg.data = BIT(tegra->soc->ports.hsic.offset + 1);
rc = tegra_xusb_mbox_send(tegra, &msg);
if (rc < 0) {
dev_err(tegra->dev,
"failed to send message to firmware %d\n", rc);
return rc;
}
if (on)
rc = tegra_xusb_padctl_hsic_set_idle(tegra->padctl, 0, true);
else
rc = tegra_xusb_padctl_hsic_reset(tegra->padctl, 0);
if (rc != 0) {
dev_err(tegra->dev, "failed to set padctl %d\n", rc);
return rc;
}
tegra->hsic_power_on = on;
return 0;
}
static void tegra_xhci_downgrade_check_to_disable(struct usb_hcd *hcd,
struct usb_device *udev, bool restore_usb3_power)
{
struct list_head *ptr;
struct usb_downgraded_port *port_ptr;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
u32 portsc;
char serial[31];
unsigned long flags;
if (udev->serial) {
strncpy(serial, udev->serial, 30);
serial[30] = 0;
} else {
serial[0] = 0;
}
mutex_lock(&tegra->lock);
if (!list_empty(&hub_downgraded_list)) {
list_for_each(ptr, &hub_downgraded_list) {
port_ptr = list_entry(ptr,
struct usb_downgraded_port, downgraded_list);
if ((udev->descriptor.idVendor ==
port_ptr->id_vendor) &&
(udev->descriptor.idProduct ==
port_ptr->id_product)) {
if (!port_ptr->serial[0] && !serial[0])
break;
if (port_ptr->serial[0] && serial[0] &&
!strcmp(port_ptr->serial, serial))
break;
}
}
if (ptr != &hub_downgraded_list) {
list_del(&port_ptr->downgraded_list);
/* Clear id_vendor as empty entry */
port_ptr->id_vendor = 0;
if (!restore_usb3_power) {
mutex_unlock(&tegra->lock);
return;
}
dev_info(&udev->dev,
"Upgrade idVendor=%04x idProduct=%04x to USB3.0\n",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
pm_runtime_get_noresume(hcd->self.controller);
/* Port Power on for downgraded USB3.0 port */
spin_lock_irqsave(&xhci->lock, flags);
portsc = readl(xhci->usb3_ports[port_ptr->portnum
- 1]);
if (!(portsc & PORT_POWER)) {
portsc |= PORT_POWER;
writel(portsc,
xhci->usb3_ports[port_ptr->portnum
- 1]);
spin_unlock_irqrestore(&xhci->lock, flags);
usleep_range(10000, 12000);
spin_lock_irqsave(&xhci->lock, flags);
portsc = readl(
xhci->usb3_ports[port_ptr->portnum
- 1]);
/* Exit from SS.disabled */
portsc &= ~(PORT_PLS_MASK | PORT_PE);
portsc |= (PORT_POWER | XDEV_RXDETECT |
PORT_LINK_STROBE);
writel(portsc,
xhci->usb3_ports[port_ptr->portnum
- 1]);
}
spin_unlock_irqrestore(&xhci->lock, flags);
pm_runtime_put(hcd->self.controller);
}
}
mutex_unlock(&tegra->lock);
}
static ssize_t downgrade_usb3_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
return sprintf(buf, "%d\n", tegra->downgrade_enabled);
}
static void tegra_xhci_downgrade_check_to_enable(struct usb_hcd *hcd,
struct usb_device *udev);
static int tegra_xhci_exit_elpg(struct tegra_xusb *tegra, bool runtime);
static void downgrade_usb3(struct device *dev, unsigned int downgrade_enabled)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
struct usb_device *hdev20 = xhci->main_hcd->self.root_hub;
struct usb_hub *hub20 = usb_hub_to_struct_hub(hdev20);
struct usb_device *hdev30 = xhci->shared_hcd->self.root_hub;
struct usb_hub *hub30 = usb_hub_to_struct_hub(hdev30);
struct usb_hcd *hcd;
struct usb_device *udev;
unsigned int port1;
u32 portsc;
int power_up_wait;
unsigned long flags;
hcd = tegra->hcd;
if ((downgrade_enabled == 0xffffffff) || (downgrade_enabled == 0)) {
for (port1 = 1; port1 <= hdev20->maxchild; port1++) {
udev = hub20->ports[port1 - 1]->child;
if (udev)
tegra_xhci_downgrade_check_to_disable(hcd,
udev, false);
}
pm_runtime_get_sync(hcd->self.controller);
mutex_lock(&tegra->lock);
spin_lock_irqsave(&xhci->lock, flags);
power_up_wait = 0;
for (port1 = 1; port1 <= hdev30->maxchild; port1++) {
if (port1 > DEGRADED_PORT_COUNT)
break;
portsc = readl(xhci->usb3_ports[port1 - 1]);
if (downgrade_enabled == 0xffffffff) {
if (portsc & PORT_POWER) {
/* To disconnect */
portsc |= PORT_PE;
writel(portsc, xhci->usb3_ports[port1
- 1]);
power_up_wait++;
}
} else {
if (!(portsc & PORT_POWER)) {
portsc |= PORT_POWER;
writel(portsc, xhci->usb3_ports[port1
- 1]);
power_up_wait++;
}
}
}
if (power_up_wait) {
spin_unlock_irqrestore(&xhci->lock, flags);
usleep_range(10000, 12000);
spin_lock_irqsave(&xhci->lock, flags);
}
if (downgrade_enabled == 0xffffffff) {
for (port1 = 1; port1 <= hdev30->maxchild; port1++) {
if (port1 > DEGRADED_PORT_COUNT)
break;
portsc = readl(xhci->usb3_ports[port1 - 1]);
if (portsc & PORT_POWER) {
dev_info(dev,
"Downgrade port %d to USB2.0\n"
, port1 - 1);
/* Exit from SS.disabled */
portsc &= ~(PORT_PLS_MASK | PORT_PE);
portsc |= (PORT_POWER | XDEV_RXDETECT |
PORT_LINK_STROBE);
writel(portsc, xhci->usb3_ports[port1
- 1]);
spin_unlock_irqrestore(&xhci->lock,
flags);
usleep_range(1000, 2000);
spin_lock_irqsave(&xhci->lock, flags);
portsc = readl(xhci->usb3_ports[port1
- 1]);
portsc &= ~(PORT_POWER | PORT_PE |
PORT_CSC);
writel(portsc, xhci->usb3_ports[port1
- 1]);
}
}
}
if (downgrade_enabled == 0) {
for (port1 = 1; port1 <= hdev30->maxchild; port1++) {
if (port1 > DEGRADED_PORT_COUNT)
break;
dev_info(dev, "Upgrade port %d to USB3.0\n",
port1 - 1);
portsc = readl(xhci->usb3_ports[port1 - 1]);
if ((portsc & PORT_PLS_MASK) == XDEV_DISABLED) {
/* Exit from SS.disabled */
portsc &= ~(PORT_PLS_MASK | PORT_PE);
portsc |= (PORT_POWER | XDEV_RXDETECT |
PORT_LINK_STROBE);
writel(portsc, xhci->usb3_ports[port1 -
1]);
spin_unlock_irqrestore(&xhci->lock,
flags);
usleep_range(1000, 2000);
spin_lock_irqsave(&xhci->lock, flags);
}
}
if (!power_up_wait) {
spin_unlock_irqrestore(&xhci->lock, flags);
mutex_unlock(&tegra->lock);
pm_runtime_put(hcd->self.controller);
return;
}
/* USB2.0 port reset to transition device to USB3.0 */
for (port1 = 1; port1 <= hdev20->maxchild; port1++) {
udev = hub20->ports[port1 - 1]->child;
if (udev && udev->speed >= USB_SPEED_HIGH) {
portsc = readl(xhci->usb2_ports[port1
- 1]);
portsc &= ~PORT_PE;
portsc |= (PORT_POWER | PORT_RESET);
writel(portsc, xhci->usb2_ports[port1
- 1]);
}
}
}
spin_unlock_irqrestore(&xhci->lock, flags);
mutex_unlock(&tegra->lock);
pm_runtime_put(hcd->self.controller);
return;
}
for (port1 = 1; port1 <= hdev30->maxchild; port1++) {
if (port1 > DEGRADED_PORT_COUNT)
break;
udev = hub30->ports[port1 - 1]->child;
if (udev && downgrade_enabled)
tegra_xhci_downgrade_check_to_enable(hcd, udev);
}
}
static ssize_t downgrade_usb3_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t n)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
unsigned int downgrade_enabled;
unsigned int old_downgrade_enabled;
if (kstrtouint(buf, 16, &downgrade_enabled))
return -EINVAL;
mutex_lock(&tegra->lock);
old_downgrade_enabled = tegra->downgrade_enabled;
tegra->downgrade_enabled = downgrade_enabled;
mutex_unlock(&tegra->lock);
if (!tegra->fw_loaded) {
return n;
}
/* Restore power */
if ((old_downgrade_enabled == 0xffffffff) &&
(downgrade_enabled == 1)) {
downgrade_usb3(dev, 0);
msleep(1000);
}
downgrade_usb3(dev, downgrade_enabled);
return n;
}
static DEVICE_ATTR(
downgrade_usb3, 0644, downgrade_usb3_show, downgrade_usb3_store);
static void tegra_xusb_host_vbus_power_on(struct tegra_xusb *tegra)
{
u32 i;
for (i = 0u; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
if (tegra->typed_phys[USB2_PHY][i] == NULL)
continue;
/* skip vbus on for OTG port */
if (!is_otg_phy(tegra, USB2_PHY, (int)i)) {
u32 port = i;
if (tegra->soc->is_xhci_vf)
port = (u32)tegra->port_to_phy[USB2_PHY][i];
(void)tegra_xusb_padctl_vbus_power_on(
tegra->padctl, port);
}
}
}
static void tegra_xusb_host_vbus_power_off(struct tegra_xusb *tegra)
{
u32 i;
for (i = 0u; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
if (tegra->typed_phys[USB2_PHY][i] == NULL)
continue;
/* skip vbus on for OTG port */
if (!is_otg_phy(tegra, USB2_PHY, (int)i)) {
u32 port = i;
if (tegra->soc->is_xhci_vf)
port = (u32)tegra->port_to_phy[USB2_PHY][i];
(void)tegra_xusb_padctl_vbus_power_off(
tegra->padctl, port);
}
}
}
static void tegra_xusb_probe_finish(const struct firmware *fw, void *context)
{
struct tegra_xusb *tegra = context;
struct device *dev = tegra->dev;
struct platform_device *pdev = to_platform_device(dev);
struct xhci_hcd *xhci = NULL;
struct tegra_xusb_fw_header *header;
struct tegra_xusb_mbox_msg msg;
struct resource *regs;
int ret;
u32 val;
if (!tegra->soc->is_xhci_vf) {
if (!fw) {
if (tegra->fw_retry_count >= FW_RETRY_COUNT) {
dev_err(dev, "Giving up on firmware\n");
goto put_usb2;
}
dev_info(dev, "cannot find firmware....retry after 1 second\n");
schedule_delayed_work(&tegra->firmware_retry_work,
msecs_to_jiffies(1000));
return;
}
/* Load Falcon controller with its firmware. */
header = (struct tegra_xusb_fw_header *)fw->data;
tegra->fw.size = le32_to_cpu(header->fwimg_len);
tegra->fw.virt = dma_alloc_coherent(tegra->dev, tegra->fw.size,
&tegra->fw.phys, GFP_KERNEL);
if (!tegra->fw.virt) {
dev_err(tegra->dev, "failed to allocate memory for firmware\n");
release_firmware(fw);
return;
}
memcpy(tegra->fw.virt, fw->data, tegra->fw.size);
release_firmware(fw);
ret = tegra_xhci_load_firmware(tegra);
if (ret < 0) {
dev_err(dev, "can't load firmware (%d)\n", ret);
return;
}
}
tegra_xusb_host_vbus_power_on(tegra);
tegra->hcd = usb_create_hcd(&tegra_xhci_hc_driver, dev, dev_name(dev));
if (!tegra->hcd) {
dev_err(dev, "failed to create shared HCD\n");
return;
}
/*
* This must happen after usb_create_hcd(), because usb_create_hcd()
* will overwrite the drvdata of the device with the hcd it creates.
*/
platform_set_drvdata(pdev, tegra);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tegra->hcd->regs = tegra->regs;
tegra->hcd->rsrc_start = regs->start;
tegra->hcd->rsrc_len = resource_size(regs);
ret = usb_add_hcd(tegra->hcd, tegra->xhci_irq, IRQF_SHARED);
if (ret < 0) {
dev_err(dev, "failed to add main HCD: %d\n", ret);
goto put_usb2;
}
device_wakeup_enable(tegra->hcd->self.controller);
xhci = hcd_to_xhci(tegra->hcd);
xhci->shared_hcd = usb_create_shared_hcd(&tegra_xhci_hc_driver,
dev,
dev_name(dev),
tegra->hcd);
if (!xhci->shared_hcd) {
dev_err(dev, "failed to create shared HCD\n");
goto remove_usb2;
}
if (HCC_MAX_PSA(xhci->hcc_params) >= 4)
xhci->shared_hcd->can_do_streams = 1;
ret = usb_add_hcd(xhci->shared_hcd, tegra->xhci_irq, IRQF_SHARED);
if (ret < 0) {
dev_err(dev, "failed to add shared HCD: %d\n", ret);
goto put_usb3;
}
/* Enable wake for both USB2.0 and USB3.0 hub */
device_init_wakeup(&tegra->hcd->self.root_hub->dev, true);
device_init_wakeup(&xhci->shared_hcd->self.root_hub->dev, true);
/* Enable firmware messages from controller. */
if (!tegra->soc->is_xhci_vf) {
mutex_lock(&tegra->lock);
msg.cmd = MBOX_CMD_MSG_ENABLED;
msg.data = 0;
ret = tegra_xusb_mbox_send(tegra, &msg);
if (ret < 0) {
dev_err(dev, "failed to enable messages: %d\n", ret);
mutex_unlock(&tegra->lock);
goto remove_usb3;
}
mutex_unlock(&tegra->lock);
ret = devm_request_threaded_irq(dev, tegra->mbox_irq,
tegra_xusb_mbox_irq,
tegra_xusb_mbox_thread,
IRQF_ONESHOT,
dev_name(dev), tegra);
if (ret < 0) {
dev_err(dev,
"failed to request mailbox IRQ: %d\n", ret);
goto remove_usb3;
}
ret = devm_request_threaded_irq(dev, tegra->padctl_irq,
NULL,
tegra_xusb_padctl_irq,
IRQF_ONESHOT |
IRQF_TRIGGER_HIGH,
dev_name(dev), tegra);
if (ret < 0) {
dev_err(dev, "failed to request padctl IRQ: %d\n", ret);
goto remove_mbox_irq;
}
downgrade_usb3(dev, tegra->downgrade_enabled);
tegra->fw_loaded = true;
} else {
/* In Virtualization, the PAD interrupt is owned by xhci_server
* and Host driver needs to initiate an IVC channel to receive
* the interruptd from the xhci_server.
*/
ret = init_ivc_communication(pdev);
if (ret < 0) {
dev_err(dev,
"Failed to init IVC channel with xhci_server\n");
goto remove_usb3;
}
}
tegra_xhci_update_otg_role(tegra, true);
if (tegra->hsic_set_idle) {
ret = tegra_xusb_power(tegra, true);
if (ret)
dev_dbg(dev, "failed to power-on on startup");
}
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 2000);
pm_runtime_mark_last_busy(tegra->dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
ret = device_create_file(dev, &dev_attr_reload_hcd);
if (ret) {
dev_err(dev,
"Can't register reload_hcd attribute\n");
goto remove_padctl_irq;
}
tegra->fwdev = devm_tegrafw_register(dev, NULL,
TFW_NORMAL, fw_version_show, NULL);
if (IS_ERR(tegra->fwdev))
dev_warn(dev, "cannot register firmware reader");
/* Enable EU3S bit of USBCMD */
val = readl(&xhci->op_regs->command);
val |= CMD_PM_INDEX;
writel(val, &xhci->op_regs->command);
INIT_WORK(&xhci->tegra_xhci_reinit_work, xhci_reinit_work);
xhci->recovery_in_progress = false;
xhci->pdev = to_platform_device(dev);
return;
/* Free up as much as we can and wait to be unbound. */
remove_padctl_irq:
if (!tegra->soc->is_xhci_vf) {
devm_free_irq(dev, tegra->padctl_irq, tegra);
} else {
devm_free_irq(dev, tegra->ivck->irq, tegra);
tegra_hv_ivc_unreserve(tegra->ivck);
}
remove_mbox_irq:
if (!tegra->soc->is_xhci_vf)
devm_free_irq(dev, tegra->mbox_irq, tegra);
remove_usb3:
usb_remove_hcd(xhci->shared_hcd);
put_usb3:
usb_put_hcd(xhci->shared_hcd);
remove_usb2:
usb_remove_hcd(tegra->hcd);
put_usb2:
usb_put_hcd(tegra->hcd);
tegra->hcd = NULL;
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_downgrade_usb3.attr);
}
static void tegra_xhci_init_otg_cap(struct tegra_xusb *tegra, int vbus_id,
int usb2_port, int usb3_port)
{
struct xusb_otg_port *port = &tegra->otg_ports[vbus_id];
port->usb2_otg_port_base_1 = usb2_port + 1;
port->usb3_otg_port_base_1 = usb3_port + 1;
port->edev = NULL;
port->changed = false;
port->host_mode = false;
dev_dbg(tegra->dev, "vbus_id %d: bind usb2 %d and usb3 %d\n",
vbus_id, port->usb2_otg_port_base_1 - 1,
port->usb3_otg_port_base_1 - 1);
}
static int tegra_xhci_phy_init(struct platform_device *pdev)
{
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
struct phy *phy;
int i, j, k, num;
int ret;
struct xusb_otg_port *otg_port;
int usb3_otg_port_base_1 = 0;
int usb2_otg_port_base_1 = 0;
for (i = 0; i < MAX_PHY_TYPES; i++)
tegra->num_phys += tegra->soc->num_typed_phys[i];
tegra->phys = devm_kcalloc(&pdev->dev, tegra->num_phys, sizeof(phy),
GFP_KERNEL);
if (tegra->soc->is_xhci_vf) {
tegra->port_phy_map = devm_kcalloc(&pdev->dev, tegra->num_phys,
sizeof(int), GFP_KERNEL);
}
if (!tegra->phys || (tegra->soc->is_xhci_vf && (!tegra->port_phy_map)))
return -ENOMEM;
for (i = 0; i < MAX_PHY_TYPES; i++) {
if (i == 0) {
tegra->typed_phys[0] = &tegra->phys[0];
if (tegra->soc->is_xhci_vf)
tegra->port_to_phy[0] = &tegra->port_phy_map[0];
} else {
tegra->typed_phys[i] = tegra->typed_phys[i - 1] +
tegra->soc->num_typed_phys[i - 1];
if (tegra->soc->is_xhci_vf) {
tegra->port_to_phy[i] =
tegra->port_to_phy[i - 1] +
tegra->soc->num_typed_phys[i - 1];
}
}
k = 0;
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
char prop[16];
if (tegra->soc->is_xhci_vf) {
snprintf(prop, sizeof(prop), "vf%d-%s-%d",
tegra->soc->vf_id,
tegra_xhci_phy_names[i], j);
} else {
snprintf(prop, sizeof(prop), "%s-%d",
tegra_xhci_phy_names[i], j);
}
phy = devm_phy_optional_get(&pdev->dev, prop);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
if (ret != -EPROBE_DEFER) {
dev_warn(&pdev->dev,
"can't get %s phy (%d)\n",
prop, ret);
}
return ret;
} else {
if (phy && strstr(prop, "usb3") &&
tegra_xusb_padctl_has_otg_cap(tegra->padctl,
phy)) {
if (tegra->soc->is_xhci_vf)
usb3_otg_port_base_1 = k + 1;
}
if (phy && strstr(prop, "usb2") &&
tegra_xusb_padctl_has_otg_cap(tegra->padctl,
phy)) {
if (tegra->soc->is_xhci_vf)
usb2_otg_port_base_1 = k + 1;
}
if (phy && strstr(prop, "hsic"))
tegra->num_hsic_port++;
}
if (!tegra->soc->is_xhci_vf) {
tegra->typed_phys[i][j] = phy;
} else {
/* Storing the Phy's in the same order as
* port numbers as seen by the VF's
*/
if (phy != NULL) {
tegra->typed_phys[i][k] = phy;
tegra->port_to_phy[i][k] = j;
k++;
}
}
}
}
num = tegra_xusb_padctl_get_vbus_id_num(tegra->padctl);
for (i = 0; i < num; i++) {
int usb2_port, usb3_port;
tegra_xusb_padctl_get_vbus_id_ports(tegra->padctl,
i, &usb2_port, &usb3_port);
tegra_xhci_init_otg_cap(tegra, i, usb2_port, usb3_port);
}
tegra->otg_port_num = num;
/* multiple device mode not yet tested for VF because it needs
* changes in board to have VBUS extcon for second device mode.
*/
if (tegra->soc->is_xhci_vf && (tegra->otg_port_num > 1)) {
otg_port = &tegra->otg_ports[0];
otg_port->usb2_otg_port_base_1 = usb2_otg_port_base_1;
otg_port->usb3_otg_port_base_1 = usb3_otg_port_base_1;
tegra->otg_port_num = 1;
}
/* allocate optional cdp_ext_phys */
tegra->cdp_ext_phys = devm_kcalloc(&pdev->dev,
tegra->soc->num_typed_phys[USB2_PHY],
sizeof(struct phy *), GFP_KERNEL);
if (!tegra->cdp_ext_phys)
return -ENOMEM;
for (i = 0; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
char prop[8];
/* get optional CDP phy */
snprintf(prop, sizeof(prop),
"cdp-%d", i);
phy = devm_phy_optional_get(
&pdev->dev, prop);
if (!IS_ERR_OR_NULL(phy)) {
dev_info(&pdev->dev,
"External CDP phy %d registered\n",
j);
if (!tegra->soc->is_xhci_vf) {
tegra->cdp_ext_phys[i] = phy;
} else {
for (j = 0; j <
tegra->soc->num_typed_phys[USB2_PHY]; j++) {
if (tegra->port_to_phy[USB2_PHY][j]
== i)
break;
}
/* Storing the CDP phys according to the port
* number index as seen by the VF
*/
tegra->cdp_ext_phys[j] = phy;
}
tegra->cdp_enabled = true;
}
}
tegra->connected_usb2_ports = devm_kcalloc(&pdev->dev,
tegra->soc->num_typed_phys[USB2_PHY],
sizeof(u8), GFP_KERNEL);
for (i = 0; i < tegra->otg_port_num; i++) {
otg_port = &tegra->otg_ports[i];
if (otg_port->usb2_otg_port_base_1)
dev_info(&pdev->dev, "USB2 port %d has OTG_CAP\n",
otg_port->usb2_otg_port_base_1 - 1);
if (otg_port->usb3_otg_port_base_1)
dev_info(&pdev->dev, "USB3 port %d has OTG_CAP\n",
otg_port->usb3_otg_port_base_1 - 1);
}
if (tegra->otg_port_num == 0)
dev_info(&pdev->dev, "No USB port has OTG_CAP\n");
return 0;
}
static void tegra_xhci_oc_work(struct work_struct *work)
{
struct tegra_xusb *tegra = container_of(work, struct tegra_xusb,
oc_work);
/* it will check every UTMI lanes to handle overcurrent events */
tegra_xusb_padctl_handle_overcurrent(tegra->padctl);
}
static int tegra_sysfs_register(struct platform_device *pdev)
{
int ret = 0;
struct device *dev = NULL;
struct tegra_xusb *tegra = NULL;
if (pdev != NULL) {
dev = &pdev->dev;
tegra = platform_get_drvdata(pdev);
}
if (tegra && !tegra->xhci_err_init && dev != NULL) {
ret = sysfs_create_group(&dev->kobj, &tegra_sysfs_group_errors);
tegra->xhci_err_init = true;
}
if (ret) {
pr_err("%s: failed to create tegra sysfs group %s\n",
__func__, tegra_sysfs_group_errors.name);
}
return ret;
}
static ssize_t hsic_power_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
return sprintf(buf, "%d\n", tegra->hsic_power_on);
}
static ssize_t hsic_power_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t n)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
bool on;
int rc;
rc = kstrtobool(buf, &on);
if (rc)
return rc;
rc = tegra_xusb_power(tegra, on);
if (rc)
return rc;
return n;
}
static DEVICE_ATTR(hsic_power, 0644, hsic_power_show, hsic_power_store);
static struct attribute *tegra_xhci_attrs[] = {
&dev_attr_hsic_power.attr,
NULL,
};
static struct attribute_group tegra_xhci_attr_group = {
.attrs = tegra_xhci_attrs,
};
static void tegra_xusb_deinit_extcon(struct tegra_xusb *tegra)
{
int i;
struct xusb_otg_port *otg_port;
for (i = 0; i < tegra->otg_port_num; i++) {
otg_port = &tegra->otg_ports[i];
if (!IS_ERR(otg_port->edev)) {
extcon_unregister_notifier(otg_port->edev,
EXTCON_USB_HOST, &tegra->id_extcons_nb);
otg_port->edev = NULL;
}
}
}
static int tegra_xusb_init_extcon(struct tegra_xusb *tegra)
{
int err = 0, i;
char edev_name[] = "idx";
struct xusb_otg_port *port;
INIT_WORK(&tegra->id_extcons_work, tegra_xhci_id_extcon_work);
tegra->id_extcons_nb.notifier_call = tegra_xhci_id_notifier;
for (i = 0; i < tegra->otg_port_num; i++) {
struct extcon_dev *edev;
port = &tegra->otg_ports[i];
edev_name[2] = (i == 0) ? 0 : '0' + i;
edev = extcon_get_extcon_dev_by_cable(tegra->dev, edev_name);
if (!IS_ERR(edev)) {
dev_info(tegra->dev, "extcon %d: %p %s\n", i,
edev, edev_name);
extcon_register_notifier(edev, EXTCON_USB_HOST,
&tegra->id_extcons_nb);
port->edev = edev;
} else if (PTR_ERR(edev) == -EPROBE_DEFER) {
err = -EPROBE_DEFER;
goto exit;
} else {
dev_info(tegra->dev, "no USB ID extcon found: %s\n",
edev_name);
goto exit;
}
}
exit:
if (err)
tegra_xusb_deinit_extcon(tegra);
return err;
}
static int tegra_xusb_probe(struct platform_device *pdev)
{
struct resource *res, *regs;
struct tegra_xusb *tegra;
unsigned int i;
int err;
BUILD_BUG_ON(sizeof(struct tegra_xusb_fw_header) != 256);
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
if (!tegra)
return -ENOMEM;
tegra->soc = of_device_get_match_data(&pdev->dev);
mutex_init(&tegra->lock);
tegra->dev = &pdev->dev;
platform_set_drvdata(pdev, tegra);
tegra_xusb_parse_dt(pdev, tegra);
if (tegra->boost_cpu_freq > 0) {
dev_dbg(&pdev->dev, "PMQOS CPU freq boost enabled\n");
tegra->cpu_boost_enabled = true;
}
/* If cpu boost is enabled, XHCI_BOOST_TRIGGER_SIZE is the
* minimum buffer length beyond which we boost the frequency.
*/
if (tegra->cpu_boost_enabled &&
tegra->boost_cpu_trigger < XHCI_BOOST_TRIGGER_SIZE)
tegra->boost_cpu_trigger = XHCI_BOOST_TRIGGER_SIZE;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tegra->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(tegra->regs))
return PTR_ERR(tegra->regs);
if (!tegra->soc->is_xhci_vf) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
tegra->fpci_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->fpci_base))
return PTR_ERR(tegra->fpci_base);
tegra->fpci_start = res->start;
tegra->fpci_len = resource_size(res);
}
if (tegra->soc->has_ipfs) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
tegra->ipfs_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->ipfs_base))
return PTR_ERR(tegra->ipfs_base);
}
if (!tegra->soc->is_xhci_vf) {
#if IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)
tegra->pgid_ss = tegra_pd_get_powergate_id(tegra_xusba_pd);
#else
tegra->pgid_ss = TEGRA_POWERGATE_XUSBA;
#endif
if (tegra->pgid_ss < 0) {
dev_err(&pdev->dev, "failed to get SS powergate id\n");
return tegra->pgid_ss;
}
#if IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)
tegra->pgid_host = tegra_pd_get_powergate_id(tegra_xusbc_pd);
#else
tegra->pgid_host = TEGRA_POWERGATE_XUSBC
#endif
if (tegra->pgid_host < 0) {
dev_err(&pdev->dev,
"failed to get Host powergate id\n");
return tegra->pgid_host;
}
}
tegra->xhci_irq = platform_get_irq(pdev, 0);
if (tegra->xhci_irq < 0)
return tegra->xhci_irq;
if (!tegra->soc->is_xhci_vf) {
tegra->mbox_irq = platform_get_irq(pdev, 1);
if (tegra->mbox_irq < 0)
return tegra->mbox_irq;
tegra->padctl_irq = platform_get_irq(pdev, 2);
if (tegra->padctl_irq < 0)
return tegra->padctl_irq;
}
tegra->padctl = tegra_xusb_padctl_get(&pdev->dev);
if (IS_ERR(tegra->padctl))
return PTR_ERR(tegra->padctl);
if (XHCI_IS_T194(tegra) && !tegra->soc->is_xhci_vf) {
tegra->core_superspeed_clk = devm_clk_get(&pdev->dev,
"xusb_core_superspeed_clk");
if (IS_ERR(tegra->core_superspeed_clk)) {
err = PTR_ERR(tegra->core_superspeed_clk);
dev_err(&pdev->dev, "failed to get xusb_core_superspeed: %d\n",
err);
goto put_padctl;
}
tegra->falcon_host_clk = devm_clk_get(&pdev->dev,
"xusb_falcon_host_clk");
if (IS_ERR(tegra->falcon_host_clk)) {
err = PTR_ERR(tegra->falcon_host_clk);
dev_err(&pdev->dev, "failed to get xusb_falcon_host: %d\n",
err);
goto put_padctl;
}
tegra->falcon_superspeed_clk = devm_clk_get(&pdev->dev,
"xusb_falcon_superspeed_clk");
if (IS_ERR(tegra->falcon_superspeed_clk)) {
err = PTR_ERR(tegra->falcon_superspeed_clk);
dev_err(&pdev->dev, "failed to get xusb_falcon_superspeed: %d\n",
err);
goto put_padctl;
}
tegra->fs_host_clk = devm_clk_get(&pdev->dev,
"xusb_fs_host_clk");
if (IS_ERR(tegra->fs_host_clk)) {
err = PTR_ERR(tegra->fs_host_clk);
dev_err(&pdev->dev, "failed to get xusb_fs_host: %d\n",
err);
goto put_padctl;
}
}
if (!tegra->soc->is_xhci_vf) {
tegra->host_clk = devm_clk_get(&pdev->dev, "xusb_host");
if (IS_ERR(tegra->host_clk)) {
err = PTR_ERR(tegra->host_clk);
dev_err(&pdev->dev, "failed to get xusb_host: %d\n",
err);
goto put_padctl;
}
tegra->falcon_clk = devm_clk_get(&pdev->dev, "xusb_falcon_src");
if (IS_ERR(tegra->falcon_clk)) {
err = PTR_ERR(tegra->falcon_clk);
dev_err(&pdev->dev,
"failed to get xusb_falcon_src: %d\n", err);
goto put_padctl;
}
tegra->ss_clk = devm_clk_get(&pdev->dev, "xusb_ss");
if (IS_ERR(tegra->ss_clk)) {
err = PTR_ERR(tegra->ss_clk);
dev_err(&pdev->dev, "failed to get xusb_ss: %d\n", err);
goto put_padctl;
}
tegra->ss_src_clk = devm_clk_get(&pdev->dev, "xusb_ss_src");
if (IS_ERR(tegra->ss_src_clk)) {
err = PTR_ERR(tegra->ss_src_clk);
dev_err(&pdev->dev, "failed to get xusb_ss_src: %d\n",
err);
goto put_padctl;
}
tegra->hs_src_clk = devm_clk_get(&pdev->dev, "xusb_hs_src");
if (IS_ERR(tegra->hs_src_clk)) {
err = PTR_ERR(tegra->hs_src_clk);
dev_err(&pdev->dev, "failed to get xusb_hs_src: %d\n",
err);
goto put_padctl;
}
tegra->fs_src_clk = devm_clk_get(&pdev->dev, "xusb_fs_src");
if (IS_ERR(tegra->fs_src_clk)) {
err = PTR_ERR(tegra->fs_src_clk);
dev_err(&pdev->dev, "failed to get xusb_fs_src: %d\n",
err);
goto put_padctl;
}
tegra->pll_u_480m = devm_clk_get(&pdev->dev, "pll_u_480m");
if (IS_ERR(tegra->pll_u_480m)) {
err = PTR_ERR(tegra->pll_u_480m);
dev_err(&pdev->dev, "failed to get pll_u_480m: %d\n",
err);
goto put_padctl;
}
tegra->clk_m = devm_clk_get(&pdev->dev, "clk_m");
if (IS_ERR(tegra->clk_m)) {
err = PTR_ERR(tegra->clk_m);
dev_err(&pdev->dev, "failed to get clk_m: %d\n", err);
goto put_padctl;
}
tegra->pll_e = devm_clk_get(&pdev->dev, "pll_e");
if (IS_ERR(tegra->pll_e)) {
err = PTR_ERR(tegra->pll_e);
dev_err(&pdev->dev, "failed to get pll_e: %d\n", err);
goto put_padctl;
}
tegra->supplies = devm_kcalloc(&pdev->dev,
tegra->soc->num_supplies,
sizeof(*tegra->supplies), GFP_KERNEL);
if (!tegra->supplies) {
err = -ENOMEM;
goto put_padctl;
}
for (i = 0; i < tegra->soc->num_supplies; i++)
tegra->supplies[i].supply = tegra->soc->supply_names[i];
err = devm_regulator_bulk_get(&pdev->dev,
tegra->soc->num_supplies, tegra->supplies);
if (err) {
dev_err(&pdev->dev, "failed to get regulators: %d\n",
err);
goto put_padctl;
}
}
err = tegra_xhci_phy_init(pdev);
if (err)
goto put_padctl;
if (!tegra->soc->is_xhci_vf) {
err = tegra_xusb_clk_enable(tegra);
if (err) {
dev_err(&pdev->dev, "failed to enable clocks: %d\n",
err);
goto put_padctl;
}
err = regulator_bulk_enable(tegra->soc->num_supplies,
tegra->supplies);
if (err) {
dev_err(&pdev->dev, "failed to enable regulators: %d\n",
err);
goto disable_clk;
}
}
err = tegra_xusb_phy_enable(tegra);
if (err < 0) {
dev_err(&pdev->dev, "failed to enable PHYs: %d\n", err);
goto disable_regulator;
}
if (!tegra->soc->is_xhci_vf) {
err = tegra_xhci_unpowergate_partitions(tegra);
if (err) {
dev_err(&pdev->dev, "failed to unpowergate (%d)\n",
err);
goto disable_phy;
}
}
if (!tegra->soc->is_xhci_vf)
tegra_xusb_config(tegra);
tegra_xusb_debugfs_init(tegra);
tegra_sysfs_register(pdev);
if (tegra->soc->disable_hsic_wake)
tegra_xusb_disable_hsic_wake(tegra);
if (tegra_platform_is_silicon() && tegra->otg_port_num) {
err = tegra_xusb_init_extcon(tegra);
if (err)
goto powergate_partitions;
}
err = sysfs_create_file(&pdev->dev.kobj, &dev_attr_downgrade_usb3.attr);
if (err) {
dev_err(&pdev->dev,
"failed to create tegra sysfs file downgrade_usb3\n");
goto unregister_extcon;
}
if (tegra->soc->is_xhci_vf) {
tegra_xusb_probe_finish(NULL, tegra);
} else {
INIT_DELAYED_WORK(&tegra->firmware_retry_work,
tegra_firmware_retry_work);
err = request_firmware_nowait(THIS_MODULE, true,
tegra->soc->firmware,
tegra->dev, GFP_KERNEL, tegra,
tegra_xusb_probe_finish);
if (err < 0) {
dev_err(&pdev->dev, "can't request firmware(%d)\n",
err);
goto err_create_sysfs;
}
}
if (tegra->soc->handle_oc)
INIT_WORK(&tegra->oc_work, tegra_xhci_oc_work);
/* Init pm qos for cpu boost */
if (tegra->cpu_boost_enabled)
tegra_xusb_boost_cpu_init(tegra);
err = sysfs_create_group(&pdev->dev.kobj, &tegra_xhci_attr_group);
if (err) {
dev_err(&pdev->dev, "cannot create sysfs group: %d\n", err);
goto err_create_sysfs;
}
/* TODO: look up dtb */
device_init_wakeup(tegra->dev, true);
return 0;
err_create_sysfs:
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_downgrade_usb3.attr);
unregister_extcon:
if (tegra_platform_is_silicon() && tegra->otg_port_num) {
cancel_work_sync(&tegra->id_extcons_work);
tegra_xusb_deinit_extcon(tegra);
}
powergate_partitions:
if (tegra->xhci_err_init && tegra->dev != NULL) {
sysfs_remove_group(&tegra->dev->kobj,
&tegra_sysfs_group_errors);
tegra->xhci_err_init = false;
}
tegra_xusb_debugfs_deinit(tegra);
if (!tegra->soc->is_xhci_vf)
tegra_xhci_powergate_partitions(tegra);
disable_phy:
tegra_xusb_phy_disable(tegra);
disable_regulator:
if (!tegra->soc->is_xhci_vf)
regulator_bulk_disable(tegra->soc->num_supplies,
tegra->supplies);
disable_clk:
if (!tegra->soc->is_xhci_vf)
tegra_xusb_clk_disable(tegra);
put_padctl:
tegra_xusb_padctl_put(tegra->padctl);
return err;
}
static void tegra_xusb_shutdown(struct platform_device *pdev)
{
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
if (!tegra)
return;
if (!tegra->fw_loaded && !tegra->soc->is_xhci_vf)
return;
pm_runtime_get_sync(tegra->dev);
if (tegra->hcd)
xhci_shutdown(tegra->hcd);
}
static int tegra_xusb_remove(struct platform_device *pdev)
{
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
if (tegra->xhci_err_init && dev != NULL) {
sysfs_remove_group(&dev->kobj, &tegra_sysfs_group_errors);
tegra->xhci_err_init = false;
}
if (tegra->soc->handle_oc)
cancel_work_sync(&tegra->oc_work);
if (tegra->soc->is_xhci_vf)
cancel_work_sync(&tegra->ivc_work);
if (tegra->cpu_boost_enabled)
tegra_xusb_boost_cpu_deinit(tegra);
if (tegra_platform_is_silicon() && tegra->otg_port_num) {
cancel_work_sync(&tegra->id_extcons_work);
tegra_xusb_deinit_extcon(tegra);
}
sysfs_remove_file(&pdev->dev.kobj, &dev_attr_downgrade_usb3.attr);
if (!tegra->soc->is_xhci_vf)
cancel_delayed_work_sync(&tegra->firmware_retry_work);
pm_runtime_get_sync(tegra->dev);
device_remove_file(&pdev->dev, &dev_attr_reload_hcd);
if (!IS_ERR(tegra->fwdev))
devm_tegrafw_unregister(dev, tegra->fwdev);
sysfs_remove_group(&pdev->dev.kobj, &tegra_xhci_attr_group);
if (tegra->soc->is_xhci_vf && (tegra->ivck != NULL)) {
tegra_hv_ivc_unreserve(tegra->ivck);
devm_free_irq(dev, tegra->ivck->irq, tegra);
}
if (tegra->fw_loaded || tegra->soc->is_xhci_vf) {
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
usb_remove_hcd(xhci->shared_hcd);
usb_put_hcd(xhci->shared_hcd);
usb_remove_hcd(tegra->hcd);
disable_irq(tegra->xhci_irq);
disable_irq(tegra->padctl_irq);
disable_irq(tegra->mbox_irq);
devm_iounmap(&pdev->dev, tegra->fpci_base);
devm_release_mem_region(&pdev->dev, tegra->fpci_start,
tegra->fpci_len);
devm_iounmap(&pdev->dev, tegra->hcd->regs);
devm_release_mem_region(&pdev->dev, tegra->hcd->rsrc_start,
tegra->hcd->rsrc_len);
usb_put_hcd(tegra->hcd);
}
if (!tegra->soc->is_xhci_vf) {
dma_free_coherent(&pdev->dev, tegra->fw.size, tegra->fw.virt,
tegra->fw.phys);
fw_log_deinit(tegra);
}
tegra_xusb_phy_disable(tegra);
if (!tegra->soc->is_xhci_vf) {
regulator_bulk_disable(tegra->soc->num_supplies,
tegra->supplies);
tegra_xusb_clk_disable(tegra);
tegra_xhci_powergate_partitions(tegra);
}
tegra_xusb_padctl_put(tegra->padctl);
pm_runtime_disable(tegra->dev);
pm_runtime_put(tegra->dev);
if (!tegra->soc->is_xhci_vf) {
devm_free_irq(&pdev->dev, tegra->padctl_irq, tegra);
devm_free_irq(&pdev->dev, tegra->mbox_irq, tegra);
}
tegra_xusb_host_vbus_power_off(tegra);
tegra_xusb_debugfs_deinit(tegra);
return 0;
}
#if IS_ENABLED(CONFIG_PM_SLEEP) || IS_ENABLED(CONFIG_PM)
static void tegra_xhci_save_context(struct tegra_xusb *tegra)
{
if (tegra->soc->has_ipfs) {
/* Save IPFS registers */
tegra->ipfs_ctx.msi_bar_sz =
ipfs_readl(tegra, XUSB_HOST_MSI_BAR_SZ_0);
tegra->ipfs_ctx.msi_axi_barst =
ipfs_readl(tegra, XUSB_HOST_MSI_AXI_BAR_ST_0);
tegra->ipfs_ctx.msi_fpci_barst =
ipfs_readl(tegra, XUSB_HOST_MSI_FPCI_BAR_ST_0);
tegra->ipfs_ctx.msi_vec0 =
ipfs_readl(tegra, XUSB_HOST_MSI_VEC0_0);
tegra->ipfs_ctx.msi_en_vec0 =
ipfs_readl(tegra, XUSB_HOST_MSI_EN_VEC0_0);
tegra->ipfs_ctx.fpci_error_masks =
ipfs_readl(tegra, XUSB_HOST_FPCI_ERROR_MASKS_0);
tegra->ipfs_ctx.intr_mask =
ipfs_readl(tegra, XUSB_HOST_INTR_MASK_0);
tegra->ipfs_ctx.ipfs_intr_enable =
ipfs_readl(tegra, XUSB_HOST_IPFS_INTR_ENABLE_0);
tegra->ipfs_ctx.ufpci_config =
ipfs_readl(tegra, XUSB_HOST_UFPCI_CONFIG_0);
tegra->ipfs_ctx.clkgate_hysteresis =
ipfs_readl(tegra,
XUSB_HOST_CLKGATE_HYSTERESIS_0);
tegra->ipfs_ctx.xusb_host_mccif_fifo_cntrl =
ipfs_readl(tegra, XUSB_HOST_MCCIF_FIFOCTRL_0);
}
/* Save FPCI registers */
tegra->fpci_ctx.hs_pls =
fpci_readl(tegra, XUSB_CFG_ARU_CONTEXT_HS_PLS);
tegra->fpci_ctx.fs_pls =
fpci_readl(tegra, XUSB_CFG_ARU_CONTEXT_FS_PLS);
tegra->fpci_ctx.hsfs_speed =
fpci_readl(tegra, XUSB_CFG_ARU_CONTEXT_HSFS_SPEED);
tegra->fpci_ctx.hsfs_pp =
fpci_readl(tegra, XUSB_CFG_ARU_CONTEXT_HSFS_PP);
tegra->fpci_ctx.cfg_aru = fpci_readl(tegra, XUSB_CFG_ARU_CONTEXT);
tegra->fpci_ctx.cfg_order = fpci_readl(tegra, XUSB_CFG_AXI_CFG);
tegra->fpci_ctx.cfg_fladj = fpci_readl(tegra, XUSB_CFG_24);
tegra->fpci_ctx.cfg_sid = fpci_readl(tegra, XUSB_CFG_16);
}
static void tegra_xhci_restore_context(struct tegra_xusb *tegra)
{
/* Restore FPCI registers */
fpci_writel(tegra, tegra->fpci_ctx.hs_pls, XUSB_CFG_ARU_CONTEXT_HS_PLS);
fpci_writel(tegra, tegra->fpci_ctx.fs_pls, XUSB_CFG_ARU_CONTEXT_FS_PLS);
fpci_writel(tegra, tegra->fpci_ctx.hsfs_speed,
XUSB_CFG_ARU_CONTEXT_HSFS_SPEED);
fpci_writel(tegra, tegra->fpci_ctx.hsfs_pp,
XUSB_CFG_ARU_CONTEXT_HSFS_PP);
fpci_writel(tegra, tegra->fpci_ctx.cfg_aru, XUSB_CFG_ARU_CONTEXT);
fpci_writel(tegra, tegra->fpci_ctx.cfg_order, XUSB_CFG_AXI_CFG);
fpci_writel(tegra, tegra->fpci_ctx.cfg_fladj, XUSB_CFG_24);
fpci_writel(tegra, tegra->fpci_ctx.cfg_sid, XUSB_CFG_16);
if (tegra->soc->has_ipfs) {
/* Restore IPFS registers */
ipfs_writel(tegra, tegra->ipfs_ctx.msi_bar_sz,
XUSB_HOST_MSI_BAR_SZ_0);
ipfs_writel(tegra, tegra->ipfs_ctx.msi_axi_barst,
XUSB_HOST_MSI_AXI_BAR_ST_0);
ipfs_writel(tegra, tegra->ipfs_ctx.msi_fpci_barst,
XUSB_HOST_MSI_FPCI_BAR_ST_0);
ipfs_writel(tegra, tegra->ipfs_ctx.msi_vec0,
XUSB_HOST_MSI_VEC0_0);
ipfs_writel(tegra, tegra->ipfs_ctx.msi_en_vec0,
XUSB_HOST_MSI_EN_VEC0_0);
ipfs_writel(tegra, tegra->ipfs_ctx.fpci_error_masks,
XUSB_HOST_FPCI_ERROR_MASKS_0);
ipfs_writel(tegra, tegra->ipfs_ctx.intr_mask,
XUSB_HOST_INTR_MASK_0);
ipfs_writel(tegra, tegra->ipfs_ctx.ipfs_intr_enable,
XUSB_HOST_IPFS_INTR_ENABLE_0);
ipfs_writel(tegra, tegra->ipfs_ctx.ufpci_config,
XUSB_HOST_UFPCI_CONFIG_0);
ipfs_writel(tegra, tegra->ipfs_ctx.clkgate_hysteresis,
XUSB_HOST_CLKGATE_HYSTERESIS_0);
ipfs_writel(tegra, tegra->ipfs_ctx.xusb_host_mccif_fifo_cntrl,
XUSB_HOST_MCCIF_FIFOCTRL_0);
}
}
static inline u32 read_portsc(struct tegra_xusb *tegra, unsigned int port)
{
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
return readl(&xhci->op_regs->port_status_base + NUM_PORT_REGS * port);
}
static void get_rootport_name(struct tegra_xusb *tegra, int i,
char *name, int size)
{
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
const struct tegra_xusb_soc *soc = tegra->soc;
struct usb_hcd *hcd = NULL;
int dev_id = -1;
if ((i >= soc->ports.usb3.offset) &&
(i < (soc->ports.usb3.offset + soc->ports.usb3.count))) {
hcd = xhci->shared_hcd;
dev_id = i - soc->ports.usb3.offset + 1;
} else if ((i >= soc->ports.usb2.offset) &&
(i < (soc->ports.usb2.offset + soc->ports.usb2.count +
soc->ports.hsic.count))) {
hcd = xhci->main_hcd;
dev_id = i - soc->ports.usb2.offset + 1;
}
memset(name, 0, size);
if (hcd)
snprintf(name, size, "%d-%d", hcd->self.busnum, dev_id);
else
snprintf(name, size, "port %d", i);
}
static enum usb_device_speed port_speed(struct tegra_xusb *tegra,
unsigned int port)
{
u32 portsc = read_portsc(tegra, port);
if (DEV_FULLSPEED(portsc))
return USB_SPEED_FULL;
else if (DEV_HIGHSPEED(portsc))
return USB_SPEED_HIGH;
else if (DEV_LOWSPEED(portsc))
return USB_SPEED_LOW;
else if (DEV_SUPERSPEED(portsc))
return USB_SPEED_SUPER;
else
return USB_SPEED_UNKNOWN;
}
static void tegra_xhci_enable_phy_sleepwalk_wake(struct tegra_xusb *tegra)
{
struct tegra_xusb_padctl *padctl = tegra->padctl;
enum usb_device_speed speed;
struct phy *phy;
int offset;
int i, j;
for (i = 0; i < MAX_PHY_TYPES; i++) {
if (i == USB3_PHY)
offset = tegra->soc->ports.usb3.offset;
if (i == USB2_PHY)
offset = tegra->soc->ports.usb2.offset;
if (i == HSIC_PHY)
offset = tegra->soc->ports.hsic.offset;
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
phy = tegra->typed_phys[i][j];
if (!phy)
continue;
if (!is_host_mode_phy(tegra, i, j))
continue;
speed = port_speed(tegra, offset + j);
tegra_xusb_padctl_enable_phy_sleepwalk(padctl, phy,
speed);
tegra_xusb_padctl_enable_phy_wake(padctl, phy);
}
}
}
static void tegra_xhci_disable_phy_wake(struct tegra_xusb *tegra)
{
struct tegra_xusb_padctl *padctl = tegra->padctl;
struct phy *phy;
int i, j;
for (i = 0; i < MAX_PHY_TYPES; i++) {
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
phy = tegra->typed_phys[i][j];
if (!phy)
continue;
if (tegra_xusb_padctl_remote_wake_detected(
padctl, phy)) {
dev_dbg(tegra->dev, "%s port %d remote wake detected\n"
, tegra_xhci_phy_names[i], j);
if (i == USB2_PHY)
tegra_phy_xusb_utmi_pad_power_on(phy);
}
tegra_xusb_padctl_disable_phy_wake(padctl, phy);
}
}
}
static void tegra_xhci_disable_phy_sleepwalk(struct tegra_xusb *tegra)
{
struct tegra_xusb_padctl *padctl = tegra->padctl;
struct phy *phy;
int i, j;
for (i = 0; i < MAX_PHY_TYPES; i++) {
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
phy = tegra->typed_phys[i][j];
if (!phy)
continue;
tegra_xusb_padctl_disable_phy_sleepwalk(padctl, phy);
}
}
}
static void tegra_xhci_program_utmi_power_lp0_exit(
struct tegra_xusb *tegra)
{
int i;
for (i = 0; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
if (!is_host_mode_phy(tegra, USB2_PHY, i))
continue;
if (tegra->enable_utmi_pad_after_lp0_exit & BIT(i))
tegra_phy_xusb_utmi_pad_power_on(
tegra->typed_phys[USB2_PHY][i]);
else
tegra_phy_xusb_utmi_pad_power_down(
tegra->typed_phys[USB2_PHY][i]);
}
}
static int tegra_xhci_wait_for_ports_enter_u3(struct tegra_xusb *tegra)
{
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
struct device *dev = tegra->dev;
u32 usbcmd;
int i;
int num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&xhci->lock, flags);
usbcmd = readl(&xhci->op_regs->command);
usbcmd &= ~CMD_EIE;
writel(usbcmd, &xhci->op_regs->command);
for (i = 0; i < num_ports; i++) {
bool is_busy = true;
char devname[16];
u32 portsc = read_portsc(tegra, i);
if (!(portsc & PORT_PE))
continue;
if ((portsc & PORT_PLS_MASK) == XDEV_U3)
continue;
get_rootport_name(tegra, i, devname, sizeof(devname));
if (tegra->soc->ss_lfps_detector_war &&
DEV_SUPERSPEED(portsc)) {
unsigned long end = jiffies + msecs_to_jiffies(200);
while (time_before(jiffies, end)) {
if ((portsc & PORT_PLS_MASK) == XDEV_RESUME)
break;
spin_unlock_irqrestore(&xhci->lock, flags);
msleep(20);
spin_lock_irqsave(&xhci->lock, flags);
portsc = read_portsc(tegra, i);
if ((portsc & PORT_PLS_MASK) == XDEV_U3) {
dev_info(dev, "%s is suspended\n",
devname);
is_busy = false;
break;
}
}
}
if (is_busy) {
dev_info(dev, "%s is not suspended: %08x\n", devname,
portsc);
ret = -EBUSY;
break;
}
dev_info(dev, "%s is not suspended: %08x\n", devname,
portsc);
ret = -EBUSY;
break;
}
spin_unlock_irqrestore(&xhci->lock, flags);
return ret;
}
/* caller must hold tegra->lock */
static int tegra_xhci_enter_elpg(struct tegra_xusb *tegra, bool runtime)
{
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
struct device *dev = tegra->dev;
bool do_wakeup = runtime ? true : device_may_wakeup(dev);
unsigned int i, j;
u32 portsc;
int ret;
dev_info(dev, "entering ELPG\n");
/* Wait for ports to enter U3. */
ret = tegra_xhci_wait_for_ports_enter_u3(tegra);
if (ret < 0)
goto out;
for (i = 0; i < xhci->num_usb2_ports; i++) {
portsc = readl(xhci->usb2_ports[i]);
tegra->enable_utmi_pad_after_lp0_exit &= ~BIT(i);
if (((portsc & PORT_PLS_MASK) == XDEV_U3) ||
((portsc & DEV_SPEED_MASK) == XDEV_FS))
tegra->enable_utmi_pad_after_lp0_exit |= BIT(i);
}
ret = xhci_suspend(xhci, do_wakeup);
if (ret) {
dev_warn(dev, "xhci_suspend() failed %d\n", ret);
goto out;
}
if (!tegra->soc->is_xhci_vf)
tegra_xhci_save_context(tegra);
if (do_wakeup)
tegra_xhci_enable_phy_sleepwalk_wake(tegra);
if (!tegra->soc->is_xhci_vf) {
/* In ELPG, firmware log context is gone. Rewind shared log buffer. */
if (test_bit(FW_LOG_CONTEXT_VALID, &tegra->log.flags)) {
if (!circ_buffer_full(&tegra->log.circ)) {
if (fw_log_wait_empty_timeout(tegra, 500))
dev_info(dev, "%s still has logs\n",
__func__);
}
tegra->log.dequeue = tegra->log.virt_addr;
tegra->log.seq = 0;
}
ret = tegra_xhci_powergate_partitions(tegra);
if (ret) {
dev_warn(dev, "failed to powergate Host partition %d\n",
ret);
goto out;
}
}
if (!do_wakeup)
tegra_xusb_host_vbus_power_off(tegra);
for (i = 0; i < MAX_PHY_TYPES; i++) {
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
struct phy *phy = tegra->typed_phys[i][j];
if (!phy)
continue;
if (i == USB2_PHY && is_host_mode_phy(tegra, i, j))
tegra_phy_xusb_utmi_pad_power_down(phy);
phy_power_off(phy);
if (!do_wakeup)
phy_exit(phy);
}
}
if (!tegra->soc->is_xhci_vf)
tegra_xusb_clk_disable(tegra);
out:
if (!ret)
dev_info(tegra->dev, "entering ELPG done\n");
else {
u32 usbcmd;
usbcmd = readl(&xhci->op_regs->command);
usbcmd |= CMD_EIE;
writel(usbcmd, &xhci->op_regs->command);
dev_info(tegra->dev, "entering ELPG failed\n");
}
return ret;
}
/* caller must hold tegra->lock */
static int tegra_xhci_exit_elpg(struct tegra_xusb *tegra, bool runtime)
{
struct xhci_hcd *xhci = hcd_to_xhci(tegra->hcd);
struct device *dev = tegra->dev;
struct tegra_xusb_mbox_msg msg;
bool do_wakeup = runtime ? true : device_may_wakeup(dev);
unsigned int i, j;
int ret;
u32 usbcmd;
dev_info(dev, "exiting ELPG\n");
if (!tegra->soc->is_xhci_vf) {
ret = tegra_xusb_clk_enable(tegra);
if (ret) {
dev_warn(dev, "failed to enable xhci clocks %d\n", ret);
goto out;
}
}
if (!tegra->soc->is_xhci_vf) {
ret = tegra_xhci_unpowergate_partitions(tegra);
if (ret < 0) {
dev_warn(dev, "failed to unpowergate partitions %d\n",
ret);
goto out;
}
}
if (do_wakeup)
tegra_xhci_disable_phy_wake(tegra);
if (tegra->hsic_power_on)
tegra_xusb_padctl_hsic_set_idle(tegra->padctl, 0, true);
for (i = 0; i < MAX_PHY_TYPES; i++) {
for (j = 0; j < tegra->soc->num_typed_phys[i]; j++) {
if (!do_wakeup) {
ret = phy_init(tegra->typed_phys[i][j]);
if (ret) {
dev_err(dev, "phy_init failed:%d\n",
ret);
goto out;
}
}
ret = phy_power_on(tegra->typed_phys[i][j]);
if (ret) {
dev_err(dev, "phy_power_on failed:%d\n", ret);
goto out;
}
}
}
/* ID override to ground needs to be set after VCORE_DOWN is 0 */
for (i = 0; i < tegra->otg_port_num; i++) {
struct xusb_otg_port *port;
port = &tegra->otg_ports[i];
if (!port->host_mode)
continue;
tegra_xusb_padctl_set_id_override(tegra->padctl, i);
}
if (tegra->suspended)
tegra_xhci_program_utmi_power_lp0_exit(tegra);
if (!tegra->soc->is_xhci_vf) {
tegra_xusb_config(tegra);
if (tegra->soc->disable_hsic_wake)
tegra_xusb_disable_hsic_wake(tegra);
tegra_xhci_restore_context(tegra);
ret = tegra_xhci_load_firmware(tegra);
if (ret < 0)
goto out;
msg.cmd = MBOX_CMD_MSG_ENABLED;
msg.data = 0;
ret = tegra_xusb_mbox_send(tegra, &msg);
if (ret < 0) {
dev_err(dev, "failed to enable messages: %d\n", ret);
goto out;
}
}
if (!do_wakeup)
tegra_xusb_host_vbus_power_on(tegra);
if (do_wakeup)
tegra_xhci_disable_phy_sleepwalk(tegra);
ret = xhci_resume(xhci, 0);
usbcmd = readl(&xhci->op_regs->command);
usbcmd |= CMD_EIE;
writel(usbcmd, &xhci->op_regs->command);
out:
if (!ret)
dev_info(dev, "exiting ELPG done\n");
else
dev_info(dev, "exiting ELPG failed\n");
return ret;
}
#endif /* IS_ENABLED(CONFIG_PM_SLEEP) || IS_ENABLED(CONFIG_PM) */
static inline int set_cdp_enable(struct tegra_xusb *tegra,
int port_idx, bool enable)
{
int ret;
dev_info(tegra->dev, "%sable %sternal cdp %d\n",
enable ? "en" : "dis",
tegra->cdp_internal ? "in" : "ex",
port_idx);
if (enable) {
if (tegra->cdp_internal)
tegra_xusb_padctl_enable_host_cdp(tegra->padctl,
tegra->typed_phys[USB2_PHY][port_idx]);
else {
ret = phy_power_on(tegra->cdp_ext_phys[port_idx]);
if (ret)
dev_err(tegra->dev, "phy_power_on failed");
}
} else {
if (tegra->cdp_internal)
tegra_xusb_padctl_disable_host_cdp(tegra->padctl,
tegra->typed_phys[USB2_PHY][port_idx]);
else
phy_power_off(tegra->cdp_ext_phys[port_idx]);
}
return 0;
}
#if IS_ENABLED(CONFIG_PM_SLEEP)
static int tegra_xusb_suspend(struct device *dev)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
struct xhci_hcd *xhci;
int ret;
unsigned int j;
if (!tegra->fw_loaded && !tegra->soc->is_xhci_vf)
return 0;
xhci = hcd_to_xhci(tegra->hcd);
if (xhci->recovery_in_progress == true)
return 0;
if (tegra->soc->handle_oc)
flush_work(&tegra->oc_work);
if (tegra->soc->is_xhci_vf)
flush_work(&tegra->ivc_work);
mutex_lock(&tegra->lock);
if (pm_runtime_suspended(dev)) {
ret = tegra_xhci_exit_elpg(tegra, true);
if (ret < 0)
goto out;
}
ret = tegra_xhci_enter_elpg(tegra, false);
if (ret < 0) {
if (pm_runtime_suspended(dev)) {
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
}
goto out;
}
/* disable CDP for all ports */
if (tegra->cdp_enabled) {
for (j = 0; j < tegra->soc->num_typed_phys[USB2_PHY]; j++) {
set_cdp_enable(tegra, j, false);
if (!tegra->typed_phys[USB2_PHY][j])
continue;
/*
* turn off VBUS for CDP enabled case.
* skip vbus off for OTG port when it isn't host role
*/
if (is_host_mode_phy(tegra, USB2_PHY, j)) {
int port = j;
if (tegra->soc->is_xhci_vf)
port = tegra->port_to_phy[USB2_PHY][j];
tegra_xusb_padctl_vbus_power_off(
tegra->padctl, port);
}
}
}
out:
if (!ret) {
tegra->suspended = true;
if (!tegra->soc->is_xhci_vf && device_may_wakeup(dev)) {
if (enable_irq_wake(tegra->padctl_irq))
dev_err(dev,
"failed to enable padctl wakes\n");
}
pm_runtime_disable(dev);
}
mutex_unlock(&tegra->lock);
return ret;
}
static int tegra_xhci_resume_common(struct device *dev)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
int ret;
unsigned int j;
mutex_lock(&tegra->lock);
if (!tegra->suspended) {
mutex_unlock(&tegra->lock);
return 0;
}
/* enable CDP for all ports */
if (tegra->cdp_enabled) {
for (j = 0; j < tegra->soc->num_typed_phys[USB2_PHY]; j++) {
set_cdp_enable(tegra, j, true);
if (!tegra->typed_phys[USB2_PHY][j])
continue;
/* skip vbus on for OTG port when it isn't host role */
if (is_host_mode_phy(tegra, USB2_PHY, j)) {
int port = j;
if (tegra->soc->is_xhci_vf)
port = tegra->port_to_phy[USB2_PHY][j];
tegra_xusb_padctl_vbus_power_on(
tegra->padctl, port);
}
}
}
ret = tegra_xhci_exit_elpg(tegra, false);
if (ret < 0) {
mutex_unlock(&tegra->lock);
return ret;
}
tegra->suspended = false;
mutex_unlock(&tegra->lock);
tegra_xhci_update_otg_role(tegra, true);
pm_runtime_mark_last_busy(tegra->dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
}
static int tegra_xhci_resume_noirq(struct device *dev)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
struct xhci_hcd *xhci;
if (!tegra->fw_loaded && !tegra->soc->is_xhci_vf)
return 0;
xhci = hcd_to_xhci(tegra->hcd);
if (xhci->recovery_in_progress == true)
return 0;
/*
* when CDP is enabled, VBUS will be off in SC7 and re-enabled in SC7
* resume. We don't have to resume earlier in noirq callback here
* because device will disconnect and re-connected in resume. Also,
* turning VBUS on in resume_noirq callback is not working if the
* gpio is in GPIO expander controlled through I2C bus.
*/
if (tegra->cdp_enabled)
return 0;
return tegra_xhci_resume_common(dev);
}
static int tegra_xhci_resume(struct device *dev)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
struct xhci_hcd *xhci;
int ret;
if (!tegra->fw_loaded && !tegra->soc->is_xhci_vf)
return 0;
xhci = hcd_to_xhci(tegra->hcd);
if (xhci->recovery_in_progress == true)
return 0;
ret = tegra_xhci_resume_common(dev);
if (!tegra->soc->is_xhci_vf && device_may_wakeup(dev)) {
if (disable_irq_wake(tegra->padctl_irq))
dev_err(dev,
"failed to disable padctl wakes\n");
}
return ret;
}
#endif /* IS_ENABLED(CONFIG_PM_SLEEP) */
#if IS_ENABLED(CONFIG_PM)
static int tegra_xhci_runtime_suspend(struct device *dev)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
struct xhci_hcd *xhci;
int ret;
if ((!tegra->fw_loaded && !tegra->soc->is_xhci_vf) ||
tegra->soc->disable_elpg)
return 0;
xhci = hcd_to_xhci(tegra->hcd);
if (xhci->recovery_in_progress == true)
return 0;
mutex_lock(&tegra->lock);
ret = tegra_xhci_enter_elpg(tegra, true);
mutex_unlock(&tegra->lock);
return ret;
}
static int tegra_xhci_runtime_resume(struct device *dev)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
struct xhci_hcd *xhci;
int ret;
if ((!tegra->fw_loaded && !tegra->soc->is_xhci_vf) ||
tegra->soc->disable_elpg)
return 0;
xhci = hcd_to_xhci(tegra->hcd);
if (xhci->recovery_in_progress == true)
return 0;
mutex_lock(&tegra->lock);
ret = tegra_xhci_exit_elpg(tegra, true);
mutex_unlock(&tegra->lock);
return ret;
}
#endif /* IS_ENABLED(CONFIG_PM) */
static const struct dev_pm_ops tegra_xusb_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tegra_xusb_suspend, tegra_xhci_resume)
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, tegra_xhci_resume_noirq)
SET_RUNTIME_PM_OPS(tegra_xhci_runtime_suspend,
tegra_xhci_runtime_resume, NULL)
};
static const char * const tegra124_supply_names[] = {
"avddio-pex",
"dvddio-pex",
"avdd-usb",
"avdd-pll-utmip",
"avdd-pll-erefe",
"avdd-usb-ss-pll",
"hvdd-usb-ss",
"hvdd-usb-ss-pll-e",
};
static const struct tegra_xusb_soc tegra124_soc = {
.device_id = XHCI_DEVICE_ID_T124,
.firmware = "nvidia/tegra124/xusb.bin",
.supply_names = tegra124_supply_names,
.num_supplies = ARRAY_SIZE(tegra124_supply_names),
.num_typed_phys[USB3_PHY] = 2,
.num_typed_phys[USB2_PHY] = 3,
.num_typed_phys[HSIC_PHY] = 2,
.ports = {
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 6, .count = 2, },
.usb3 = { .offset = 0, .count = 2, },
},
.cfg_4_addr_shift = XUSB_BASE_ADDR_SHIFT,
.cfg_4_addr_mask = XUSB_BASE_ADDR_MASK,
.cfg_aru_mbox_cmd = XUSB_CFG_ARU_MBOX_CMD,
.cfg_aru_mbox_data_in = XUSB_CFG_ARU_MBOX_DATA_IN,
.cfg_aru_mbox_data_out = XUSB_CFG_ARU_MBOX_DATA_OUT,
.cfg_aru_mbox_owner = XUSB_CFG_ARU_MBOX_OWNER,
.scale_ss_clock = true,
.has_ipfs = true,
.ss_lfps_detector_war = false,
.handle_oc = false,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = true,
};
MODULE_FIRMWARE("nvidia/tegra124/xusb.bin");
static const char * const tegra210_supply_names[] = {
"hvdd_usb",
"avdd_pll_utmip",
"vddio_hsic",
"avddio_usb",
"dvdd_sata",
"avddio_pll_uerefe",
};
static const struct tegra_xusb_soc tegra210_soc = {
.device_id = XHCI_DEVICE_ID_T210,
.firmware = "tegra21x_xusb_firmware",
.supply_names = tegra210_supply_names,
.num_supplies = ARRAY_SIZE(tegra210_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 1,
.ports = {
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 1, },
.usb3 = { .offset = 0, .count = 4, },
},
.cfg_4_addr_shift = XUSB_BASE_ADDR_SHIFT,
.cfg_4_addr_mask = XUSB_BASE_ADDR_MASK,
.cfg_aru_mbox_cmd = XUSB_CFG_ARU_MBOX_CMD,
.cfg_aru_mbox_data_in = XUSB_CFG_ARU_MBOX_DATA_IN,
.cfg_aru_mbox_data_out = XUSB_CFG_ARU_MBOX_DATA_OUT,
.cfg_aru_mbox_owner = XUSB_CFG_ARU_MBOX_OWNER,
.scale_ss_clock = false,
.has_ipfs = true,
.ss_lfps_detector_war = true,
.handle_oc = false,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = true,
};
MODULE_FIRMWARE("tegra21x_xusb_firmware");
static const char * const tegra210b01_supply_names[] = {
"hvdd_usb",
"avdd_pll_utmip",
"avddio_usb",
"avddio_pll_uerefe",
};
static const struct tegra_xusb_soc tegra210b01_soc = {
.device_id = XHCI_DEVICE_ID_T210,
.firmware = "tegra210b01_xusb_firmware",
.lpm_support = false,
.supply_names = tegra210b01_supply_names,
.num_supplies = ARRAY_SIZE(tegra210b01_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 1,
.ports = {
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 1, },
.usb3 = { .offset = 0, .count = 4, },
},
.cfg_4_addr_shift = XUSB_BASE_ADDR_SHIFT,
.cfg_4_addr_mask = XUSB_BASE_ADDR_MASK,
.cfg_aru_mbox_cmd = XUSB_CFG_ARU_MBOX_CMD,
.cfg_aru_mbox_data_in = XUSB_CFG_ARU_MBOX_DATA_IN,
.cfg_aru_mbox_data_out = XUSB_CFG_ARU_MBOX_DATA_OUT,
.cfg_aru_mbox_owner = XUSB_CFG_ARU_MBOX_OWNER,
.scale_ss_clock = false,
.has_ipfs = true,
.ss_lfps_detector_war = true,
.handle_oc = true,
.disable_hsic_wake = true,
.disable_elpg = false,
.otg_set_port_power = true,
};
MODULE_FIRMWARE("tegra210b01_xusb_firmware");
static const char * const tegra186_supply_names[] = {
};
static const struct tegra_xusb_soc tegra186_soc = {
.device_id = XHCI_DEVICE_ID_T186,
.firmware = "tegra18x_xusb_firmware",
.lpm_support = true,
.supply_names = tegra186_supply_names,
.num_supplies = ARRAY_SIZE(tegra186_supply_names),
.num_typed_phys[USB3_PHY] = 3,
.num_typed_phys[USB2_PHY] = 3,
.num_typed_phys[HSIC_PHY] = 1,
.ports = {
.usb3 = { .offset = 0, .count = 3, },
.usb2 = { .offset = 3, .count = 3, },
.hsic = { .offset = 6, .count = 1, },
},
.cfg_4_addr_shift = XUSB_BASE_ADDR_SHIFT,
.cfg_4_addr_mask = XUSB_BASE_ADDR_MASK,
.cfg_aru_mbox_cmd = XUSB_CFG_ARU_MBOX_CMD,
.cfg_aru_mbox_data_in = XUSB_CFG_ARU_MBOX_DATA_IN,
.cfg_aru_mbox_data_out = XUSB_CFG_ARU_MBOX_DATA_OUT,
.cfg_aru_mbox_owner = XUSB_CFG_ARU_MBOX_OWNER,
.scale_ss_clock = false,
.has_ipfs = false,
.ss_lfps_detector_war = false,
.handle_oc = true,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = true,
};
MODULE_FIRMWARE("tegra18x_xusb_firmware");
static const char * const tegra194_supply_names[] = {
};
static const struct tegra_xusb_soc tegra194_soc = {
.device_id = XHCI_DEVICE_ID_T194,
.firmware = "tegra19x_xusb_firmware",
.lpm_support = true,
.supply_names = tegra194_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 0,
.ports = {
.usb3 = { .offset = 0, .count = 4, },
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 0, },
},
.cfg_4_addr_shift = XUSB_T194_BASE_ADDR_SHIFT,
.cfg_4_addr_mask = XUSB_T194_BASE_ADDR_MASK,
.cfg_aru_mbox_cmd = XUSB_CFG_ARU_T194_MBOX_CMD,
.cfg_aru_mbox_data_in = XUSB_CFG_ARU_T194_MBOX_DATA_IN,
.cfg_aru_mbox_data_out = XUSB_CFG_ARU_T194_MBOX_DATA_OUT,
.cfg_aru_mbox_owner = XUSB_CFG_ARU_T194_MBOX_OWNER,
.scale_ss_clock = false,
.has_ipfs = false,
.ss_lfps_detector_war = false,
.handle_oc = true,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = false,
};
MODULE_FIRMWARE("tegra19x_xusb_firmware");
static const struct tegra_xusb_soc tegra194_vf1_soc = {
.device_id = XHCI_DEVICE_ID_T194,
.lpm_support = true,
.is_xhci_vf = true,
.vf_id = 1,
.supply_names = tegra194_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 0,
/* assign ports (1 SS and 1 HS) on FPGA to linux VM */
.ports = {
.usb3 = { .offset = 0, .count = 4, },
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 0, },
},
.has_ipfs = false,
.ss_lfps_detector_war = false,
.handle_oc = false,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = false,
};
MODULE_FIRMWARE("tegra19x_xusb_firmware");
static const struct tegra_xusb_soc tegra194_vf2_soc = {
.device_id = XHCI_DEVICE_ID_T194,
.lpm_support = true,
.is_xhci_vf = true,
.vf_id = 2,
.supply_names = tegra194_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 0,
/* assign ports (1 SS and 1 HS) on FPGA to linux VM */
.ports = {
.usb3 = { .offset = 0, .count = 4, },
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 0, },
},
.has_ipfs = false,
.ss_lfps_detector_war = false,
.handle_oc = false,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = false,
};
MODULE_FIRMWARE("tegra19x_xusb_firmware");
static const struct tegra_xusb_soc tegra194_vf3_soc = {
.device_id = XHCI_DEVICE_ID_T194,
.lpm_support = true,
.is_xhci_vf = true,
.vf_id = 3,
.supply_names = tegra194_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 0,
/* assign ports (1 SS and 1 HS) on FPGA to linux VM */
.ports = {
.usb3 = { .offset = 0, .count = 4, },
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 0, },
},
.has_ipfs = false,
.ss_lfps_detector_war = false,
.handle_oc = false,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = false,
};
MODULE_FIRMWARE("tegra19x_xusb_firmware");
static const struct tegra_xusb_soc tegra194_vf4_soc = {
.device_id = XHCI_DEVICE_ID_T194,
.lpm_support = true,
.is_xhci_vf = true,
.vf_id = 4,
.supply_names = tegra194_supply_names,
.num_supplies = ARRAY_SIZE(tegra194_supply_names),
.num_typed_phys[USB3_PHY] = 4,
.num_typed_phys[USB2_PHY] = 4,
.num_typed_phys[HSIC_PHY] = 0,
/* assign ports (1 SS and 1 HS) on FPGA to linux VM */
.ports = {
.usb3 = { .offset = 0, .count = 4, },
.usb2 = { .offset = 4, .count = 4, },
.hsic = { .offset = 8, .count = 0, },
},
.has_ipfs = false,
.ss_lfps_detector_war = false,
.handle_oc = false,
.disable_hsic_wake = false,
.disable_elpg = false,
.otg_set_port_power = false,
};
MODULE_FIRMWARE("tegra19x_xusb_firmware");
static const struct of_device_id tegra_xusb_of_match[] = {
{ .compatible = "nvidia,tegra124-xusb", .data = &tegra124_soc },
{ .compatible = "nvidia,tegra210-xhci", .data = &tegra210_soc },
{ .compatible = "nvidia,tegra210b01-xhci", .data = &tegra210b01_soc },
{ .compatible = "nvidia,tegra186-xhci", .data = &tegra186_soc },
{ .compatible = "nvidia,tegra194-xhci", .data = &tegra194_soc },
{ .compatible = "nvidia,tegra194-xhci-vf1", .data = &tegra194_vf1_soc },
{ .compatible = "nvidia,tegra194-xhci-vf2", .data = &tegra194_vf2_soc },
{ .compatible = "nvidia,tegra194-xhci-vf3", .data = &tegra194_vf3_soc },
{ .compatible = "nvidia,tegra194-xhci-vf4", .data = &tegra194_vf4_soc },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_xusb_of_match);
static struct platform_driver tegra_xusb_driver = {
.probe = tegra_xusb_probe,
.remove = tegra_xusb_remove,
.shutdown = tegra_xusb_shutdown,
.driver = {
.name = "tegra-xusb",
.pm = &tegra_xusb_pm_ops,
.of_match_table = tegra_xusb_of_match,
},
};
static void tegra_xhci_quirks(struct device *dev, struct xhci_hcd *xhci)
{
struct tegra_xusb *tegra = dev_get_drvdata(dev);
xhci->quirks |= XHCI_PLAT | XHCI_SPURIOUS_WAKEUP;
if (tegra && tegra->soc->lpm_support)
xhci->quirks |= XHCI_LPM_SUPPORT;
}
static int tegra_xhci_setup(struct usb_hcd *hcd)
{
return xhci_gen_setup(hcd, tegra_xhci_quirks);
}
static const struct xhci_driver_overrides tegra_xhci_overrides __initconst = {
.extra_priv_size = sizeof(struct xhci_hcd),
.reset = tegra_xhci_setup,
};
static void tegra_xhci_downgrade_check_to_enable(struct usb_hcd *hcd,
struct usb_device *udev)
{
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int to_downgrade = 0;
u32 portsc;
int i;
struct usb_downgraded_port *port_ptr;
char *buf;
int udev_portnum;
unsigned long flags;
/* If connected to USB3.0 root hub */
if (xhci->shared_hcd->self.root_hub == udev->parent) {
for (i = 0; i < downgraded_count; i++) {
if ((le16_to_cpu(udev->descriptor.idVendor) ==
(downgraded_usb3[i] >> 16)) &&
(le16_to_cpu(udev->descriptor.idProduct) ==
(downgraded_usb3[i] & 0xFFFF))) {
to_downgrade = 1;
break;
}
}
if (udev->quirks & USB_QUIRK_DOWNGRADE_USB3)
to_downgrade = 1;
}
if (to_downgrade) {
for (i = 0; i < DEGRADED_PORT_COUNT; i++) {
if (!tegra->degraded_port[i].id_vendor)
continue;
/* If degraded already */
if (udev->portnum == tegra->degraded_port[i].portnum)
return;
}
for (i = 0; i < DEGRADED_PORT_COUNT; i++)
if (tegra->degraded_port[i].id_vendor == 0)
break;
if (i < DEGRADED_PORT_COUNT) {
dev_info(&udev->dev,
"Downgrade idVendor=%04x idProduct=%04x to USB2.0\n",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
port_ptr = &tegra->degraded_port[i];
/* Save information to be used by disconnect */
port_ptr->portnum = udev->portnum;
port_ptr->id_vendor = udev->descriptor.idVendor;
port_ptr->id_product = udev->descriptor.idProduct;
buf = usb_cache_string(udev,
udev->descriptor.iSerialNumber);
if (buf) {
strncpy(port_ptr->serial, buf, 30);
port_ptr->serial[30] = 0;
kfree(buf);
} else {
port_ptr->serial[0] = 0;
}
INIT_LIST_HEAD(&port_ptr->downgraded_list);
pm_runtime_get_sync(hcd->self.controller);
mutex_lock(&tegra->lock);
/* To disconnect gracefully */
spin_lock_irqsave(&xhci->lock, flags);
portsc = readl(xhci->usb3_ports[udev->portnum - 1]);
portsc |= PORT_PE;
writel(portsc, xhci->usb3_ports[udev->portnum - 1]);
/* save it, udev will disappear if disconnect */
udev_portnum = udev->portnum;
spin_unlock_irqrestore(&xhci->lock, flags);
usleep_range(10000, 12000);
spin_lock_irqsave(&xhci->lock, flags);
list_add_tail(&port_ptr->downgraded_list,
&hub_downgraded_list);
portsc = readl(xhci->usb3_ports[udev_portnum - 1]);
portsc &= ~(PORT_PLS_MASK | PORT_PE);
portsc |= (PORT_POWER | XDEV_RXDETECT |
PORT_LINK_STROBE);
writel(portsc, xhci->usb3_ports[udev_portnum - 1]);
spin_unlock_irqrestore(&xhci->lock, flags);
usleep_range(1000, 2000);
spin_lock_irqsave(&xhci->lock, flags);
/* Port Power off for downgraded USB3.0 port */
portsc = readl(xhci->usb3_ports[udev_portnum - 1]);
portsc &= ~(PORT_POWER | PORT_PE | PORT_CSC);
writel(portsc, xhci->usb3_ports[udev_portnum - 1]);
spin_unlock_irqrestore(&xhci->lock, flags);
/*
* 10+360 ms, USB3.0 power off and dev polling timeout
* for USB2.0 pull-up to be applied
*/
msleep(370);
mutex_unlock(&tegra->lock);
pm_runtime_put(hcd->self.controller);
}
}
}
static int tegra_xhci_update_device(struct usb_hcd *hcd,
struct usb_device *udev)
{
const struct usb_device_id *id;
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
for (id = disable_usb_persist_quirk_list; id->match_flags; id++) {
if (usb_match_device(udev, id) && usb_match_speed(udev, id)) {
udev->persist_enabled = 0;
break;
}
}
if (tegra->downgrade_enabled == 1)
tegra_xhci_downgrade_check_to_enable(hcd, udev);
return xhci_update_device(hcd, udev);
}
static int tegra_xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct usb_endpoint_descriptor *desc = &ep->desc;
if ((udev->speed >= USB_SPEED_SUPER) &&
((desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ==
USB_DIR_OUT) && usb_endpoint_xfer_bulk(desc) &&
max_burst_war_enable) {
if (ep->ss_ep_comp.bMaxBurst != 15) {
dev_dbg(&udev->dev, "change ep %02x bMaxBurst (%d) to 15\n",
ep->ss_ep_comp.bMaxBurst,
desc->bEndpointAddress);
ep->ss_ep_comp.bMaxBurst = 15;
}
}
return xhci_add_endpoint(hcd, udev, ep);
}
static inline bool port_connected(struct tegra_xusb *tegra, unsigned int port)
{
u32 portsc = read_portsc(tegra, port);
return !!(portsc & PORT_CONNECT);
}
static int tegra_xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
int i;
/* disable CDP for newly connected USB2.0 root hub port */
if (tegra->cdp_enabled && usb_hcd_is_primary_hcd(hcd)) {
for (i = 0; i < tegra->soc->num_typed_phys[USB2_PHY]; i++) {
int port_offset =
tegra->soc->ports.usb2.offset;
/* find newly connected ports only */
if (!tegra->connected_usb2_ports[i] &&
port_connected(tegra, port_offset + i)) {
set_cdp_enable(tegra, i, false);
tegra->connected_usb2_ports[i] = 1;
/*
* set pad protection circuit to >= 2A
* CDP current range: 1.5A~5A see [BC1.2] p36
*/
tegra_xusb_padctl_utmi_pad_set_protection_level(
tegra->padctl,
tegra->typed_phys[USB2_PHY][i],
3,
TEGRA_VBUS_SOURCE);
}
}
}
return xhci_alloc_dev(hcd, udev);
}
static void tegra_xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
{
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
u8 port = udev->portnum - 1;
bool is_roothub_port;
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
if (udev == NULL)
return;
if (xhci == NULL) {
dev_info(&udev->dev, "xhci is NULL");
return;
}
/* If disconnected from USB2.0 root hub */
if (xhci->main_hcd->self.root_hub == udev->parent) {
u32 portsc = readl(xhci->usb2_ports[udev->portnum - 1]);
if (!(portsc & PORT_CONNECT))
tegra_xhci_downgrade_check_to_disable(hcd, udev, true);
}
xhci_free_dev(hcd, udev);
/* make sure CDP is enabled for for USB2.0 root hub ports */
is_roothub_port = udev->parent == udev->bus->root_hub;
if (is_roothub_port && tegra->connected_usb2_ports[port] &&
tegra->cdp_enabled && usb_hcd_is_primary_hcd(hcd)) {
/* we have to make sure CDP is turned on before VBUS on */
set_cdp_enable(tegra, port, true);
tegra->connected_usb2_ports[port] = 0;
tegra_xusb_padctl_utmi_pad_set_protection_level(
tegra->padctl, tegra->typed_phys[USB2_PHY][port], -1,
TEGRA_VBUS_SOURCE);
}
}
static int tegra_xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags)
{
int xfertype;
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
xfertype = usb_endpoint_type(&urb->ep->desc);
switch (xfertype) {
case USB_ENDPOINT_XFER_ISOC:
case USB_ENDPOINT_XFER_BULK:
if (!tegra->cpu_boost_enabled)
break;
if (urb->transfer_buffer_length >= tegra->boost_cpu_trigger) {
/* break, if last boost was done within 1 sec back,
* because previous boost lasts for XHCI_BOOST_TIMEOUT
* i.e 2 sec and no need to schedule work for every
* transaction.
*/
if (time_is_after_jiffies(tegra->cpufreq_last_boosted +
(msecs_to_jiffies(XHCI_BOOST_TIMEOUT/2))))
break;
schedule_work(&tegra->boost_cpufreq_work);
}
break;
case USB_ENDPOINT_XFER_INT:
case USB_ENDPOINT_XFER_CONTROL:
default:
/* Do nothing special here */
break;
}
return xhci_urb_enqueue(hcd, urb, mem_flags);
}
static int tegra_xhci_hub_control(struct usb_hcd *hcd, u16 type_req,
u16 value, u16 index, char *buf, u16 length)
{
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct xhci_bus_state *bus_state = &xhci->bus_state[hcd_index(hcd)];
int port = (index & 0xff) - 1;
u32 status;
unsigned long timeout;
int ret, wait;
if (bus_state->resuming_ports && hcd->speed == HCD_USB2) {
__le32 __iomem **port_array;
int max_ports;
u32 portsc;
int i;
max_ports = xhci->num_usb2_ports;
port_array = xhci->usb2_ports;
for (i = 0; i < max_ports; i++) {
if (!test_bit(i, &bus_state->resuming_ports))
continue;
portsc = readl(port_array[i]);
if ((i < tegra->soc->num_typed_phys[USB2_PHY])
&& ((portsc & PORT_PLS_MASK) == XDEV_RESUME))
tegra_phy_xusb_utmi_pad_power_on(
tegra->typed_phys[USB2_PHY][i]);
}
}
if (hcd->speed == HCD_USB2) {
if ((type_req == ClearPortFeature) &&
(value == USB_PORT_FEAT_SUSPEND))
tegra_phy_xusb_utmi_pad_power_on(
tegra->typed_phys[USB2_PHY][port]);
}
ret = xhci_hub_control(hcd, type_req, value, index, buf, length);
if ((value == USB_PORT_FEAT_POWER) && !ret) {
u32 pp_stat = (hcd->speed == HCD_USB2) ? USB_PORT_STAT_POWER :
USB_SS_PORT_STAT_POWER;
timeout = jiffies + HZ;
wait = 5;
do {
xhci_hub_control(hcd, GetPortStatus, 0, index,
(char *) &status, sizeof(status));
if ((type_req == ClearPortFeature) &&
!(status & pp_stat))
break;
else if ((type_req == SetPortFeature) &&
(status & pp_stat))
break;
if (--wait > 0)
usleep_range(10, 20);
else
msleep(200);
} while (time_is_after_jiffies(timeout));
}
if ((hcd->speed == HCD_USB2) && (ret == 0)) {
if ((type_req == SetPortFeature) &&
(value == USB_PORT_FEAT_SUSPEND))
/* We dont suspend the PAD while HNP role swap happens
* on the OTG port
*/
if (!((hcd->self.otg_port == (port + 1)) &&
hcd->self.b_hnp_enable))
tegra_phy_xusb_utmi_pad_power_down(
tegra->typed_phys[USB2_PHY][port]);
if ((type_req == ClearPortFeature) &&
(value == USB_PORT_FEAT_C_CONNECTION)) {
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
u32 portsc = readl(xhci->usb2_ports[port]);
if (portsc & PORT_CONNECT)
tegra_phy_xusb_utmi_pad_power_on(
tegra->typed_phys[USB2_PHY][port]);
else {
/* We dont suspend the PAD while HNP
* role swap happens on the OTG port
*/
if (!((hcd->self.otg_port == (port + 1))
&& hcd->self.b_hnp_enable))
tegra_phy_xusb_utmi_pad_power_down(
tegra->typed_phys[USB2_PHY][port]);
}
}
if ((type_req == SetPortFeature) &&
(value == USB_PORT_FEAT_TEST)) {
tegra_phy_xusb_utmi_pad_power_on(
tegra->typed_phys[USB2_PHY][port]);
}
}
return ret;
}
static bool device_has_isoch_ep_and_interval_one(struct usb_device *udev)
{
struct usb_host_config *config;
struct usb_host_interface *alt;
struct usb_endpoint_descriptor *desc;
int i, j;
config = udev->actconfig;
if (!config)
return false;
for (i = 0; i < config->desc.bNumInterfaces; i++) {
alt = config->interface[i]->cur_altsetting;
if (!alt)
continue;
for (j = 0; j < alt->desc.bNumEndpoints; j++) {
desc = &alt->endpoint[j].desc;
if (usb_endpoint_xfer_isoc(desc) &&
desc->bInterval == 1)
return true;
}
}
return false;
}
static int tegra_xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
struct usb_device *udev, enum usb3_link_state state)
{
if ((state == USB3_LPM_U1 || state == USB3_LPM_U2) &&
device_has_isoch_ep_and_interval_one(udev))
return USB3_LPM_DISABLED;
return xhci_enable_usb3_lpm_timeout(hcd, udev, state);
}
static void xhci_reinit_work(struct work_struct *work)
{
unsigned long flags;
struct xhci_hcd *xhci = container_of(work,
struct xhci_hcd, tegra_xhci_reinit_work);
struct platform_device *pdev = xhci->pdev;
struct tegra_xusb *tegra = platform_get_drvdata(pdev);
struct device *dev = tegra->dev;
unsigned long target;
bool has_active_slots = true;
int j, ret;
/* If the controller is in ELPG during reinit, then bring it out of
* elpg first before doing reinit. Otherwise we will see inconsistent
* behaviour. For example phy->power_count variable will be decremented
* twice. Once dring elpg and once during usb_remove. when phy_power_on
* is called during probe, the phy wont actually power on.
*/
mutex_lock(&tegra->lock);
if (pm_runtime_suspended(dev)) {
ret = tegra_xhci_exit_elpg(tegra, true);
if (ret < 0) {
mutex_unlock(&tegra->lock);
dev_err(tegra->dev, "Elpg exit failed during reinit\n");
return;
}
}
mutex_unlock(&tegra->lock);
for (j = 0; j < tegra->soc->num_typed_phys[USB2_PHY]; j++) {
/* turn off VBUS to disconnect all devices */
if (tegra->typed_phys[USB2_PHY][j]) {
if (!tegra->soc->is_xhci_vf) {
tegra_xusb_padctl_vbus_power_off(
tegra->padctl, j);
} else {
tegra_xusb_padctl_vbus_power_off(
tegra->padctl,
tegra->port_to_phy[USB2_PHY][j]);
}
}
}
target = jiffies + msecs_to_jiffies(5000);
/* wait until all slots have been disabled. Also waiting for 5
* seconds to make sure pending STOP_EP commands are completed
*/
while (has_active_slots && time_is_after_jiffies(target)) {
has_active_slots = false;
for (j = 1; j < MAX_HC_SLOTS; j++) {
if (xhci->devs[j])
has_active_slots = true;
}
msleep(300);
}
spin_lock_irqsave(&xhci->lock, flags);
xhci->xhc_state |= XHCI_STATE_DYING;
spin_unlock_irqrestore(&xhci->lock, flags);
tegra_xusb_remove(pdev);
usleep_range(10, 20);
tegra_xusb_probe(pdev);
/* probe will set recovery_in_progress to false */
}
static int tegra_xhci_hcd_reinit(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
if (en_hcd_reinit && (xhci->recovery_in_progress == false)) {
xhci->recovery_in_progress = true;
#ifdef CONFIG_USB_OTG_WAKELOCK
/* make sure system doesn't enter suspend
* temporary wakelock is help for 2 seconds.
*/
otgwl_acquire_temp_lock();
#endif
schedule_work(&xhci->tegra_xhci_reinit_work);
} else {
dev_info(tegra->dev, "hcd_reinit is disabled or in progress\n");
}
return 0;
}
static irqreturn_t tegra_xhci_irq(struct usb_hcd *hcd)
{
struct tegra_xusb *tegra = hcd_to_tegra_xusb(hcd);
if (test_bit(FW_LOG_CONTEXT_VALID, &tegra->log.flags))
wake_up_interruptible(&tegra->log.intr_wait);
return xhci_irq(hcd);
}
static int __init tegra_xusb_init(void)
{
xhci_init_driver(&tegra_xhci_hc_driver, &tegra_xhci_overrides);
tegra_xhci_hc_driver.irq = tegra_xhci_irq;
tegra_xhci_hc_driver.update_device = tegra_xhci_update_device;
tegra_xhci_hc_driver.add_endpoint = tegra_xhci_add_endpoint;
tegra_xhci_hc_driver.alloc_dev = tegra_xhci_alloc_dev;
tegra_xhci_hc_driver.free_dev = tegra_xhci_free_dev;
tegra_xhci_hc_driver.hcd_reinit = tegra_xhci_hcd_reinit;
tegra_xhci_hc_driver.hub_control = tegra_xhci_hub_control;
tegra_xhci_hc_driver.enable_usb3_lpm_timeout =
tegra_xhci_enable_usb3_lpm_timeout;
tegra_xhci_hc_driver.urb_enqueue = tegra_xhci_urb_enqueue;
return platform_driver_register(&tegra_xusb_driver);
}
module_init(tegra_xusb_init);
static void __exit tegra_xusb_exit(void)
{
platform_driver_unregister(&tegra_xusb_driver);
}
module_exit(tegra_xusb_exit);
MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
MODULE_DESCRIPTION("NVIDIA Tegra XUSB xHCI host-controller driver");
MODULE_LICENSE("GPL v2");