575 lines
14 KiB
C
575 lines
14 KiB
C
|
/*
|
||
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public
|
||
|
* License v2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public
|
||
|
* License along with this program; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 021110-1307, USA.
|
||
|
*/
|
||
|
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
|
||
|
#include "ctree.h"
|
||
|
#include "disk-io.h"
|
||
|
#include "free-space-cache.h"
|
||
|
#include "inode-map.h"
|
||
|
#include "transaction.h"
|
||
|
|
||
|
static int caching_kthread(void *data)
|
||
|
{
|
||
|
struct btrfs_root *root = data;
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
||
|
struct btrfs_key key;
|
||
|
struct btrfs_path *path;
|
||
|
struct extent_buffer *leaf;
|
||
|
u64 last = (u64)-1;
|
||
|
int slot;
|
||
|
int ret;
|
||
|
|
||
|
if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
|
||
|
return 0;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Since the commit root is read-only, we can safely skip locking. */
|
||
|
path->skip_locking = 1;
|
||
|
path->search_commit_root = 1;
|
||
|
path->reada = READA_FORWARD;
|
||
|
|
||
|
key.objectid = BTRFS_FIRST_FREE_OBJECTID;
|
||
|
key.offset = 0;
|
||
|
key.type = BTRFS_INODE_ITEM_KEY;
|
||
|
again:
|
||
|
/* need to make sure the commit_root doesn't disappear */
|
||
|
down_read(&fs_info->commit_root_sem);
|
||
|
|
||
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
while (1) {
|
||
|
if (btrfs_fs_closing(fs_info))
|
||
|
goto out;
|
||
|
|
||
|
leaf = path->nodes[0];
|
||
|
slot = path->slots[0];
|
||
|
if (slot >= btrfs_header_nritems(leaf)) {
|
||
|
ret = btrfs_next_leaf(root, path);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
else if (ret > 0)
|
||
|
break;
|
||
|
|
||
|
if (need_resched() ||
|
||
|
btrfs_transaction_in_commit(fs_info)) {
|
||
|
leaf = path->nodes[0];
|
||
|
|
||
|
if (WARN_ON(btrfs_header_nritems(leaf) == 0))
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Save the key so we can advances forward
|
||
|
* in the next search.
|
||
|
*/
|
||
|
btrfs_item_key_to_cpu(leaf, &key, 0);
|
||
|
btrfs_release_path(path);
|
||
|
root->ino_cache_progress = last;
|
||
|
up_read(&fs_info->commit_root_sem);
|
||
|
schedule_timeout(1);
|
||
|
goto again;
|
||
|
} else
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
||
|
|
||
|
if (key.type != BTRFS_INODE_ITEM_KEY)
|
||
|
goto next;
|
||
|
|
||
|
if (key.objectid >= root->highest_objectid)
|
||
|
break;
|
||
|
|
||
|
if (last != (u64)-1 && last + 1 != key.objectid) {
|
||
|
__btrfs_add_free_space(fs_info, ctl, last + 1,
|
||
|
key.objectid - last - 1);
|
||
|
wake_up(&root->ino_cache_wait);
|
||
|
}
|
||
|
|
||
|
last = key.objectid;
|
||
|
next:
|
||
|
path->slots[0]++;
|
||
|
}
|
||
|
|
||
|
if (last < root->highest_objectid - 1) {
|
||
|
__btrfs_add_free_space(fs_info, ctl, last + 1,
|
||
|
root->highest_objectid - last - 1);
|
||
|
}
|
||
|
|
||
|
spin_lock(&root->ino_cache_lock);
|
||
|
root->ino_cache_state = BTRFS_CACHE_FINISHED;
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
|
||
|
root->ino_cache_progress = (u64)-1;
|
||
|
btrfs_unpin_free_ino(root);
|
||
|
out:
|
||
|
wake_up(&root->ino_cache_wait);
|
||
|
up_read(&fs_info->commit_root_sem);
|
||
|
|
||
|
btrfs_free_path(path);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void start_caching(struct btrfs_root *root)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
||
|
struct task_struct *tsk;
|
||
|
int ret;
|
||
|
u64 objectid;
|
||
|
|
||
|
if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
|
||
|
return;
|
||
|
|
||
|
spin_lock(&root->ino_cache_lock);
|
||
|
if (root->ino_cache_state != BTRFS_CACHE_NO) {
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
root->ino_cache_state = BTRFS_CACHE_STARTED;
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
|
||
|
ret = load_free_ino_cache(fs_info, root);
|
||
|
if (ret == 1) {
|
||
|
spin_lock(&root->ino_cache_lock);
|
||
|
root->ino_cache_state = BTRFS_CACHE_FINISHED;
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
wake_up(&root->ino_cache_wait);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* It can be quite time-consuming to fill the cache by searching
|
||
|
* through the extent tree, and this can keep ino allocation path
|
||
|
* waiting. Therefore at start we quickly find out the highest
|
||
|
* inode number and we know we can use inode numbers which fall in
|
||
|
* [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
|
||
|
*/
|
||
|
ret = btrfs_find_free_objectid(root, &objectid);
|
||
|
if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
|
||
|
__btrfs_add_free_space(fs_info, ctl, objectid,
|
||
|
BTRFS_LAST_FREE_OBJECTID - objectid + 1);
|
||
|
}
|
||
|
|
||
|
tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
|
||
|
root->root_key.objectid);
|
||
|
if (IS_ERR(tsk)) {
|
||
|
btrfs_warn(fs_info, "failed to start inode caching task");
|
||
|
btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
|
||
|
"disabling inode map caching");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
|
||
|
{
|
||
|
if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
|
||
|
return btrfs_find_free_objectid(root, objectid);
|
||
|
|
||
|
again:
|
||
|
*objectid = btrfs_find_ino_for_alloc(root);
|
||
|
|
||
|
if (*objectid != 0)
|
||
|
return 0;
|
||
|
|
||
|
start_caching(root);
|
||
|
|
||
|
wait_event(root->ino_cache_wait,
|
||
|
root->ino_cache_state == BTRFS_CACHE_FINISHED ||
|
||
|
root->free_ino_ctl->free_space > 0);
|
||
|
|
||
|
if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
|
||
|
root->free_ino_ctl->free_space == 0)
|
||
|
return -ENOSPC;
|
||
|
else
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
|
||
|
{
|
||
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
||
|
struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
|
||
|
|
||
|
if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
|
||
|
return;
|
||
|
again:
|
||
|
if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
|
||
|
__btrfs_add_free_space(fs_info, pinned, objectid, 1);
|
||
|
} else {
|
||
|
down_write(&fs_info->commit_root_sem);
|
||
|
spin_lock(&root->ino_cache_lock);
|
||
|
if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
up_write(&fs_info->commit_root_sem);
|
||
|
goto again;
|
||
|
}
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
|
||
|
start_caching(root);
|
||
|
|
||
|
__btrfs_add_free_space(fs_info, pinned, objectid, 1);
|
||
|
|
||
|
up_write(&fs_info->commit_root_sem);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When a transaction is committed, we'll move those inode numbers which are
|
||
|
* smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
|
||
|
* others will just be dropped, because the commit root we were searching has
|
||
|
* changed.
|
||
|
*
|
||
|
* Must be called with root->fs_info->commit_root_sem held
|
||
|
*/
|
||
|
void btrfs_unpin_free_ino(struct btrfs_root *root)
|
||
|
{
|
||
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
||
|
struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
|
||
|
spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
|
||
|
struct btrfs_free_space *info;
|
||
|
struct rb_node *n;
|
||
|
u64 count;
|
||
|
|
||
|
if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
|
||
|
return;
|
||
|
|
||
|
while (1) {
|
||
|
bool add_to_ctl = true;
|
||
|
|
||
|
spin_lock(rbroot_lock);
|
||
|
n = rb_first(rbroot);
|
||
|
if (!n) {
|
||
|
spin_unlock(rbroot_lock);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
||
|
BUG_ON(info->bitmap); /* Logic error */
|
||
|
|
||
|
if (info->offset > root->ino_cache_progress)
|
||
|
add_to_ctl = false;
|
||
|
else if (info->offset + info->bytes > root->ino_cache_progress)
|
||
|
count = root->ino_cache_progress - info->offset + 1;
|
||
|
else
|
||
|
count = info->bytes;
|
||
|
|
||
|
rb_erase(&info->offset_index, rbroot);
|
||
|
spin_unlock(rbroot_lock);
|
||
|
if (add_to_ctl)
|
||
|
__btrfs_add_free_space(root->fs_info, ctl,
|
||
|
info->offset, count);
|
||
|
kmem_cache_free(btrfs_free_space_cachep, info);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
|
||
|
#define INODES_PER_BITMAP (PAGE_SIZE * 8)
|
||
|
|
||
|
/*
|
||
|
* The goal is to keep the memory used by the free_ino tree won't
|
||
|
* exceed the memory if we use bitmaps only.
|
||
|
*/
|
||
|
static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
|
||
|
{
|
||
|
struct btrfs_free_space *info;
|
||
|
struct rb_node *n;
|
||
|
int max_ino;
|
||
|
int max_bitmaps;
|
||
|
|
||
|
n = rb_last(&ctl->free_space_offset);
|
||
|
if (!n) {
|
||
|
ctl->extents_thresh = INIT_THRESHOLD;
|
||
|
return;
|
||
|
}
|
||
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
||
|
|
||
|
/*
|
||
|
* Find the maximum inode number in the filesystem. Note we
|
||
|
* ignore the fact that this can be a bitmap, because we are
|
||
|
* not doing precise calculation.
|
||
|
*/
|
||
|
max_ino = info->bytes - 1;
|
||
|
|
||
|
max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
|
||
|
if (max_bitmaps <= ctl->total_bitmaps) {
|
||
|
ctl->extents_thresh = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
|
||
|
PAGE_SIZE / sizeof(*info);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We don't fall back to bitmap, if we are below the extents threshold
|
||
|
* or this chunk of inode numbers is a big one.
|
||
|
*/
|
||
|
static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
|
||
|
struct btrfs_free_space *info)
|
||
|
{
|
||
|
if (ctl->free_extents < ctl->extents_thresh ||
|
||
|
info->bytes > INODES_PER_BITMAP / 10)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static const struct btrfs_free_space_op free_ino_op = {
|
||
|
.recalc_thresholds = recalculate_thresholds,
|
||
|
.use_bitmap = use_bitmap,
|
||
|
};
|
||
|
|
||
|
static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
|
||
|
struct btrfs_free_space *info)
|
||
|
{
|
||
|
/*
|
||
|
* We always use extents for two reasons:
|
||
|
*
|
||
|
* - The pinned tree is only used during the process of caching
|
||
|
* work.
|
||
|
* - Make code simpler. See btrfs_unpin_free_ino().
|
||
|
*/
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static const struct btrfs_free_space_op pinned_free_ino_op = {
|
||
|
.recalc_thresholds = pinned_recalc_thresholds,
|
||
|
.use_bitmap = pinned_use_bitmap,
|
||
|
};
|
||
|
|
||
|
void btrfs_init_free_ino_ctl(struct btrfs_root *root)
|
||
|
{
|
||
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
||
|
struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
|
||
|
|
||
|
spin_lock_init(&ctl->tree_lock);
|
||
|
ctl->unit = 1;
|
||
|
ctl->start = 0;
|
||
|
ctl->private = NULL;
|
||
|
ctl->op = &free_ino_op;
|
||
|
INIT_LIST_HEAD(&ctl->trimming_ranges);
|
||
|
mutex_init(&ctl->cache_writeout_mutex);
|
||
|
|
||
|
/*
|
||
|
* Initially we allow to use 16K of ram to cache chunks of
|
||
|
* inode numbers before we resort to bitmaps. This is somewhat
|
||
|
* arbitrary, but it will be adjusted in runtime.
|
||
|
*/
|
||
|
ctl->extents_thresh = INIT_THRESHOLD;
|
||
|
|
||
|
spin_lock_init(&pinned->tree_lock);
|
||
|
pinned->unit = 1;
|
||
|
pinned->start = 0;
|
||
|
pinned->private = NULL;
|
||
|
pinned->extents_thresh = 0;
|
||
|
pinned->op = &pinned_free_ino_op;
|
||
|
}
|
||
|
|
||
|
int btrfs_save_ino_cache(struct btrfs_root *root,
|
||
|
struct btrfs_trans_handle *trans)
|
||
|
{
|
||
|
struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
|
||
|
struct btrfs_path *path;
|
||
|
struct inode *inode;
|
||
|
struct btrfs_block_rsv *rsv;
|
||
|
u64 num_bytes;
|
||
|
u64 alloc_hint = 0;
|
||
|
int ret;
|
||
|
int prealloc;
|
||
|
bool retry = false;
|
||
|
|
||
|
/* only fs tree and subvol/snap needs ino cache */
|
||
|
if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
|
||
|
(root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
|
||
|
root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
|
||
|
return 0;
|
||
|
|
||
|
/* Don't save inode cache if we are deleting this root */
|
||
|
if (btrfs_root_refs(&root->root_item) == 0)
|
||
|
return 0;
|
||
|
|
||
|
if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
|
||
|
return 0;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rsv = trans->block_rsv;
|
||
|
trans->block_rsv = &root->fs_info->trans_block_rsv;
|
||
|
|
||
|
num_bytes = trans->bytes_reserved;
|
||
|
/*
|
||
|
* 1 item for inode item insertion if need
|
||
|
* 4 items for inode item update (in the worst case)
|
||
|
* 1 items for slack space if we need do truncation
|
||
|
* 1 item for free space object
|
||
|
* 3 items for pre-allocation
|
||
|
*/
|
||
|
trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
|
||
|
ret = btrfs_block_rsv_add(root, trans->block_rsv,
|
||
|
trans->bytes_reserved,
|
||
|
BTRFS_RESERVE_NO_FLUSH);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
trace_btrfs_space_reservation(root->fs_info, "ino_cache",
|
||
|
trans->transid, trans->bytes_reserved, 1);
|
||
|
again:
|
||
|
inode = lookup_free_ino_inode(root, path);
|
||
|
if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
|
||
|
ret = PTR_ERR(inode);
|
||
|
goto out_release;
|
||
|
}
|
||
|
|
||
|
if (IS_ERR(inode)) {
|
||
|
BUG_ON(retry); /* Logic error */
|
||
|
retry = true;
|
||
|
|
||
|
ret = create_free_ino_inode(root, trans, path);
|
||
|
if (ret)
|
||
|
goto out_release;
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
BTRFS_I(inode)->generation = 0;
|
||
|
ret = btrfs_update_inode(trans, root, inode);
|
||
|
if (ret) {
|
||
|
btrfs_abort_transaction(trans, ret);
|
||
|
goto out_put;
|
||
|
}
|
||
|
|
||
|
if (i_size_read(inode) > 0) {
|
||
|
ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
|
||
|
if (ret) {
|
||
|
if (ret != -ENOSPC)
|
||
|
btrfs_abort_transaction(trans, ret);
|
||
|
goto out_put;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock(&root->ino_cache_lock);
|
||
|
if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
|
||
|
ret = -1;
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
goto out_put;
|
||
|
}
|
||
|
spin_unlock(&root->ino_cache_lock);
|
||
|
|
||
|
spin_lock(&ctl->tree_lock);
|
||
|
prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
|
||
|
prealloc = ALIGN(prealloc, PAGE_SIZE);
|
||
|
prealloc += ctl->total_bitmaps * PAGE_SIZE;
|
||
|
spin_unlock(&ctl->tree_lock);
|
||
|
|
||
|
/* Just to make sure we have enough space */
|
||
|
prealloc += 8 * PAGE_SIZE;
|
||
|
|
||
|
ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
|
||
|
if (ret)
|
||
|
goto out_put;
|
||
|
|
||
|
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
|
||
|
prealloc, prealloc, &alloc_hint);
|
||
|
if (ret) {
|
||
|
btrfs_delalloc_release_metadata(inode, prealloc);
|
||
|
goto out_put;
|
||
|
}
|
||
|
|
||
|
ret = btrfs_write_out_ino_cache(root, trans, path, inode);
|
||
|
out_put:
|
||
|
iput(inode);
|
||
|
out_release:
|
||
|
trace_btrfs_space_reservation(root->fs_info, "ino_cache",
|
||
|
trans->transid, trans->bytes_reserved, 0);
|
||
|
btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
|
||
|
out:
|
||
|
trans->block_rsv = rsv;
|
||
|
trans->bytes_reserved = num_bytes;
|
||
|
|
||
|
btrfs_free_path(path);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
|
||
|
{
|
||
|
struct btrfs_path *path;
|
||
|
int ret;
|
||
|
struct extent_buffer *l;
|
||
|
struct btrfs_key search_key;
|
||
|
struct btrfs_key found_key;
|
||
|
int slot;
|
||
|
|
||
|
path = btrfs_alloc_path();
|
||
|
if (!path)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
|
||
|
search_key.type = -1;
|
||
|
search_key.offset = (u64)-1;
|
||
|
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
|
||
|
if (ret < 0)
|
||
|
goto error;
|
||
|
BUG_ON(ret == 0); /* Corruption */
|
||
|
if (path->slots[0] > 0) {
|
||
|
slot = path->slots[0] - 1;
|
||
|
l = path->nodes[0];
|
||
|
btrfs_item_key_to_cpu(l, &found_key, slot);
|
||
|
*objectid = max_t(u64, found_key.objectid,
|
||
|
BTRFS_FIRST_FREE_OBJECTID - 1);
|
||
|
} else {
|
||
|
*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
|
||
|
}
|
||
|
ret = 0;
|
||
|
error:
|
||
|
btrfs_free_path(path);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
|
||
|
{
|
||
|
int ret;
|
||
|
mutex_lock(&root->objectid_mutex);
|
||
|
|
||
|
if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
|
||
|
btrfs_warn(root->fs_info,
|
||
|
"the objectid of root %llu reaches its highest value",
|
||
|
root->root_key.objectid);
|
||
|
ret = -ENOSPC;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
*objectid = ++root->highest_objectid;
|
||
|
ret = 0;
|
||
|
out:
|
||
|
mutex_unlock(&root->objectid_mutex);
|
||
|
return ret;
|
||
|
}
|