1472 lines
40 KiB
C
1472 lines
40 KiB
C
|
/*
|
||
|
* fs/dax.c - Direct Access filesystem code
|
||
|
* Copyright (c) 2013-2014 Intel Corporation
|
||
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
||
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms and conditions of the GNU General Public License,
|
||
|
* version 2, as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/blkdev.h>
|
||
|
#include <linux/buffer_head.h>
|
||
|
#include <linux/dax.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/genhd.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/memcontrol.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/pagevec.h>
|
||
|
#include <linux/pmem.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/uio.h>
|
||
|
#include <linux/vmstat.h>
|
||
|
#include <linux/pfn_t.h>
|
||
|
#include <linux/sizes.h>
|
||
|
#include <linux/iomap.h>
|
||
|
#include "internal.h"
|
||
|
|
||
|
/*
|
||
|
* We use lowest available bit in exceptional entry for locking, other two
|
||
|
* bits to determine entry type. In total 3 special bits.
|
||
|
*/
|
||
|
#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
|
||
|
#define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
|
||
|
#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
|
||
|
#define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
|
||
|
#define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
|
||
|
#define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
|
||
|
#define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
|
||
|
RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
|
||
|
RADIX_TREE_EXCEPTIONAL_ENTRY))
|
||
|
|
||
|
/* We choose 4096 entries - same as per-zone page wait tables */
|
||
|
#define DAX_WAIT_TABLE_BITS 12
|
||
|
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
|
||
|
|
||
|
wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
|
||
|
|
||
|
static int __init init_dax_wait_table(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
|
||
|
init_waitqueue_head(wait_table + i);
|
||
|
return 0;
|
||
|
}
|
||
|
fs_initcall(init_dax_wait_table);
|
||
|
|
||
|
static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
|
||
|
pgoff_t index)
|
||
|
{
|
||
|
unsigned long hash = hash_long((unsigned long)mapping ^ index,
|
||
|
DAX_WAIT_TABLE_BITS);
|
||
|
return wait_table + hash;
|
||
|
}
|
||
|
|
||
|
static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
|
||
|
{
|
||
|
struct request_queue *q = bdev->bd_queue;
|
||
|
long rc = -EIO;
|
||
|
|
||
|
dax->addr = ERR_PTR(-EIO);
|
||
|
if (blk_queue_enter(q, true) != 0)
|
||
|
return rc;
|
||
|
|
||
|
rc = bdev_direct_access(bdev, dax);
|
||
|
if (rc < 0) {
|
||
|
dax->addr = ERR_PTR(rc);
|
||
|
blk_queue_exit(q);
|
||
|
return rc;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static void dax_unmap_atomic(struct block_device *bdev,
|
||
|
const struct blk_dax_ctl *dax)
|
||
|
{
|
||
|
if (IS_ERR(dax->addr))
|
||
|
return;
|
||
|
blk_queue_exit(bdev->bd_queue);
|
||
|
}
|
||
|
|
||
|
struct page *read_dax_sector(struct block_device *bdev, sector_t n)
|
||
|
{
|
||
|
struct page *page = alloc_pages(GFP_KERNEL, 0);
|
||
|
struct blk_dax_ctl dax = {
|
||
|
.size = PAGE_SIZE,
|
||
|
.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
|
||
|
};
|
||
|
long rc;
|
||
|
|
||
|
if (!page)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
rc = dax_map_atomic(bdev, &dax);
|
||
|
if (rc < 0)
|
||
|
return ERR_PTR(rc);
|
||
|
memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
static bool buffer_written(struct buffer_head *bh)
|
||
|
{
|
||
|
return buffer_mapped(bh) && !buffer_unwritten(bh);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When ext4 encounters a hole, it returns without modifying the buffer_head
|
||
|
* which means that we can't trust b_size. To cope with this, we set b_state
|
||
|
* to 0 before calling get_block and, if any bit is set, we know we can trust
|
||
|
* b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
|
||
|
* and would save us time calling get_block repeatedly.
|
||
|
*/
|
||
|
static bool buffer_size_valid(struct buffer_head *bh)
|
||
|
{
|
||
|
return bh->b_state != 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
static sector_t to_sector(const struct buffer_head *bh,
|
||
|
const struct inode *inode)
|
||
|
{
|
||
|
sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
|
||
|
|
||
|
return sector;
|
||
|
}
|
||
|
|
||
|
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
|
||
|
loff_t start, loff_t end, get_block_t get_block,
|
||
|
struct buffer_head *bh)
|
||
|
{
|
||
|
loff_t pos = start, max = start, bh_max = start;
|
||
|
bool hole = false;
|
||
|
struct block_device *bdev = NULL;
|
||
|
int rw = iov_iter_rw(iter), rc;
|
||
|
long map_len = 0;
|
||
|
struct blk_dax_ctl dax = {
|
||
|
.addr = ERR_PTR(-EIO),
|
||
|
};
|
||
|
unsigned blkbits = inode->i_blkbits;
|
||
|
sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
|
||
|
>> blkbits;
|
||
|
|
||
|
if (rw == READ)
|
||
|
end = min(end, i_size_read(inode));
|
||
|
|
||
|
while (pos < end) {
|
||
|
size_t len;
|
||
|
if (pos == max) {
|
||
|
long page = pos >> PAGE_SHIFT;
|
||
|
sector_t block = page << (PAGE_SHIFT - blkbits);
|
||
|
unsigned first = pos - (block << blkbits);
|
||
|
long size;
|
||
|
|
||
|
if (pos == bh_max) {
|
||
|
bh->b_size = PAGE_ALIGN(end - pos);
|
||
|
bh->b_state = 0;
|
||
|
rc = get_block(inode, block, bh, rw == WRITE);
|
||
|
if (rc)
|
||
|
break;
|
||
|
if (!buffer_size_valid(bh))
|
||
|
bh->b_size = 1 << blkbits;
|
||
|
bh_max = pos - first + bh->b_size;
|
||
|
bdev = bh->b_bdev;
|
||
|
/*
|
||
|
* We allow uninitialized buffers for writes
|
||
|
* beyond EOF as those cannot race with faults
|
||
|
*/
|
||
|
WARN_ON_ONCE(
|
||
|
(buffer_new(bh) && block < file_blks) ||
|
||
|
(rw == WRITE && buffer_unwritten(bh)));
|
||
|
} else {
|
||
|
unsigned done = bh->b_size -
|
||
|
(bh_max - (pos - first));
|
||
|
bh->b_blocknr += done >> blkbits;
|
||
|
bh->b_size -= done;
|
||
|
}
|
||
|
|
||
|
hole = rw == READ && !buffer_written(bh);
|
||
|
if (hole) {
|
||
|
size = bh->b_size - first;
|
||
|
} else {
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
dax.sector = to_sector(bh, inode);
|
||
|
dax.size = bh->b_size;
|
||
|
map_len = dax_map_atomic(bdev, &dax);
|
||
|
if (map_len < 0) {
|
||
|
rc = map_len;
|
||
|
break;
|
||
|
}
|
||
|
dax.addr += first;
|
||
|
size = map_len - first;
|
||
|
}
|
||
|
/*
|
||
|
* pos + size is one past the last offset for IO,
|
||
|
* so pos + size can overflow loff_t at extreme offsets.
|
||
|
* Cast to u64 to catch this and get the true minimum.
|
||
|
*/
|
||
|
max = min_t(u64, pos + size, end);
|
||
|
}
|
||
|
|
||
|
if (iov_iter_rw(iter) == WRITE) {
|
||
|
len = copy_from_iter_pmem(dax.addr, max - pos, iter);
|
||
|
} else if (!hole)
|
||
|
len = copy_to_iter((void __force *) dax.addr, max - pos,
|
||
|
iter);
|
||
|
else
|
||
|
len = iov_iter_zero(max - pos, iter);
|
||
|
|
||
|
if (!len) {
|
||
|
rc = -EFAULT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pos += len;
|
||
|
if (!IS_ERR(dax.addr))
|
||
|
dax.addr += len;
|
||
|
}
|
||
|
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
|
||
|
return (pos == start) ? rc : pos - start;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* dax_do_io - Perform I/O to a DAX file
|
||
|
* @iocb: The control block for this I/O
|
||
|
* @inode: The file which the I/O is directed at
|
||
|
* @iter: The addresses to do I/O from or to
|
||
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
||
|
* @end_io: A filesystem callback for I/O completion
|
||
|
* @flags: See below
|
||
|
*
|
||
|
* This function uses the same locking scheme as do_blockdev_direct_IO:
|
||
|
* If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
|
||
|
* caller for writes. For reads, we take and release the i_mutex ourselves.
|
||
|
* If DIO_LOCKING is not set, the filesystem takes care of its own locking.
|
||
|
* As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
|
||
|
* is in progress.
|
||
|
*/
|
||
|
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
|
||
|
struct iov_iter *iter, get_block_t get_block,
|
||
|
dio_iodone_t end_io, int flags)
|
||
|
{
|
||
|
struct buffer_head bh;
|
||
|
ssize_t retval = -EINVAL;
|
||
|
loff_t pos = iocb->ki_pos;
|
||
|
loff_t end = pos + iov_iter_count(iter);
|
||
|
|
||
|
memset(&bh, 0, sizeof(bh));
|
||
|
bh.b_bdev = inode->i_sb->s_bdev;
|
||
|
|
||
|
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
|
||
|
inode_lock(inode);
|
||
|
|
||
|
/* Protects against truncate */
|
||
|
if (!(flags & DIO_SKIP_DIO_COUNT))
|
||
|
inode_dio_begin(inode);
|
||
|
|
||
|
retval = dax_io(inode, iter, pos, end, get_block, &bh);
|
||
|
|
||
|
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
|
||
|
inode_unlock(inode);
|
||
|
|
||
|
if (end_io) {
|
||
|
int err;
|
||
|
|
||
|
err = end_io(iocb, pos, retval, bh.b_private);
|
||
|
if (err)
|
||
|
retval = err;
|
||
|
}
|
||
|
|
||
|
if (!(flags & DIO_SKIP_DIO_COUNT))
|
||
|
inode_dio_end(inode);
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_do_io);
|
||
|
|
||
|
/*
|
||
|
* DAX radix tree locking
|
||
|
*/
|
||
|
struct exceptional_entry_key {
|
||
|
struct address_space *mapping;
|
||
|
unsigned long index;
|
||
|
};
|
||
|
|
||
|
struct wait_exceptional_entry_queue {
|
||
|
wait_queue_t wait;
|
||
|
struct exceptional_entry_key key;
|
||
|
};
|
||
|
|
||
|
static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
|
||
|
int sync, void *keyp)
|
||
|
{
|
||
|
struct exceptional_entry_key *key = keyp;
|
||
|
struct wait_exceptional_entry_queue *ewait =
|
||
|
container_of(wait, struct wait_exceptional_entry_queue, wait);
|
||
|
|
||
|
if (key->mapping != ewait->key.mapping ||
|
||
|
key->index != ewait->key.index)
|
||
|
return 0;
|
||
|
return autoremove_wake_function(wait, mode, sync, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether the given slot is locked. The function must be called with
|
||
|
* mapping->tree_lock held
|
||
|
*/
|
||
|
static inline int slot_locked(struct address_space *mapping, void **slot)
|
||
|
{
|
||
|
unsigned long entry = (unsigned long)
|
||
|
radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
|
||
|
return entry & RADIX_DAX_ENTRY_LOCK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Mark the given slot is locked. The function must be called with
|
||
|
* mapping->tree_lock held
|
||
|
*/
|
||
|
static inline void *lock_slot(struct address_space *mapping, void **slot)
|
||
|
{
|
||
|
unsigned long entry = (unsigned long)
|
||
|
radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
|
||
|
|
||
|
entry |= RADIX_DAX_ENTRY_LOCK;
|
||
|
radix_tree_replace_slot(slot, (void *)entry);
|
||
|
return (void *)entry;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Mark the given slot is unlocked. The function must be called with
|
||
|
* mapping->tree_lock held
|
||
|
*/
|
||
|
static inline void *unlock_slot(struct address_space *mapping, void **slot)
|
||
|
{
|
||
|
unsigned long entry = (unsigned long)
|
||
|
radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
|
||
|
|
||
|
entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
|
||
|
radix_tree_replace_slot(slot, (void *)entry);
|
||
|
return (void *)entry;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Lookup entry in radix tree, wait for it to become unlocked if it is
|
||
|
* exceptional entry and return it. The caller must call
|
||
|
* put_unlocked_mapping_entry() when he decided not to lock the entry or
|
||
|
* put_locked_mapping_entry() when he locked the entry and now wants to
|
||
|
* unlock it.
|
||
|
*
|
||
|
* The function must be called with mapping->tree_lock held.
|
||
|
*/
|
||
|
static void *get_unlocked_mapping_entry(struct address_space *mapping,
|
||
|
pgoff_t index, void ***slotp)
|
||
|
{
|
||
|
void *ret, **slot;
|
||
|
struct wait_exceptional_entry_queue ewait;
|
||
|
wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
|
||
|
|
||
|
init_wait(&ewait.wait);
|
||
|
ewait.wait.func = wake_exceptional_entry_func;
|
||
|
ewait.key.mapping = mapping;
|
||
|
ewait.key.index = index;
|
||
|
|
||
|
for (;;) {
|
||
|
ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
|
||
|
&slot);
|
||
|
if (!ret || !radix_tree_exceptional_entry(ret) ||
|
||
|
!slot_locked(mapping, slot)) {
|
||
|
if (slotp)
|
||
|
*slotp = slot;
|
||
|
return ret;
|
||
|
}
|
||
|
prepare_to_wait_exclusive(wq, &ewait.wait,
|
||
|
TASK_UNINTERRUPTIBLE);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
schedule();
|
||
|
finish_wait(wq, &ewait.wait);
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find radix tree entry at given index. If it points to a page, return with
|
||
|
* the page locked. If it points to the exceptional entry, return with the
|
||
|
* radix tree entry locked. If the radix tree doesn't contain given index,
|
||
|
* create empty exceptional entry for the index and return with it locked.
|
||
|
*
|
||
|
* Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
|
||
|
* persistent memory the benefit is doubtful. We can add that later if we can
|
||
|
* show it helps.
|
||
|
*/
|
||
|
static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
|
||
|
{
|
||
|
void *ret, **slot;
|
||
|
|
||
|
restart:
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
ret = get_unlocked_mapping_entry(mapping, index, &slot);
|
||
|
/* No entry for given index? Make sure radix tree is big enough. */
|
||
|
if (!ret) {
|
||
|
int err;
|
||
|
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
err = radix_tree_preload(
|
||
|
mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
|
||
|
if (err)
|
||
|
return ERR_PTR(err);
|
||
|
ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
|
||
|
RADIX_DAX_ENTRY_LOCK);
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
err = radix_tree_insert(&mapping->page_tree, index, ret);
|
||
|
radix_tree_preload_end();
|
||
|
if (err) {
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
/* Someone already created the entry? */
|
||
|
if (err == -EEXIST)
|
||
|
goto restart;
|
||
|
return ERR_PTR(err);
|
||
|
}
|
||
|
/* Good, we have inserted empty locked entry into the tree. */
|
||
|
mapping->nrexceptional++;
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
/* Normal page in radix tree? */
|
||
|
if (!radix_tree_exceptional_entry(ret)) {
|
||
|
struct page *page = ret;
|
||
|
|
||
|
get_page(page);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
lock_page(page);
|
||
|
/* Page got truncated? Retry... */
|
||
|
if (unlikely(page->mapping != mapping)) {
|
||
|
unlock_page(page);
|
||
|
put_page(page);
|
||
|
goto restart;
|
||
|
}
|
||
|
return page;
|
||
|
}
|
||
|
ret = lock_slot(mapping, slot);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void dax_wake_mapping_entry_waiter(struct address_space *mapping,
|
||
|
pgoff_t index, bool wake_all)
|
||
|
{
|
||
|
wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
|
||
|
|
||
|
/*
|
||
|
* Checking for locked entry and prepare_to_wait_exclusive() happens
|
||
|
* under mapping->tree_lock, ditto for entry handling in our callers.
|
||
|
* So at this point all tasks that could have seen our entry locked
|
||
|
* must be in the waitqueue and the following check will see them.
|
||
|
*/
|
||
|
if (waitqueue_active(wq)) {
|
||
|
struct exceptional_entry_key key;
|
||
|
|
||
|
key.mapping = mapping;
|
||
|
key.index = index;
|
||
|
__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
|
||
|
{
|
||
|
void *ret, **slot;
|
||
|
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
|
||
|
if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
|
||
|
!slot_locked(mapping, slot))) {
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return;
|
||
|
}
|
||
|
unlock_slot(mapping, slot);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
dax_wake_mapping_entry_waiter(mapping, index, false);
|
||
|
}
|
||
|
|
||
|
static void put_locked_mapping_entry(struct address_space *mapping,
|
||
|
pgoff_t index, void *entry)
|
||
|
{
|
||
|
if (!radix_tree_exceptional_entry(entry)) {
|
||
|
unlock_page(entry);
|
||
|
put_page(entry);
|
||
|
} else {
|
||
|
dax_unlock_mapping_entry(mapping, index);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when we are done with radix tree entry we looked up via
|
||
|
* get_unlocked_mapping_entry() and which we didn't lock in the end.
|
||
|
*/
|
||
|
static void put_unlocked_mapping_entry(struct address_space *mapping,
|
||
|
pgoff_t index, void *entry)
|
||
|
{
|
||
|
if (!radix_tree_exceptional_entry(entry))
|
||
|
return;
|
||
|
|
||
|
/* We have to wake up next waiter for the radix tree entry lock */
|
||
|
dax_wake_mapping_entry_waiter(mapping, index, false);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
|
||
|
* entry to get unlocked before deleting it.
|
||
|
*/
|
||
|
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
|
||
|
{
|
||
|
void *entry;
|
||
|
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
entry = get_unlocked_mapping_entry(mapping, index, NULL);
|
||
|
/*
|
||
|
* This gets called from truncate / punch_hole path. As such, the caller
|
||
|
* must hold locks protecting against concurrent modifications of the
|
||
|
* radix tree (usually fs-private i_mmap_sem for writing). Since the
|
||
|
* caller has seen exceptional entry for this index, we better find it
|
||
|
* at that index as well...
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
radix_tree_delete(&mapping->page_tree, index);
|
||
|
mapping->nrexceptional--;
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
dax_wake_mapping_entry_waiter(mapping, index, true);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The user has performed a load from a hole in the file. Allocating
|
||
|
* a new page in the file would cause excessive storage usage for
|
||
|
* workloads with sparse files. We allocate a page cache page instead.
|
||
|
* We'll kick it out of the page cache if it's ever written to,
|
||
|
* otherwise it will simply fall out of the page cache under memory
|
||
|
* pressure without ever having been dirtied.
|
||
|
*/
|
||
|
static int dax_load_hole(struct address_space *mapping, void *entry,
|
||
|
struct vm_fault *vmf)
|
||
|
{
|
||
|
struct page *page;
|
||
|
|
||
|
/* Hole page already exists? Return it... */
|
||
|
if (!radix_tree_exceptional_entry(entry)) {
|
||
|
vmf->page = entry;
|
||
|
return VM_FAULT_LOCKED;
|
||
|
}
|
||
|
|
||
|
/* This will replace locked radix tree entry with a hole page */
|
||
|
page = find_or_create_page(mapping, vmf->pgoff,
|
||
|
vmf->gfp_mask | __GFP_ZERO);
|
||
|
if (!page) {
|
||
|
put_locked_mapping_entry(mapping, vmf->pgoff, entry);
|
||
|
return VM_FAULT_OOM;
|
||
|
}
|
||
|
vmf->page = page;
|
||
|
return VM_FAULT_LOCKED;
|
||
|
}
|
||
|
|
||
|
static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
|
||
|
struct page *to, unsigned long vaddr)
|
||
|
{
|
||
|
struct blk_dax_ctl dax = {
|
||
|
.sector = sector,
|
||
|
.size = size,
|
||
|
};
|
||
|
void *vto;
|
||
|
|
||
|
if (dax_map_atomic(bdev, &dax) < 0)
|
||
|
return PTR_ERR(dax.addr);
|
||
|
vto = kmap_atomic(to);
|
||
|
copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
|
||
|
kunmap_atomic(vto);
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
|
||
|
|
||
|
static void *dax_insert_mapping_entry(struct address_space *mapping,
|
||
|
struct vm_fault *vmf,
|
||
|
void *entry, sector_t sector)
|
||
|
{
|
||
|
struct radix_tree_root *page_tree = &mapping->page_tree;
|
||
|
int error = 0;
|
||
|
bool hole_fill = false;
|
||
|
void *new_entry;
|
||
|
pgoff_t index = vmf->pgoff;
|
||
|
|
||
|
if (vmf->flags & FAULT_FLAG_WRITE)
|
||
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
||
|
|
||
|
/* Replacing hole page with block mapping? */
|
||
|
if (!radix_tree_exceptional_entry(entry)) {
|
||
|
hole_fill = true;
|
||
|
/*
|
||
|
* Unmap the page now before we remove it from page cache below.
|
||
|
* The page is locked so it cannot be faulted in again.
|
||
|
*/
|
||
|
unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
|
||
|
PAGE_SIZE, 0);
|
||
|
error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
|
||
|
if (error)
|
||
|
return ERR_PTR(error);
|
||
|
}
|
||
|
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
|
||
|
RADIX_DAX_ENTRY_LOCK);
|
||
|
if (hole_fill) {
|
||
|
__delete_from_page_cache(entry, NULL);
|
||
|
/* Drop pagecache reference */
|
||
|
put_page(entry);
|
||
|
error = radix_tree_insert(page_tree, index, new_entry);
|
||
|
if (error) {
|
||
|
new_entry = ERR_PTR(error);
|
||
|
goto unlock;
|
||
|
}
|
||
|
mapping->nrexceptional++;
|
||
|
} else {
|
||
|
void **slot;
|
||
|
void *ret;
|
||
|
|
||
|
ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
|
||
|
WARN_ON_ONCE(ret != entry);
|
||
|
radix_tree_replace_slot(slot, new_entry);
|
||
|
}
|
||
|
if (vmf->flags & FAULT_FLAG_WRITE)
|
||
|
radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
|
||
|
unlock:
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
if (hole_fill) {
|
||
|
radix_tree_preload_end();
|
||
|
/*
|
||
|
* We don't need hole page anymore, it has been replaced with
|
||
|
* locked radix tree entry now.
|
||
|
*/
|
||
|
if (mapping->a_ops->freepage)
|
||
|
mapping->a_ops->freepage(entry);
|
||
|
unlock_page(entry);
|
||
|
put_page(entry);
|
||
|
}
|
||
|
return new_entry;
|
||
|
}
|
||
|
|
||
|
static int dax_writeback_one(struct block_device *bdev,
|
||
|
struct address_space *mapping, pgoff_t index, void *entry)
|
||
|
{
|
||
|
struct radix_tree_root *page_tree = &mapping->page_tree;
|
||
|
int type = RADIX_DAX_TYPE(entry);
|
||
|
struct radix_tree_node *node;
|
||
|
struct blk_dax_ctl dax;
|
||
|
void **slot;
|
||
|
int ret = 0;
|
||
|
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
/*
|
||
|
* Regular page slots are stabilized by the page lock even
|
||
|
* without the tree itself locked. These unlocked entries
|
||
|
* need verification under the tree lock.
|
||
|
*/
|
||
|
if (!__radix_tree_lookup(page_tree, index, &node, &slot))
|
||
|
goto unlock;
|
||
|
if (*slot != entry)
|
||
|
goto unlock;
|
||
|
|
||
|
/* another fsync thread may have already written back this entry */
|
||
|
if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
|
||
|
goto unlock;
|
||
|
|
||
|
if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
|
||
|
ret = -EIO;
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
dax.sector = RADIX_DAX_SECTOR(entry);
|
||
|
dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
|
||
|
/*
|
||
|
* We cannot hold tree_lock while calling dax_map_atomic() because it
|
||
|
* eventually calls cond_resched().
|
||
|
*/
|
||
|
ret = dax_map_atomic(bdev, &dax);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (WARN_ON_ONCE(ret < dax.size)) {
|
||
|
ret = -EIO;
|
||
|
goto unmap;
|
||
|
}
|
||
|
|
||
|
wb_cache_pmem(dax.addr, dax.size);
|
||
|
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
unmap:
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
return ret;
|
||
|
|
||
|
unlock:
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Flush the mapping to the persistent domain within the byte range of [start,
|
||
|
* end]. This is required by data integrity operations to ensure file data is
|
||
|
* on persistent storage prior to completion of the operation.
|
||
|
*/
|
||
|
int dax_writeback_mapping_range(struct address_space *mapping,
|
||
|
struct block_device *bdev, struct writeback_control *wbc)
|
||
|
{
|
||
|
struct inode *inode = mapping->host;
|
||
|
pgoff_t start_index, end_index, pmd_index;
|
||
|
pgoff_t indices[PAGEVEC_SIZE];
|
||
|
struct pagevec pvec;
|
||
|
bool done = false;
|
||
|
int i, ret = 0;
|
||
|
void *entry;
|
||
|
|
||
|
if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
|
||
|
return -EIO;
|
||
|
|
||
|
if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
|
||
|
return 0;
|
||
|
|
||
|
start_index = wbc->range_start >> PAGE_SHIFT;
|
||
|
end_index = wbc->range_end >> PAGE_SHIFT;
|
||
|
pmd_index = DAX_PMD_INDEX(start_index);
|
||
|
|
||
|
rcu_read_lock();
|
||
|
entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/* see if the start of our range is covered by a PMD entry */
|
||
|
if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
|
||
|
start_index = pmd_index;
|
||
|
|
||
|
tag_pages_for_writeback(mapping, start_index, end_index);
|
||
|
|
||
|
pagevec_init(&pvec, 0);
|
||
|
while (!done) {
|
||
|
pvec.nr = find_get_entries_tag(mapping, start_index,
|
||
|
PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
|
||
|
pvec.pages, indices);
|
||
|
|
||
|
if (pvec.nr == 0)
|
||
|
break;
|
||
|
|
||
|
for (i = 0; i < pvec.nr; i++) {
|
||
|
if (indices[i] > end_index) {
|
||
|
done = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ret = dax_writeback_one(bdev, mapping, indices[i],
|
||
|
pvec.pages[i]);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
}
|
||
|
start_index = indices[pvec.nr - 1] + 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
|
||
|
|
||
|
static int dax_insert_mapping(struct address_space *mapping,
|
||
|
struct block_device *bdev, sector_t sector, size_t size,
|
||
|
void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
|
||
|
{
|
||
|
unsigned long vaddr = (unsigned long)vmf->virtual_address;
|
||
|
struct blk_dax_ctl dax = {
|
||
|
.sector = sector,
|
||
|
.size = size,
|
||
|
};
|
||
|
void *ret;
|
||
|
void *entry = *entryp;
|
||
|
|
||
|
if (dax_map_atomic(bdev, &dax) < 0)
|
||
|
return PTR_ERR(dax.addr);
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
|
||
|
ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
|
||
|
if (IS_ERR(ret))
|
||
|
return PTR_ERR(ret);
|
||
|
*entryp = ret;
|
||
|
|
||
|
return vm_insert_mixed(vma, vaddr, dax.pfn);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* dax_fault - handle a page fault on a DAX file
|
||
|
* @vma: The virtual memory area where the fault occurred
|
||
|
* @vmf: The description of the fault
|
||
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
||
|
*
|
||
|
* When a page fault occurs, filesystems may call this helper in their
|
||
|
* fault handler for DAX files. dax_fault() assumes the caller has done all
|
||
|
* the necessary locking for the page fault to proceed successfully.
|
||
|
*/
|
||
|
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
|
||
|
get_block_t get_block)
|
||
|
{
|
||
|
struct file *file = vma->vm_file;
|
||
|
struct address_space *mapping = file->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
void *entry;
|
||
|
struct buffer_head bh;
|
||
|
unsigned long vaddr = (unsigned long)vmf->virtual_address;
|
||
|
unsigned blkbits = inode->i_blkbits;
|
||
|
sector_t block;
|
||
|
pgoff_t size;
|
||
|
int error;
|
||
|
int major = 0;
|
||
|
|
||
|
/*
|
||
|
* Check whether offset isn't beyond end of file now. Caller is supposed
|
||
|
* to hold locks serializing us with truncate / punch hole so this is
|
||
|
* a reliable test.
|
||
|
*/
|
||
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
||
|
if (vmf->pgoff >= size)
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
|
||
|
memset(&bh, 0, sizeof(bh));
|
||
|
block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
|
||
|
bh.b_bdev = inode->i_sb->s_bdev;
|
||
|
bh.b_size = PAGE_SIZE;
|
||
|
|
||
|
entry = grab_mapping_entry(mapping, vmf->pgoff);
|
||
|
if (IS_ERR(entry)) {
|
||
|
error = PTR_ERR(entry);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
error = get_block(inode, block, &bh, 0);
|
||
|
if (!error && (bh.b_size < PAGE_SIZE))
|
||
|
error = -EIO; /* fs corruption? */
|
||
|
if (error)
|
||
|
goto unlock_entry;
|
||
|
|
||
|
if (vmf->cow_page) {
|
||
|
struct page *new_page = vmf->cow_page;
|
||
|
if (buffer_written(&bh))
|
||
|
error = copy_user_dax(bh.b_bdev, to_sector(&bh, inode),
|
||
|
bh.b_size, new_page, vaddr);
|
||
|
else
|
||
|
clear_user_highpage(new_page, vaddr);
|
||
|
if (error)
|
||
|
goto unlock_entry;
|
||
|
if (!radix_tree_exceptional_entry(entry)) {
|
||
|
vmf->page = entry;
|
||
|
return VM_FAULT_LOCKED;
|
||
|
}
|
||
|
vmf->entry = entry;
|
||
|
return VM_FAULT_DAX_LOCKED;
|
||
|
}
|
||
|
|
||
|
if (!buffer_mapped(&bh)) {
|
||
|
if (vmf->flags & FAULT_FLAG_WRITE) {
|
||
|
error = get_block(inode, block, &bh, 1);
|
||
|
count_vm_event(PGMAJFAULT);
|
||
|
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
|
||
|
major = VM_FAULT_MAJOR;
|
||
|
if (!error && (bh.b_size < PAGE_SIZE))
|
||
|
error = -EIO;
|
||
|
if (error)
|
||
|
goto unlock_entry;
|
||
|
} else {
|
||
|
return dax_load_hole(mapping, entry, vmf);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Filesystem should not return unwritten buffers to us! */
|
||
|
WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
|
||
|
error = dax_insert_mapping(mapping, bh.b_bdev, to_sector(&bh, inode),
|
||
|
bh.b_size, &entry, vma, vmf);
|
||
|
unlock_entry:
|
||
|
put_locked_mapping_entry(mapping, vmf->pgoff, entry);
|
||
|
out:
|
||
|
if (error == -ENOMEM)
|
||
|
return VM_FAULT_OOM | major;
|
||
|
/* -EBUSY is fine, somebody else faulted on the same PTE */
|
||
|
if ((error < 0) && (error != -EBUSY))
|
||
|
return VM_FAULT_SIGBUS | major;
|
||
|
return VM_FAULT_NOPAGE | major;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_fault);
|
||
|
|
||
|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
||
|
/*
|
||
|
* The 'colour' (ie low bits) within a PMD of a page offset. This comes up
|
||
|
* more often than one might expect in the below function.
|
||
|
*/
|
||
|
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
|
||
|
|
||
|
static void __dax_dbg(struct buffer_head *bh, unsigned long address,
|
||
|
const char *reason, const char *fn)
|
||
|
{
|
||
|
if (bh) {
|
||
|
char bname[BDEVNAME_SIZE];
|
||
|
bdevname(bh->b_bdev, bname);
|
||
|
pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
|
||
|
"length %zd fallback: %s\n", fn, current->comm,
|
||
|
address, bname, bh->b_state, (u64)bh->b_blocknr,
|
||
|
bh->b_size, reason);
|
||
|
} else {
|
||
|
pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
|
||
|
current->comm, address, reason);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
|
||
|
|
||
|
/**
|
||
|
* dax_pmd_fault - handle a PMD fault on a DAX file
|
||
|
* @vma: The virtual memory area where the fault occurred
|
||
|
* @vmf: The description of the fault
|
||
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
||
|
*
|
||
|
* When a page fault occurs, filesystems may call this helper in their
|
||
|
* pmd_fault handler for DAX files.
|
||
|
*/
|
||
|
int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
|
||
|
pmd_t *pmd, unsigned int flags, get_block_t get_block)
|
||
|
{
|
||
|
struct file *file = vma->vm_file;
|
||
|
struct address_space *mapping = file->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
struct buffer_head bh;
|
||
|
unsigned blkbits = inode->i_blkbits;
|
||
|
unsigned long pmd_addr = address & PMD_MASK;
|
||
|
bool write = flags & FAULT_FLAG_WRITE;
|
||
|
struct block_device *bdev;
|
||
|
pgoff_t size, pgoff;
|
||
|
sector_t block;
|
||
|
int result = 0;
|
||
|
bool alloc = false;
|
||
|
|
||
|
/* dax pmd mappings require pfn_t_devmap() */
|
||
|
if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
|
||
|
/* Fall back to PTEs if we're going to COW */
|
||
|
if (write && !(vma->vm_flags & VM_SHARED)) {
|
||
|
split_huge_pmd(vma, pmd, address);
|
||
|
dax_pmd_dbg(NULL, address, "cow write");
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
}
|
||
|
/* If the PMD would extend outside the VMA */
|
||
|
if (pmd_addr < vma->vm_start) {
|
||
|
dax_pmd_dbg(NULL, address, "vma start unaligned");
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
}
|
||
|
if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
|
||
|
dax_pmd_dbg(NULL, address, "vma end unaligned");
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
}
|
||
|
|
||
|
pgoff = linear_page_index(vma, pmd_addr);
|
||
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
||
|
if (pgoff >= size)
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
/* If the PMD would cover blocks out of the file */
|
||
|
if ((pgoff | PG_PMD_COLOUR) >= size) {
|
||
|
dax_pmd_dbg(NULL, address,
|
||
|
"offset + huge page size > file size");
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
}
|
||
|
|
||
|
memset(&bh, 0, sizeof(bh));
|
||
|
bh.b_bdev = inode->i_sb->s_bdev;
|
||
|
block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
|
||
|
|
||
|
bh.b_size = PMD_SIZE;
|
||
|
|
||
|
if (get_block(inode, block, &bh, 0) != 0)
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
|
||
|
if (!buffer_mapped(&bh) && write) {
|
||
|
if (get_block(inode, block, &bh, 1) != 0)
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
alloc = true;
|
||
|
WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
|
||
|
}
|
||
|
|
||
|
bdev = bh.b_bdev;
|
||
|
|
||
|
/*
|
||
|
* If the filesystem isn't willing to tell us the length of a hole,
|
||
|
* just fall back to PTEs. Calling get_block 512 times in a loop
|
||
|
* would be silly.
|
||
|
*/
|
||
|
if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
|
||
|
dax_pmd_dbg(&bh, address, "allocated block too small");
|
||
|
return VM_FAULT_FALLBACK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we allocated new storage, make sure no process has any
|
||
|
* zero pages covering this hole
|
||
|
*/
|
||
|
if (alloc) {
|
||
|
loff_t lstart = pgoff << PAGE_SHIFT;
|
||
|
loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
|
||
|
|
||
|
truncate_pagecache_range(inode, lstart, lend);
|
||
|
}
|
||
|
|
||
|
if (!write && !buffer_mapped(&bh)) {
|
||
|
spinlock_t *ptl;
|
||
|
pmd_t entry;
|
||
|
struct page *zero_page = mm_get_huge_zero_page(vma->vm_mm);
|
||
|
|
||
|
if (unlikely(!zero_page)) {
|
||
|
dax_pmd_dbg(&bh, address, "no zero page");
|
||
|
goto fallback;
|
||
|
}
|
||
|
|
||
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
||
|
if (!pmd_none(*pmd)) {
|
||
|
spin_unlock(ptl);
|
||
|
dax_pmd_dbg(&bh, address, "pmd already present");
|
||
|
goto fallback;
|
||
|
}
|
||
|
|
||
|
dev_dbg(part_to_dev(bdev->bd_part),
|
||
|
"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
|
||
|
__func__, current->comm, address,
|
||
|
(unsigned long long) to_sector(&bh, inode));
|
||
|
|
||
|
entry = mk_pmd(zero_page, vma->vm_page_prot);
|
||
|
entry = pmd_mkhuge(entry);
|
||
|
set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
|
||
|
result = VM_FAULT_NOPAGE;
|
||
|
spin_unlock(ptl);
|
||
|
} else {
|
||
|
struct blk_dax_ctl dax = {
|
||
|
.sector = to_sector(&bh, inode),
|
||
|
.size = PMD_SIZE,
|
||
|
};
|
||
|
long length = dax_map_atomic(bdev, &dax);
|
||
|
|
||
|
if (length < 0) {
|
||
|
dax_pmd_dbg(&bh, address, "dax-error fallback");
|
||
|
goto fallback;
|
||
|
}
|
||
|
if (length < PMD_SIZE) {
|
||
|
dax_pmd_dbg(&bh, address, "dax-length too small");
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
goto fallback;
|
||
|
}
|
||
|
if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
|
||
|
dax_pmd_dbg(&bh, address, "pfn unaligned");
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
goto fallback;
|
||
|
}
|
||
|
|
||
|
if (!pfn_t_devmap(dax.pfn)) {
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
dax_pmd_dbg(&bh, address, "pfn not in memmap");
|
||
|
goto fallback;
|
||
|
}
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
|
||
|
/*
|
||
|
* For PTE faults we insert a radix tree entry for reads, and
|
||
|
* leave it clean. Then on the first write we dirty the radix
|
||
|
* tree entry via the dax_pfn_mkwrite() path. This sequence
|
||
|
* allows the dax_pfn_mkwrite() call to be simpler and avoid a
|
||
|
* call into get_block() to translate the pgoff to a sector in
|
||
|
* order to be able to create a new radix tree entry.
|
||
|
*
|
||
|
* The PMD path doesn't have an equivalent to
|
||
|
* dax_pfn_mkwrite(), though, so for a read followed by a
|
||
|
* write we traverse all the way through dax_pmd_fault()
|
||
|
* twice. This means we can just skip inserting a radix tree
|
||
|
* entry completely on the initial read and just wait until
|
||
|
* the write to insert a dirty entry.
|
||
|
*/
|
||
|
if (write) {
|
||
|
/*
|
||
|
* We should insert radix-tree entry and dirty it here.
|
||
|
* For now this is broken...
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
dev_dbg(part_to_dev(bdev->bd_part),
|
||
|
"%s: %s addr: %lx pfn: %lx sect: %llx\n",
|
||
|
__func__, current->comm, address,
|
||
|
pfn_t_to_pfn(dax.pfn),
|
||
|
(unsigned long long) dax.sector);
|
||
|
result |= vmf_insert_pfn_pmd(vma, address, pmd,
|
||
|
dax.pfn, write);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return result;
|
||
|
|
||
|
fallback:
|
||
|
count_vm_event(THP_FAULT_FALLBACK);
|
||
|
result = VM_FAULT_FALLBACK;
|
||
|
goto out;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_pmd_fault);
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
/**
|
||
|
* dax_pfn_mkwrite - handle first write to DAX page
|
||
|
* @vma: The virtual memory area where the fault occurred
|
||
|
* @vmf: The description of the fault
|
||
|
*/
|
||
|
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
|
||
|
{
|
||
|
struct file *file = vma->vm_file;
|
||
|
struct address_space *mapping = file->f_mapping;
|
||
|
void *entry;
|
||
|
pgoff_t index = vmf->pgoff;
|
||
|
|
||
|
spin_lock_irq(&mapping->tree_lock);
|
||
|
entry = get_unlocked_mapping_entry(mapping, index, NULL);
|
||
|
if (!entry || !radix_tree_exceptional_entry(entry))
|
||
|
goto out;
|
||
|
radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
|
||
|
put_unlocked_mapping_entry(mapping, index, entry);
|
||
|
out:
|
||
|
spin_unlock_irq(&mapping->tree_lock);
|
||
|
return VM_FAULT_NOPAGE;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
|
||
|
|
||
|
static bool dax_range_is_aligned(struct block_device *bdev,
|
||
|
unsigned int offset, unsigned int length)
|
||
|
{
|
||
|
unsigned short sector_size = bdev_logical_block_size(bdev);
|
||
|
|
||
|
if (!IS_ALIGNED(offset, sector_size))
|
||
|
return false;
|
||
|
if (!IS_ALIGNED(length, sector_size))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
|
||
|
unsigned int offset, unsigned int length)
|
||
|
{
|
||
|
struct blk_dax_ctl dax = {
|
||
|
.sector = sector,
|
||
|
.size = PAGE_SIZE,
|
||
|
};
|
||
|
|
||
|
if (dax_range_is_aligned(bdev, offset, length)) {
|
||
|
sector_t start_sector = dax.sector + (offset >> 9);
|
||
|
|
||
|
return blkdev_issue_zeroout(bdev, start_sector,
|
||
|
length >> 9, GFP_NOFS, true);
|
||
|
} else {
|
||
|
if (dax_map_atomic(bdev, &dax) < 0)
|
||
|
return PTR_ERR(dax.addr);
|
||
|
clear_pmem(dax.addr + offset, length);
|
||
|
dax_unmap_atomic(bdev, &dax);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(__dax_zero_page_range);
|
||
|
|
||
|
/**
|
||
|
* dax_zero_page_range - zero a range within a page of a DAX file
|
||
|
* @inode: The file being truncated
|
||
|
* @from: The file offset that is being truncated to
|
||
|
* @length: The number of bytes to zero
|
||
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
||
|
*
|
||
|
* This function can be called by a filesystem when it is zeroing part of a
|
||
|
* page in a DAX file. This is intended for hole-punch operations. If
|
||
|
* you are truncating a file, the helper function dax_truncate_page() may be
|
||
|
* more convenient.
|
||
|
*/
|
||
|
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
|
||
|
get_block_t get_block)
|
||
|
{
|
||
|
struct buffer_head bh;
|
||
|
pgoff_t index = from >> PAGE_SHIFT;
|
||
|
unsigned offset = from & (PAGE_SIZE-1);
|
||
|
int err;
|
||
|
|
||
|
/* Block boundary? Nothing to do */
|
||
|
if (!length)
|
||
|
return 0;
|
||
|
BUG_ON((offset + length) > PAGE_SIZE);
|
||
|
|
||
|
memset(&bh, 0, sizeof(bh));
|
||
|
bh.b_bdev = inode->i_sb->s_bdev;
|
||
|
bh.b_size = PAGE_SIZE;
|
||
|
err = get_block(inode, index, &bh, 0);
|
||
|
if (err < 0 || !buffer_written(&bh))
|
||
|
return err;
|
||
|
|
||
|
return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
|
||
|
offset, length);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_zero_page_range);
|
||
|
|
||
|
/**
|
||
|
* dax_truncate_page - handle a partial page being truncated in a DAX file
|
||
|
* @inode: The file being truncated
|
||
|
* @from: The file offset that is being truncated to
|
||
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
||
|
*
|
||
|
* Similar to block_truncate_page(), this function can be called by a
|
||
|
* filesystem when it is truncating a DAX file to handle the partial page.
|
||
|
*/
|
||
|
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
|
||
|
{
|
||
|
unsigned length = PAGE_ALIGN(from) - from;
|
||
|
return dax_zero_page_range(inode, from, length, get_block);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dax_truncate_page);
|
||
|
|
||
|
#ifdef CONFIG_FS_IOMAP
|
||
|
static loff_t
|
||
|
iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
|
||
|
struct iomap *iomap)
|
||
|
{
|
||
|
struct iov_iter *iter = data;
|
||
|
loff_t end = pos + length, done = 0;
|
||
|
ssize_t ret = 0;
|
||
|
|
||
|
if (iov_iter_rw(iter) == READ) {
|
||
|
end = min(end, i_size_read(inode));
|
||
|
if (pos >= end)
|
||
|
return 0;
|
||
|
|
||
|
if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
|
||
|
return iov_iter_zero(min(length, end - pos), iter);
|
||
|
}
|
||
|
|
||
|
if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
|
||
|
return -EIO;
|
||
|
|
||
|
/*
|
||
|
* Write can allocate block for an area which has a hole page mapped
|
||
|
* into page tables. We have to tear down these mappings so that data
|
||
|
* written by write(2) is visible in mmap.
|
||
|
*/
|
||
|
if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
|
||
|
invalidate_inode_pages2_range(inode->i_mapping,
|
||
|
pos >> PAGE_SHIFT,
|
||
|
(end - 1) >> PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
while (pos < end) {
|
||
|
unsigned offset = pos & (PAGE_SIZE - 1);
|
||
|
struct blk_dax_ctl dax = { 0 };
|
||
|
ssize_t map_len;
|
||
|
|
||
|
if (fatal_signal_pending(current)) {
|
||
|
ret = -EINTR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
dax.sector = iomap->blkno +
|
||
|
(((pos & PAGE_MASK) - iomap->offset) >> 9);
|
||
|
dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
|
||
|
map_len = dax_map_atomic(iomap->bdev, &dax);
|
||
|
if (map_len < 0) {
|
||
|
ret = map_len;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
dax.addr += offset;
|
||
|
map_len -= offset;
|
||
|
if (map_len > end - pos)
|
||
|
map_len = end - pos;
|
||
|
|
||
|
if (iov_iter_rw(iter) == WRITE)
|
||
|
map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
|
||
|
else
|
||
|
map_len = copy_to_iter(dax.addr, map_len, iter);
|
||
|
dax_unmap_atomic(iomap->bdev, &dax);
|
||
|
if (map_len <= 0) {
|
||
|
ret = map_len ? map_len : -EFAULT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pos += map_len;
|
||
|
length -= map_len;
|
||
|
done += map_len;
|
||
|
}
|
||
|
|
||
|
return done ? done : ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iomap_dax_rw - Perform I/O to a DAX file
|
||
|
* @iocb: The control block for this I/O
|
||
|
* @iter: The addresses to do I/O from or to
|
||
|
* @ops: iomap ops passed from the file system
|
||
|
*
|
||
|
* This function performs read and write operations to directly mapped
|
||
|
* persistent memory. The callers needs to take care of read/write exclusion
|
||
|
* and evicting any page cache pages in the region under I/O.
|
||
|
*/
|
||
|
ssize_t
|
||
|
iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
|
||
|
struct iomap_ops *ops)
|
||
|
{
|
||
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
loff_t pos = iocb->ki_pos, ret = 0, done = 0;
|
||
|
unsigned flags = 0;
|
||
|
|
||
|
if (iov_iter_rw(iter) == WRITE)
|
||
|
flags |= IOMAP_WRITE;
|
||
|
|
||
|
while (iov_iter_count(iter)) {
|
||
|
ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
|
||
|
iter, iomap_dax_actor);
|
||
|
if (ret <= 0)
|
||
|
break;
|
||
|
pos += ret;
|
||
|
done += ret;
|
||
|
}
|
||
|
|
||
|
iocb->ki_pos += done;
|
||
|
return done ? done : ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(iomap_dax_rw);
|
||
|
|
||
|
/**
|
||
|
* iomap_dax_fault - handle a page fault on a DAX file
|
||
|
* @vma: The virtual memory area where the fault occurred
|
||
|
* @vmf: The description of the fault
|
||
|
* @ops: iomap ops passed from the file system
|
||
|
*
|
||
|
* When a page fault occurs, filesystems may call this helper in their fault
|
||
|
* or mkwrite handler for DAX files. Assumes the caller has done all the
|
||
|
* necessary locking for the page fault to proceed successfully.
|
||
|
*/
|
||
|
int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
|
||
|
struct iomap_ops *ops)
|
||
|
{
|
||
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
||
|
struct inode *inode = mapping->host;
|
||
|
unsigned long vaddr = (unsigned long)vmf->virtual_address;
|
||
|
loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
|
||
|
sector_t sector;
|
||
|
struct iomap iomap = { 0 };
|
||
|
unsigned flags = 0;
|
||
|
int error, major = 0;
|
||
|
void *entry;
|
||
|
|
||
|
/*
|
||
|
* Check whether offset isn't beyond end of file now. Caller is supposed
|
||
|
* to hold locks serializing us with truncate / punch hole so this is
|
||
|
* a reliable test.
|
||
|
*/
|
||
|
if (pos >= i_size_read(inode))
|
||
|
return VM_FAULT_SIGBUS;
|
||
|
|
||
|
entry = grab_mapping_entry(mapping, vmf->pgoff);
|
||
|
if (IS_ERR(entry)) {
|
||
|
error = PTR_ERR(entry);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
|
||
|
flags |= IOMAP_WRITE;
|
||
|
|
||
|
/*
|
||
|
* Note that we don't bother to use iomap_apply here: DAX required
|
||
|
* the file system block size to be equal the page size, which means
|
||
|
* that we never have to deal with more than a single extent here.
|
||
|
*/
|
||
|
error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
|
||
|
if (error)
|
||
|
goto unlock_entry;
|
||
|
if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
|
||
|
error = -EIO; /* fs corruption? */
|
||
|
goto unlock_entry;
|
||
|
}
|
||
|
|
||
|
sector = iomap.blkno + (((pos & PAGE_MASK) - iomap.offset) >> 9);
|
||
|
|
||
|
if (vmf->cow_page) {
|
||
|
switch (iomap.type) {
|
||
|
case IOMAP_HOLE:
|
||
|
case IOMAP_UNWRITTEN:
|
||
|
clear_user_highpage(vmf->cow_page, vaddr);
|
||
|
break;
|
||
|
case IOMAP_MAPPED:
|
||
|
error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
|
||
|
vmf->cow_page, vaddr);
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON_ONCE(1);
|
||
|
error = -EIO;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (error)
|
||
|
goto unlock_entry;
|
||
|
if (!radix_tree_exceptional_entry(entry)) {
|
||
|
vmf->page = entry;
|
||
|
return VM_FAULT_LOCKED;
|
||
|
}
|
||
|
vmf->entry = entry;
|
||
|
return VM_FAULT_DAX_LOCKED;
|
||
|
}
|
||
|
|
||
|
switch (iomap.type) {
|
||
|
case IOMAP_MAPPED:
|
||
|
if (iomap.flags & IOMAP_F_NEW) {
|
||
|
count_vm_event(PGMAJFAULT);
|
||
|
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
|
||
|
major = VM_FAULT_MAJOR;
|
||
|
}
|
||
|
error = dax_insert_mapping(mapping, iomap.bdev, sector,
|
||
|
PAGE_SIZE, &entry, vma, vmf);
|
||
|
break;
|
||
|
case IOMAP_UNWRITTEN:
|
||
|
case IOMAP_HOLE:
|
||
|
if (!(vmf->flags & FAULT_FLAG_WRITE))
|
||
|
return dax_load_hole(mapping, entry, vmf);
|
||
|
/*FALLTHRU*/
|
||
|
default:
|
||
|
WARN_ON_ONCE(1);
|
||
|
error = -EIO;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
unlock_entry:
|
||
|
put_locked_mapping_entry(mapping, vmf->pgoff, entry);
|
||
|
out:
|
||
|
if (error == -ENOMEM)
|
||
|
return VM_FAULT_OOM | major;
|
||
|
/* -EBUSY is fine, somebody else faulted on the same PTE */
|
||
|
if (error < 0 && error != -EBUSY)
|
||
|
return VM_FAULT_SIGBUS | major;
|
||
|
return VM_FAULT_NOPAGE | major;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(iomap_dax_fault);
|
||
|
#endif /* CONFIG_FS_IOMAP */
|