648 lines
16 KiB
C
648 lines
16 KiB
C
|
/* -*- mode: c; c-basic-offset: 8; -*-
|
||
|
* vim: noexpandtab sw=8 ts=8 sts=0:
|
||
|
*
|
||
|
* blockcheck.c
|
||
|
*
|
||
|
* Checksum and ECC codes for the OCFS2 userspace library.
|
||
|
*
|
||
|
* Copyright (C) 2006, 2008 Oracle. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public
|
||
|
* License, version 2, as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/buffer_head.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
|
||
|
#include <cluster/masklog.h>
|
||
|
|
||
|
#include "ocfs2.h"
|
||
|
|
||
|
#include "blockcheck.h"
|
||
|
|
||
|
|
||
|
/*
|
||
|
* We use the following conventions:
|
||
|
*
|
||
|
* d = # data bits
|
||
|
* p = # parity bits
|
||
|
* c = # total code bits (d + p)
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Calculate the bit offset in the hamming code buffer based on the bit's
|
||
|
* offset in the data buffer. Since the hamming code reserves all
|
||
|
* power-of-two bits for parity, the data bit number and the code bit
|
||
|
* number are offset by all the parity bits beforehand.
|
||
|
*
|
||
|
* Recall that bit numbers in hamming code are 1-based. This function
|
||
|
* takes the 0-based data bit from the caller.
|
||
|
*
|
||
|
* An example. Take bit 1 of the data buffer. 1 is a power of two (2^0),
|
||
|
* so it's a parity bit. 2 is a power of two (2^1), so it's a parity bit.
|
||
|
* 3 is not a power of two. So bit 1 of the data buffer ends up as bit 3
|
||
|
* in the code buffer.
|
||
|
*
|
||
|
* The caller can pass in *p if it wants to keep track of the most recent
|
||
|
* number of parity bits added. This allows the function to start the
|
||
|
* calculation at the last place.
|
||
|
*/
|
||
|
static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
|
||
|
{
|
||
|
unsigned int b, p = 0;
|
||
|
|
||
|
/*
|
||
|
* Data bits are 0-based, but we're talking code bits, which
|
||
|
* are 1-based.
|
||
|
*/
|
||
|
b = i + 1;
|
||
|
|
||
|
/* Use the cache if it is there */
|
||
|
if (p_cache)
|
||
|
p = *p_cache;
|
||
|
b += p;
|
||
|
|
||
|
/*
|
||
|
* For every power of two below our bit number, bump our bit.
|
||
|
*
|
||
|
* We compare with (b + 1) because we have to compare with what b
|
||
|
* would be _if_ it were bumped up by the parity bit. Capice?
|
||
|
*
|
||
|
* p is set above.
|
||
|
*/
|
||
|
for (; (1 << p) < (b + 1); p++)
|
||
|
b++;
|
||
|
|
||
|
if (p_cache)
|
||
|
*p_cache = p;
|
||
|
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is the low level encoder function. It can be called across
|
||
|
* multiple hunks just like the crc32 code. 'd' is the number of bits
|
||
|
* _in_this_hunk_. nr is the bit offset of this hunk. So, if you had
|
||
|
* two 512B buffers, you would do it like so:
|
||
|
*
|
||
|
* parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
|
||
|
* parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
|
||
|
*
|
||
|
* If you just have one buffer, use ocfs2_hamming_encode_block().
|
||
|
*/
|
||
|
u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
|
||
|
{
|
||
|
unsigned int i, b, p = 0;
|
||
|
|
||
|
BUG_ON(!d);
|
||
|
|
||
|
/*
|
||
|
* b is the hamming code bit number. Hamming code specifies a
|
||
|
* 1-based array, but C uses 0-based. So 'i' is for C, and 'b' is
|
||
|
* for the algorithm.
|
||
|
*
|
||
|
* The i++ in the for loop is so that the start offset passed
|
||
|
* to ocfs2_find_next_bit_set() is one greater than the previously
|
||
|
* found bit.
|
||
|
*/
|
||
|
for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
|
||
|
{
|
||
|
/*
|
||
|
* i is the offset in this hunk, nr + i is the total bit
|
||
|
* offset.
|
||
|
*/
|
||
|
b = calc_code_bit(nr + i, &p);
|
||
|
|
||
|
/*
|
||
|
* Data bits in the resultant code are checked by
|
||
|
* parity bits that are part of the bit number
|
||
|
* representation. Huh?
|
||
|
*
|
||
|
* <wikipedia href="http://en.wikipedia.org/wiki/Hamming_code">
|
||
|
* In other words, the parity bit at position 2^k
|
||
|
* checks bits in positions having bit k set in
|
||
|
* their binary representation. Conversely, for
|
||
|
* instance, bit 13, i.e. 1101(2), is checked by
|
||
|
* bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
|
||
|
* </wikipedia>
|
||
|
*
|
||
|
* Note that 'k' is the _code_ bit number. 'b' in
|
||
|
* our loop.
|
||
|
*/
|
||
|
parity ^= b;
|
||
|
}
|
||
|
|
||
|
/* While the data buffer was treated as little endian, the
|
||
|
* return value is in host endian. */
|
||
|
return parity;
|
||
|
}
|
||
|
|
||
|
u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
|
||
|
{
|
||
|
return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Like ocfs2_hamming_encode(), this can handle hunks. nr is the bit
|
||
|
* offset of the current hunk. If bit to be fixed is not part of the
|
||
|
* current hunk, this does nothing.
|
||
|
*
|
||
|
* If you only have one hunk, use ocfs2_hamming_fix_block().
|
||
|
*/
|
||
|
void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
|
||
|
unsigned int fix)
|
||
|
{
|
||
|
unsigned int i, b;
|
||
|
|
||
|
BUG_ON(!d);
|
||
|
|
||
|
/*
|
||
|
* If the bit to fix has an hweight of 1, it's a parity bit. One
|
||
|
* busted parity bit is its own error. Nothing to do here.
|
||
|
*/
|
||
|
if (hweight32(fix) == 1)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* nr + d is the bit right past the data hunk we're looking at.
|
||
|
* If fix after that, nothing to do
|
||
|
*/
|
||
|
if (fix >= calc_code_bit(nr + d, NULL))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* nr is the offset in the data hunk we're starting at. Let's
|
||
|
* start b at the offset in the code buffer. See hamming_encode()
|
||
|
* for a more detailed description of 'b'.
|
||
|
*/
|
||
|
b = calc_code_bit(nr, NULL);
|
||
|
/* If the fix is before this hunk, nothing to do */
|
||
|
if (fix < b)
|
||
|
return;
|
||
|
|
||
|
for (i = 0; i < d; i++, b++)
|
||
|
{
|
||
|
/* Skip past parity bits */
|
||
|
while (hweight32(b) == 1)
|
||
|
b++;
|
||
|
|
||
|
/*
|
||
|
* i is the offset in this data hunk.
|
||
|
* nr + i is the offset in the total data buffer.
|
||
|
* b is the offset in the total code buffer.
|
||
|
*
|
||
|
* Thus, when b == fix, bit i in the current hunk needs
|
||
|
* fixing.
|
||
|
*/
|
||
|
if (b == fix)
|
||
|
{
|
||
|
if (ocfs2_test_bit(i, data))
|
||
|
ocfs2_clear_bit(i, data);
|
||
|
else
|
||
|
ocfs2_set_bit(i, data);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
|
||
|
unsigned int fix)
|
||
|
{
|
||
|
ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Debugfs handling.
|
||
|
*/
|
||
|
|
||
|
#ifdef CONFIG_DEBUG_FS
|
||
|
|
||
|
static int blockcheck_u64_get(void *data, u64 *val)
|
||
|
{
|
||
|
*val = *(u64 *)data;
|
||
|
return 0;
|
||
|
}
|
||
|
DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
|
||
|
|
||
|
static struct dentry *blockcheck_debugfs_create(const char *name,
|
||
|
struct dentry *parent,
|
||
|
u64 *value)
|
||
|
{
|
||
|
return debugfs_create_file(name, S_IFREG | S_IRUSR, parent, value,
|
||
|
&blockcheck_fops);
|
||
|
}
|
||
|
|
||
|
static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
if (stats) {
|
||
|
debugfs_remove(stats->b_debug_check);
|
||
|
stats->b_debug_check = NULL;
|
||
|
debugfs_remove(stats->b_debug_failure);
|
||
|
stats->b_debug_failure = NULL;
|
||
|
debugfs_remove(stats->b_debug_recover);
|
||
|
stats->b_debug_recover = NULL;
|
||
|
debugfs_remove(stats->b_debug_dir);
|
||
|
stats->b_debug_dir = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
|
||
|
struct dentry *parent)
|
||
|
{
|
||
|
int rc = -EINVAL;
|
||
|
|
||
|
if (!stats)
|
||
|
goto out;
|
||
|
|
||
|
stats->b_debug_dir = debugfs_create_dir("blockcheck", parent);
|
||
|
if (!stats->b_debug_dir)
|
||
|
goto out;
|
||
|
|
||
|
stats->b_debug_check =
|
||
|
blockcheck_debugfs_create("blocks_checked",
|
||
|
stats->b_debug_dir,
|
||
|
&stats->b_check_count);
|
||
|
|
||
|
stats->b_debug_failure =
|
||
|
blockcheck_debugfs_create("checksums_failed",
|
||
|
stats->b_debug_dir,
|
||
|
&stats->b_failure_count);
|
||
|
|
||
|
stats->b_debug_recover =
|
||
|
blockcheck_debugfs_create("ecc_recoveries",
|
||
|
stats->b_debug_dir,
|
||
|
&stats->b_recover_count);
|
||
|
if (stats->b_debug_check && stats->b_debug_failure &&
|
||
|
stats->b_debug_recover)
|
||
|
rc = 0;
|
||
|
|
||
|
out:
|
||
|
if (rc)
|
||
|
ocfs2_blockcheck_debug_remove(stats);
|
||
|
return rc;
|
||
|
}
|
||
|
#else
|
||
|
static inline int ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
|
||
|
struct dentry *parent)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
}
|
||
|
#endif /* CONFIG_DEBUG_FS */
|
||
|
|
||
|
/* Always-called wrappers for starting and stopping the debugfs files */
|
||
|
int ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
|
||
|
struct dentry *parent)
|
||
|
{
|
||
|
return ocfs2_blockcheck_debug_install(stats, parent);
|
||
|
}
|
||
|
|
||
|
void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
ocfs2_blockcheck_debug_remove(stats);
|
||
|
}
|
||
|
|
||
|
static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
u64 new_count;
|
||
|
|
||
|
if (!stats)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&stats->b_lock);
|
||
|
stats->b_check_count++;
|
||
|
new_count = stats->b_check_count;
|
||
|
spin_unlock(&stats->b_lock);
|
||
|
|
||
|
if (!new_count)
|
||
|
mlog(ML_NOTICE, "Block check count has wrapped\n");
|
||
|
}
|
||
|
|
||
|
static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
u64 new_count;
|
||
|
|
||
|
if (!stats)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&stats->b_lock);
|
||
|
stats->b_failure_count++;
|
||
|
new_count = stats->b_failure_count;
|
||
|
spin_unlock(&stats->b_lock);
|
||
|
|
||
|
if (!new_count)
|
||
|
mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
|
||
|
}
|
||
|
|
||
|
static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
u64 new_count;
|
||
|
|
||
|
if (!stats)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&stats->b_lock);
|
||
|
stats->b_recover_count++;
|
||
|
new_count = stats->b_recover_count;
|
||
|
spin_unlock(&stats->b_lock);
|
||
|
|
||
|
if (!new_count)
|
||
|
mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
* These are the low-level APIs for using the ocfs2_block_check structure.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* This function generates check information for a block.
|
||
|
* data is the block to be checked. bc is a pointer to the
|
||
|
* ocfs2_block_check structure describing the crc32 and the ecc.
|
||
|
*
|
||
|
* bc should be a pointer inside data, as the function will
|
||
|
* take care of zeroing it before calculating the check information. If
|
||
|
* bc does not point inside data, the caller must make sure any inline
|
||
|
* ocfs2_block_check structures are zeroed.
|
||
|
*
|
||
|
* The data buffer must be in on-disk endian (little endian for ocfs2).
|
||
|
* bc will be filled with little-endian values and will be ready to go to
|
||
|
* disk.
|
||
|
*/
|
||
|
void ocfs2_block_check_compute(void *data, size_t blocksize,
|
||
|
struct ocfs2_block_check *bc)
|
||
|
{
|
||
|
u32 crc;
|
||
|
u32 ecc;
|
||
|
|
||
|
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||
|
|
||
|
crc = crc32_le(~0, data, blocksize);
|
||
|
ecc = ocfs2_hamming_encode_block(data, blocksize);
|
||
|
|
||
|
/*
|
||
|
* No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
|
||
|
* larger than 16 bits.
|
||
|
*/
|
||
|
BUG_ON(ecc > USHRT_MAX);
|
||
|
|
||
|
bc->bc_crc32e = cpu_to_le32(crc);
|
||
|
bc->bc_ecc = cpu_to_le16((u16)ecc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function validates existing check information. Like _compute,
|
||
|
* the function will take care of zeroing bc before calculating check codes.
|
||
|
* If bc is not a pointer inside data, the caller must have zeroed any
|
||
|
* inline ocfs2_block_check structures.
|
||
|
*
|
||
|
* Again, the data passed in should be the on-disk endian.
|
||
|
*/
|
||
|
int ocfs2_block_check_validate(void *data, size_t blocksize,
|
||
|
struct ocfs2_block_check *bc,
|
||
|
struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
u32 bc_crc32e;
|
||
|
u16 bc_ecc;
|
||
|
u32 crc, ecc;
|
||
|
|
||
|
ocfs2_blockcheck_inc_check(stats);
|
||
|
|
||
|
bc_crc32e = le32_to_cpu(bc->bc_crc32e);
|
||
|
bc_ecc = le16_to_cpu(bc->bc_ecc);
|
||
|
|
||
|
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||
|
|
||
|
/* Fast path - if the crc32 validates, we're good to go */
|
||
|
crc = crc32_le(~0, data, blocksize);
|
||
|
if (crc == bc_crc32e)
|
||
|
goto out;
|
||
|
|
||
|
ocfs2_blockcheck_inc_failure(stats);
|
||
|
mlog(ML_ERROR,
|
||
|
"CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
|
||
|
(unsigned int)bc_crc32e, (unsigned int)crc);
|
||
|
|
||
|
/* Ok, try ECC fixups */
|
||
|
ecc = ocfs2_hamming_encode_block(data, blocksize);
|
||
|
ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
|
||
|
|
||
|
/* And check the crc32 again */
|
||
|
crc = crc32_le(~0, data, blocksize);
|
||
|
if (crc == bc_crc32e) {
|
||
|
ocfs2_blockcheck_inc_recover(stats);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
|
||
|
(unsigned int)bc_crc32e, (unsigned int)crc);
|
||
|
|
||
|
rc = -EIO;
|
||
|
|
||
|
out:
|
||
|
bc->bc_crc32e = cpu_to_le32(bc_crc32e);
|
||
|
bc->bc_ecc = cpu_to_le16(bc_ecc);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function generates check information for a list of buffer_heads.
|
||
|
* bhs is the blocks to be checked. bc is a pointer to the
|
||
|
* ocfs2_block_check structure describing the crc32 and the ecc.
|
||
|
*
|
||
|
* bc should be a pointer inside data, as the function will
|
||
|
* take care of zeroing it before calculating the check information. If
|
||
|
* bc does not point inside data, the caller must make sure any inline
|
||
|
* ocfs2_block_check structures are zeroed.
|
||
|
*
|
||
|
* The data buffer must be in on-disk endian (little endian for ocfs2).
|
||
|
* bc will be filled with little-endian values and will be ready to go to
|
||
|
* disk.
|
||
|
*/
|
||
|
void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
|
||
|
struct ocfs2_block_check *bc)
|
||
|
{
|
||
|
int i;
|
||
|
u32 crc, ecc;
|
||
|
|
||
|
BUG_ON(nr < 0);
|
||
|
|
||
|
if (!nr)
|
||
|
return;
|
||
|
|
||
|
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||
|
|
||
|
for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
|
||
|
crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
|
||
|
/*
|
||
|
* The number of bits in a buffer is obviously b_size*8.
|
||
|
* The offset of this buffer is b_size*i, so the bit offset
|
||
|
* of this buffer is b_size*8*i.
|
||
|
*/
|
||
|
ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
|
||
|
bhs[i]->b_size * 8,
|
||
|
bhs[i]->b_size * 8 * i);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
|
||
|
* larger than 16 bits.
|
||
|
*/
|
||
|
BUG_ON(ecc > USHRT_MAX);
|
||
|
|
||
|
bc->bc_crc32e = cpu_to_le32(crc);
|
||
|
bc->bc_ecc = cpu_to_le16((u16)ecc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function validates existing check information on a list of
|
||
|
* buffer_heads. Like _compute_bhs, the function will take care of
|
||
|
* zeroing bc before calculating check codes. If bc is not a pointer
|
||
|
* inside data, the caller must have zeroed any inline
|
||
|
* ocfs2_block_check structures.
|
||
|
*
|
||
|
* Again, the data passed in should be the on-disk endian.
|
||
|
*/
|
||
|
int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
|
||
|
struct ocfs2_block_check *bc,
|
||
|
struct ocfs2_blockcheck_stats *stats)
|
||
|
{
|
||
|
int i, rc = 0;
|
||
|
u32 bc_crc32e;
|
||
|
u16 bc_ecc;
|
||
|
u32 crc, ecc, fix;
|
||
|
|
||
|
BUG_ON(nr < 0);
|
||
|
|
||
|
if (!nr)
|
||
|
return 0;
|
||
|
|
||
|
ocfs2_blockcheck_inc_check(stats);
|
||
|
|
||
|
bc_crc32e = le32_to_cpu(bc->bc_crc32e);
|
||
|
bc_ecc = le16_to_cpu(bc->bc_ecc);
|
||
|
|
||
|
memset(bc, 0, sizeof(struct ocfs2_block_check));
|
||
|
|
||
|
/* Fast path - if the crc32 validates, we're good to go */
|
||
|
for (i = 0, crc = ~0; i < nr; i++)
|
||
|
crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
|
||
|
if (crc == bc_crc32e)
|
||
|
goto out;
|
||
|
|
||
|
ocfs2_blockcheck_inc_failure(stats);
|
||
|
mlog(ML_ERROR,
|
||
|
"CRC32 failed: stored: %u, computed %u. Applying ECC.\n",
|
||
|
(unsigned int)bc_crc32e, (unsigned int)crc);
|
||
|
|
||
|
/* Ok, try ECC fixups */
|
||
|
for (i = 0, ecc = 0; i < nr; i++) {
|
||
|
/*
|
||
|
* The number of bits in a buffer is obviously b_size*8.
|
||
|
* The offset of this buffer is b_size*i, so the bit offset
|
||
|
* of this buffer is b_size*8*i.
|
||
|
*/
|
||
|
ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
|
||
|
bhs[i]->b_size * 8,
|
||
|
bhs[i]->b_size * 8 * i);
|
||
|
}
|
||
|
fix = ecc ^ bc_ecc;
|
||
|
for (i = 0; i < nr; i++) {
|
||
|
/*
|
||
|
* Try the fix against each buffer. It will only affect
|
||
|
* one of them.
|
||
|
*/
|
||
|
ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
|
||
|
bhs[i]->b_size * 8 * i, fix);
|
||
|
}
|
||
|
|
||
|
/* And check the crc32 again */
|
||
|
for (i = 0, crc = ~0; i < nr; i++)
|
||
|
crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
|
||
|
if (crc == bc_crc32e) {
|
||
|
ocfs2_blockcheck_inc_recover(stats);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
|
||
|
(unsigned int)bc_crc32e, (unsigned int)crc);
|
||
|
|
||
|
rc = -EIO;
|
||
|
|
||
|
out:
|
||
|
bc->bc_crc32e = cpu_to_le32(bc_crc32e);
|
||
|
bc->bc_ecc = cpu_to_le16(bc_ecc);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* These are the main API. They check the superblock flag before
|
||
|
* calling the underlying operations.
|
||
|
*
|
||
|
* They expect the buffer(s) to be in disk format.
|
||
|
*/
|
||
|
void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
|
||
|
struct ocfs2_block_check *bc)
|
||
|
{
|
||
|
if (ocfs2_meta_ecc(OCFS2_SB(sb)))
|
||
|
ocfs2_block_check_compute(data, sb->s_blocksize, bc);
|
||
|
}
|
||
|
|
||
|
int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
|
||
|
struct ocfs2_block_check *bc)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
struct ocfs2_super *osb = OCFS2_SB(sb);
|
||
|
|
||
|
if (ocfs2_meta_ecc(osb))
|
||
|
rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
|
||
|
&osb->osb_ecc_stats);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
|
||
|
struct buffer_head **bhs, int nr,
|
||
|
struct ocfs2_block_check *bc)
|
||
|
{
|
||
|
if (ocfs2_meta_ecc(OCFS2_SB(sb)))
|
||
|
ocfs2_block_check_compute_bhs(bhs, nr, bc);
|
||
|
}
|
||
|
|
||
|
int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
|
||
|
struct buffer_head **bhs, int nr,
|
||
|
struct ocfs2_block_check *bc)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
struct ocfs2_super *osb = OCFS2_SB(sb);
|
||
|
|
||
|
if (ocfs2_meta_ecc(osb))
|
||
|
rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
|
||
|
&osb->osb_ecc_stats);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|