312 lines
7.7 KiB
C
312 lines
7.7 KiB
C
|
/*
|
||
|
* include/linux/ktime.h
|
||
|
*
|
||
|
* ktime_t - nanosecond-resolution time format.
|
||
|
*
|
||
|
* Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
|
||
|
* Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
|
||
|
*
|
||
|
* data type definitions, declarations, prototypes and macros.
|
||
|
*
|
||
|
* Started by: Thomas Gleixner and Ingo Molnar
|
||
|
*
|
||
|
* Credits:
|
||
|
*
|
||
|
* Roman Zippel provided the ideas and primary code snippets of
|
||
|
* the ktime_t union and further simplifications of the original
|
||
|
* code.
|
||
|
*
|
||
|
* For licencing details see kernel-base/COPYING
|
||
|
*/
|
||
|
#ifndef _LINUX_KTIME_H
|
||
|
#define _LINUX_KTIME_H
|
||
|
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/jiffies.h>
|
||
|
|
||
|
/*
|
||
|
* ktime_t:
|
||
|
*
|
||
|
* A single 64-bit variable is used to store the hrtimers
|
||
|
* internal representation of time values in scalar nanoseconds. The
|
||
|
* design plays out best on 64-bit CPUs, where most conversions are
|
||
|
* NOPs and most arithmetic ktime_t operations are plain arithmetic
|
||
|
* operations.
|
||
|
*
|
||
|
*/
|
||
|
union ktime {
|
||
|
s64 tv64;
|
||
|
};
|
||
|
|
||
|
typedef union ktime ktime_t; /* Kill this */
|
||
|
|
||
|
/**
|
||
|
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
|
||
|
* @secs: seconds to set
|
||
|
* @nsecs: nanoseconds to set
|
||
|
*
|
||
|
* Return: The ktime_t representation of the value.
|
||
|
*/
|
||
|
static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
|
||
|
{
|
||
|
if (unlikely(secs >= KTIME_SEC_MAX))
|
||
|
return (ktime_t){ .tv64 = KTIME_MAX };
|
||
|
|
||
|
return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
|
||
|
}
|
||
|
|
||
|
/* Subtract two ktime_t variables. rem = lhs -rhs: */
|
||
|
#define ktime_sub(lhs, rhs) \
|
||
|
({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
|
||
|
|
||
|
/* Add two ktime_t variables. res = lhs + rhs: */
|
||
|
#define ktime_add(lhs, rhs) \
|
||
|
({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
|
||
|
|
||
|
/*
|
||
|
* Same as ktime_add(), but avoids undefined behaviour on overflow; however,
|
||
|
* this means that you must check the result for overflow yourself.
|
||
|
*/
|
||
|
#define ktime_add_unsafe(lhs, rhs) \
|
||
|
({ (ktime_t){ .tv64 = (u64) (lhs).tv64 + (rhs).tv64 }; })
|
||
|
|
||
|
/*
|
||
|
* Add a ktime_t variable and a scalar nanosecond value.
|
||
|
* res = kt + nsval:
|
||
|
*/
|
||
|
#define ktime_add_ns(kt, nsval) \
|
||
|
({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
|
||
|
|
||
|
/*
|
||
|
* Subtract a scalar nanosecod from a ktime_t variable
|
||
|
* res = kt - nsval:
|
||
|
*/
|
||
|
#define ktime_sub_ns(kt, nsval) \
|
||
|
({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
|
||
|
|
||
|
/* convert a timespec to ktime_t format: */
|
||
|
static inline ktime_t timespec_to_ktime(struct timespec ts)
|
||
|
{
|
||
|
return ktime_set(ts.tv_sec, ts.tv_nsec);
|
||
|
}
|
||
|
|
||
|
/* convert a timespec64 to ktime_t format: */
|
||
|
static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
|
||
|
{
|
||
|
return ktime_set(ts.tv_sec, ts.tv_nsec);
|
||
|
}
|
||
|
|
||
|
/* convert a timeval to ktime_t format: */
|
||
|
static inline ktime_t timeval_to_ktime(struct timeval tv)
|
||
|
{
|
||
|
return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
|
||
|
}
|
||
|
|
||
|
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
|
||
|
#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
|
||
|
|
||
|
/* Map the ktime_t to timespec conversion to ns_to_timespec function */
|
||
|
#define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64)
|
||
|
|
||
|
/* Map the ktime_t to timeval conversion to ns_to_timeval function */
|
||
|
#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
|
||
|
|
||
|
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
|
||
|
#define ktime_to_ns(kt) ((kt).tv64)
|
||
|
|
||
|
|
||
|
/**
|
||
|
* ktime_equal - Compares two ktime_t variables to see if they are equal
|
||
|
* @cmp1: comparable1
|
||
|
* @cmp2: comparable2
|
||
|
*
|
||
|
* Compare two ktime_t variables.
|
||
|
*
|
||
|
* Return: 1 if equal.
|
||
|
*/
|
||
|
static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
|
||
|
{
|
||
|
return cmp1.tv64 == cmp2.tv64;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ktime_compare - Compares two ktime_t variables for less, greater or equal
|
||
|
* @cmp1: comparable1
|
||
|
* @cmp2: comparable2
|
||
|
*
|
||
|
* Return: ...
|
||
|
* cmp1 < cmp2: return <0
|
||
|
* cmp1 == cmp2: return 0
|
||
|
* cmp1 > cmp2: return >0
|
||
|
*/
|
||
|
static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
|
||
|
{
|
||
|
if (cmp1.tv64 < cmp2.tv64)
|
||
|
return -1;
|
||
|
if (cmp1.tv64 > cmp2.tv64)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ktime_after - Compare if a ktime_t value is bigger than another one.
|
||
|
* @cmp1: comparable1
|
||
|
* @cmp2: comparable2
|
||
|
*
|
||
|
* Return: true if cmp1 happened after cmp2.
|
||
|
*/
|
||
|
static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
|
||
|
{
|
||
|
return ktime_compare(cmp1, cmp2) > 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ktime_before - Compare if a ktime_t value is smaller than another one.
|
||
|
* @cmp1: comparable1
|
||
|
* @cmp2: comparable2
|
||
|
*
|
||
|
* Return: true if cmp1 happened before cmp2.
|
||
|
*/
|
||
|
static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
|
||
|
{
|
||
|
return ktime_compare(cmp1, cmp2) < 0;
|
||
|
}
|
||
|
|
||
|
#if BITS_PER_LONG < 64
|
||
|
extern s64 __ktime_divns(const ktime_t kt, s64 div);
|
||
|
static inline s64 ktime_divns(const ktime_t kt, s64 div)
|
||
|
{
|
||
|
/*
|
||
|
* Negative divisors could cause an inf loop,
|
||
|
* so bug out here.
|
||
|
*/
|
||
|
BUG_ON(div < 0);
|
||
|
if (__builtin_constant_p(div) && !(div >> 32)) {
|
||
|
s64 ns = kt.tv64;
|
||
|
u64 tmp = ns < 0 ? -ns : ns;
|
||
|
|
||
|
do_div(tmp, div);
|
||
|
return ns < 0 ? -tmp : tmp;
|
||
|
} else {
|
||
|
return __ktime_divns(kt, div);
|
||
|
}
|
||
|
}
|
||
|
#else /* BITS_PER_LONG < 64 */
|
||
|
static inline s64 ktime_divns(const ktime_t kt, s64 div)
|
||
|
{
|
||
|
/*
|
||
|
* 32-bit implementation cannot handle negative divisors,
|
||
|
* so catch them on 64bit as well.
|
||
|
*/
|
||
|
WARN_ON(div < 0);
|
||
|
return kt.tv64 / div;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static inline s64 ktime_to_us(const ktime_t kt)
|
||
|
{
|
||
|
return ktime_divns(kt, NSEC_PER_USEC);
|
||
|
}
|
||
|
|
||
|
static inline s64 ktime_to_ms(const ktime_t kt)
|
||
|
{
|
||
|
return ktime_divns(kt, NSEC_PER_MSEC);
|
||
|
}
|
||
|
|
||
|
static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
|
||
|
{
|
||
|
return ktime_to_us(ktime_sub(later, earlier));
|
||
|
}
|
||
|
|
||
|
static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
|
||
|
{
|
||
|
return ktime_to_ms(ktime_sub(later, earlier));
|
||
|
}
|
||
|
|
||
|
static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
|
||
|
{
|
||
|
return ktime_add_ns(kt, usec * NSEC_PER_USEC);
|
||
|
}
|
||
|
|
||
|
static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
|
||
|
{
|
||
|
return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
|
||
|
}
|
||
|
|
||
|
static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
|
||
|
{
|
||
|
return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
|
||
|
}
|
||
|
|
||
|
static inline ktime_t ktime_sub_ms(const ktime_t kt, const u64 msec)
|
||
|
{
|
||
|
return ktime_sub_ns(kt, msec * NSEC_PER_MSEC);
|
||
|
}
|
||
|
|
||
|
extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
|
||
|
|
||
|
/**
|
||
|
* ktime_to_timespec_cond - convert a ktime_t variable to timespec
|
||
|
* format only if the variable contains data
|
||
|
* @kt: the ktime_t variable to convert
|
||
|
* @ts: the timespec variable to store the result in
|
||
|
*
|
||
|
* Return: %true if there was a successful conversion, %false if kt was 0.
|
||
|
*/
|
||
|
static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
|
||
|
struct timespec *ts)
|
||
|
{
|
||
|
if (kt.tv64) {
|
||
|
*ts = ktime_to_timespec(kt);
|
||
|
return true;
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
|
||
|
* format only if the variable contains data
|
||
|
* @kt: the ktime_t variable to convert
|
||
|
* @ts: the timespec variable to store the result in
|
||
|
*
|
||
|
* Return: %true if there was a successful conversion, %false if kt was 0.
|
||
|
*/
|
||
|
static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
|
||
|
struct timespec64 *ts)
|
||
|
{
|
||
|
if (kt.tv64) {
|
||
|
*ts = ktime_to_timespec64(kt);
|
||
|
return true;
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The resolution of the clocks. The resolution value is returned in
|
||
|
* the clock_getres() system call to give application programmers an
|
||
|
* idea of the (in)accuracy of timers. Timer values are rounded up to
|
||
|
* this resolution values.
|
||
|
*/
|
||
|
#define LOW_RES_NSEC TICK_NSEC
|
||
|
#define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
|
||
|
|
||
|
static inline ktime_t ns_to_ktime(u64 ns)
|
||
|
{
|
||
|
static const ktime_t ktime_zero = { .tv64 = 0 };
|
||
|
|
||
|
return ktime_add_ns(ktime_zero, ns);
|
||
|
}
|
||
|
|
||
|
static inline ktime_t ms_to_ktime(u64 ms)
|
||
|
{
|
||
|
static const ktime_t ktime_zero = { .tv64 = 0 };
|
||
|
|
||
|
return ktime_add_ms(ktime_zero, ms);
|
||
|
}
|
||
|
|
||
|
# include <linux/timekeeping.h>
|
||
|
|
||
|
#endif
|