203 lines
5.8 KiB
C
203 lines
5.8 KiB
C
|
#ifndef _LINUX_PID_H
|
||
|
#define _LINUX_PID_H
|
||
|
|
||
|
#include <linux/rcupdate.h>
|
||
|
|
||
|
enum pid_type
|
||
|
{
|
||
|
PIDTYPE_PID,
|
||
|
PIDTYPE_PGID,
|
||
|
PIDTYPE_SID,
|
||
|
PIDTYPE_MAX,
|
||
|
/* only valid to __task_pid_nr_ns() */
|
||
|
__PIDTYPE_TGID
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* What is struct pid?
|
||
|
*
|
||
|
* A struct pid is the kernel's internal notion of a process identifier.
|
||
|
* It refers to individual tasks, process groups, and sessions. While
|
||
|
* there are processes attached to it the struct pid lives in a hash
|
||
|
* table, so it and then the processes that it refers to can be found
|
||
|
* quickly from the numeric pid value. The attached processes may be
|
||
|
* quickly accessed by following pointers from struct pid.
|
||
|
*
|
||
|
* Storing pid_t values in the kernel and referring to them later has a
|
||
|
* problem. The process originally with that pid may have exited and the
|
||
|
* pid allocator wrapped, and another process could have come along
|
||
|
* and been assigned that pid.
|
||
|
*
|
||
|
* Referring to user space processes by holding a reference to struct
|
||
|
* task_struct has a problem. When the user space process exits
|
||
|
* the now useless task_struct is still kept. A task_struct plus a
|
||
|
* stack consumes around 10K of low kernel memory. More precisely
|
||
|
* this is THREAD_SIZE + sizeof(struct task_struct). By comparison
|
||
|
* a struct pid is about 64 bytes.
|
||
|
*
|
||
|
* Holding a reference to struct pid solves both of these problems.
|
||
|
* It is small so holding a reference does not consume a lot of
|
||
|
* resources, and since a new struct pid is allocated when the numeric pid
|
||
|
* value is reused (when pids wrap around) we don't mistakenly refer to new
|
||
|
* processes.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* struct upid is used to get the id of the struct pid, as it is
|
||
|
* seen in particular namespace. Later the struct pid is found with
|
||
|
* find_pid_ns() using the int nr and struct pid_namespace *ns.
|
||
|
*/
|
||
|
|
||
|
struct upid {
|
||
|
/* Try to keep pid_chain in the same cacheline as nr for find_vpid */
|
||
|
int nr;
|
||
|
struct pid_namespace *ns;
|
||
|
struct hlist_node pid_chain;
|
||
|
};
|
||
|
|
||
|
struct pid
|
||
|
{
|
||
|
atomic_t count;
|
||
|
unsigned int level;
|
||
|
/* lists of tasks that use this pid */
|
||
|
struct hlist_head tasks[PIDTYPE_MAX];
|
||
|
struct rcu_head rcu;
|
||
|
struct upid numbers[1];
|
||
|
};
|
||
|
|
||
|
extern struct pid init_struct_pid;
|
||
|
|
||
|
struct pid_link
|
||
|
{
|
||
|
struct hlist_node node;
|
||
|
struct pid *pid;
|
||
|
};
|
||
|
|
||
|
static inline struct pid *get_pid(struct pid *pid)
|
||
|
{
|
||
|
if (pid)
|
||
|
atomic_inc(&pid->count);
|
||
|
return pid;
|
||
|
}
|
||
|
|
||
|
extern void put_pid(struct pid *pid);
|
||
|
extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
|
||
|
extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
|
||
|
|
||
|
extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
|
||
|
|
||
|
/*
|
||
|
* these helpers must be called with the tasklist_lock write-held.
|
||
|
*/
|
||
|
extern void attach_pid(struct task_struct *task, enum pid_type);
|
||
|
extern void detach_pid(struct task_struct *task, enum pid_type);
|
||
|
extern void change_pid(struct task_struct *task, enum pid_type,
|
||
|
struct pid *pid);
|
||
|
extern void transfer_pid(struct task_struct *old, struct task_struct *new,
|
||
|
enum pid_type);
|
||
|
|
||
|
struct pid_namespace;
|
||
|
extern struct pid_namespace init_pid_ns;
|
||
|
|
||
|
/*
|
||
|
* look up a PID in the hash table. Must be called with the tasklist_lock
|
||
|
* or rcu_read_lock() held.
|
||
|
*
|
||
|
* find_pid_ns() finds the pid in the namespace specified
|
||
|
* find_vpid() finds the pid by its virtual id, i.e. in the current namespace
|
||
|
*
|
||
|
* see also find_task_by_vpid() set in include/linux/sched.h
|
||
|
*/
|
||
|
extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
|
||
|
extern struct pid *find_vpid(int nr);
|
||
|
|
||
|
/*
|
||
|
* Lookup a PID in the hash table, and return with it's count elevated.
|
||
|
*/
|
||
|
extern struct pid *find_get_pid(int nr);
|
||
|
extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
|
||
|
int next_pidmap(struct pid_namespace *pid_ns, unsigned int last);
|
||
|
|
||
|
extern struct pid *alloc_pid(struct pid_namespace *ns);
|
||
|
extern void free_pid(struct pid *pid);
|
||
|
extern void disable_pid_allocation(struct pid_namespace *ns);
|
||
|
|
||
|
/*
|
||
|
* ns_of_pid() returns the pid namespace in which the specified pid was
|
||
|
* allocated.
|
||
|
*
|
||
|
* NOTE:
|
||
|
* ns_of_pid() is expected to be called for a process (task) that has
|
||
|
* an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
|
||
|
* is expected to be non-NULL. If @pid is NULL, caller should handle
|
||
|
* the resulting NULL pid-ns.
|
||
|
*/
|
||
|
static inline struct pid_namespace *ns_of_pid(struct pid *pid)
|
||
|
{
|
||
|
struct pid_namespace *ns = NULL;
|
||
|
if (pid)
|
||
|
ns = pid->numbers[pid->level].ns;
|
||
|
return ns;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* is_child_reaper returns true if the pid is the init process
|
||
|
* of the current namespace. As this one could be checked before
|
||
|
* pid_ns->child_reaper is assigned in copy_process, we check
|
||
|
* with the pid number.
|
||
|
*/
|
||
|
static inline bool is_child_reaper(struct pid *pid)
|
||
|
{
|
||
|
return pid->numbers[pid->level].nr == 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* the helpers to get the pid's id seen from different namespaces
|
||
|
*
|
||
|
* pid_nr() : global id, i.e. the id seen from the init namespace;
|
||
|
* pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
|
||
|
* current.
|
||
|
* pid_nr_ns() : id seen from the ns specified.
|
||
|
*
|
||
|
* see also task_xid_nr() etc in include/linux/sched.h
|
||
|
*/
|
||
|
|
||
|
static inline pid_t pid_nr(struct pid *pid)
|
||
|
{
|
||
|
pid_t nr = 0;
|
||
|
if (pid)
|
||
|
nr = pid->numbers[0].nr;
|
||
|
return nr;
|
||
|
}
|
||
|
|
||
|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
|
||
|
pid_t pid_vnr(struct pid *pid);
|
||
|
|
||
|
#define do_each_pid_task(pid, type, task) \
|
||
|
do { \
|
||
|
if ((pid) != NULL) \
|
||
|
hlist_for_each_entry_rcu((task), \
|
||
|
&(pid)->tasks[type], pids[type].node) {
|
||
|
|
||
|
/*
|
||
|
* Both old and new leaders may be attached to
|
||
|
* the same pid in the middle of de_thread().
|
||
|
*/
|
||
|
#define while_each_pid_task(pid, type, task) \
|
||
|
if (type == PIDTYPE_PID) \
|
||
|
break; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
#define do_each_pid_thread(pid, type, task) \
|
||
|
do_each_pid_task(pid, type, task) { \
|
||
|
struct task_struct *tg___ = task; \
|
||
|
do {
|
||
|
|
||
|
#define while_each_pid_thread(pid, type, task) \
|
||
|
} while_each_thread(tg___, task); \
|
||
|
task = tg___; \
|
||
|
} while_each_pid_task(pid, type, task)
|
||
|
#endif /* _LINUX_PID_H */
|