4595 lines
123 KiB
C
4595 lines
123 KiB
C
|
/*
|
||
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
||
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
||
|
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
|
||
|
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
|
||
|
* Copyright 2013-2014 Intel Mobile Communications GmbH
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
*
|
||
|
* Transmit and frame generation functions.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/skbuff.h>
|
||
|
#include <linux/etherdevice.h>
|
||
|
#include <linux/bitmap.h>
|
||
|
#include <linux/rcupdate.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <net/net_namespace.h>
|
||
|
#include <net/ieee80211_radiotap.h>
|
||
|
#include <net/cfg80211.h>
|
||
|
#include <net/mac80211.h>
|
||
|
#include <net/codel.h>
|
||
|
#include <net/codel_impl.h>
|
||
|
#include <asm/unaligned.h>
|
||
|
#include <net/fq_impl.h>
|
||
|
|
||
|
#include "ieee80211_i.h"
|
||
|
#include "driver-ops.h"
|
||
|
#include "led.h"
|
||
|
#include "mesh.h"
|
||
|
#include "wep.h"
|
||
|
#include "wpa.h"
|
||
|
#include "wme.h"
|
||
|
#include "rate.h"
|
||
|
|
||
|
/* misc utils */
|
||
|
|
||
|
static inline void ieee80211_tx_stats(struct net_device *dev, u32 len)
|
||
|
{
|
||
|
struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
|
||
|
|
||
|
u64_stats_update_begin(&tstats->syncp);
|
||
|
tstats->tx_packets++;
|
||
|
tstats->tx_bytes += len;
|
||
|
u64_stats_update_end(&tstats->syncp);
|
||
|
}
|
||
|
|
||
|
static __le16 ieee80211_duration(struct ieee80211_tx_data *tx,
|
||
|
struct sk_buff *skb, int group_addr,
|
||
|
int next_frag_len)
|
||
|
{
|
||
|
int rate, mrate, erp, dur, i, shift = 0;
|
||
|
struct ieee80211_rate *txrate;
|
||
|
struct ieee80211_local *local = tx->local;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
u32 rate_flags = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
chanctx_conf = rcu_dereference(tx->sdata->vif.chanctx_conf);
|
||
|
if (chanctx_conf) {
|
||
|
shift = ieee80211_chandef_get_shift(&chanctx_conf->def);
|
||
|
rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def);
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/* assume HW handles this */
|
||
|
if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))
|
||
|
return 0;
|
||
|
|
||
|
/* uh huh? */
|
||
|
if (WARN_ON_ONCE(tx->rate.idx < 0))
|
||
|
return 0;
|
||
|
|
||
|
sband = local->hw.wiphy->bands[info->band];
|
||
|
txrate = &sband->bitrates[tx->rate.idx];
|
||
|
|
||
|
erp = txrate->flags & IEEE80211_RATE_ERP_G;
|
||
|
|
||
|
/*
|
||
|
* data and mgmt (except PS Poll):
|
||
|
* - during CFP: 32768
|
||
|
* - during contention period:
|
||
|
* if addr1 is group address: 0
|
||
|
* if more fragments = 0 and addr1 is individual address: time to
|
||
|
* transmit one ACK plus SIFS
|
||
|
* if more fragments = 1 and addr1 is individual address: time to
|
||
|
* transmit next fragment plus 2 x ACK plus 3 x SIFS
|
||
|
*
|
||
|
* IEEE 802.11, 9.6:
|
||
|
* - control response frame (CTS or ACK) shall be transmitted using the
|
||
|
* same rate as the immediately previous frame in the frame exchange
|
||
|
* sequence, if this rate belongs to the PHY mandatory rates, or else
|
||
|
* at the highest possible rate belonging to the PHY rates in the
|
||
|
* BSSBasicRateSet
|
||
|
*/
|
||
|
hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
if (ieee80211_is_ctl(hdr->frame_control)) {
|
||
|
/* TODO: These control frames are not currently sent by
|
||
|
* mac80211, but should they be implemented, this function
|
||
|
* needs to be updated to support duration field calculation.
|
||
|
*
|
||
|
* RTS: time needed to transmit pending data/mgmt frame plus
|
||
|
* one CTS frame plus one ACK frame plus 3 x SIFS
|
||
|
* CTS: duration of immediately previous RTS minus time
|
||
|
* required to transmit CTS and its SIFS
|
||
|
* ACK: 0 if immediately previous directed data/mgmt had
|
||
|
* more=0, with more=1 duration in ACK frame is duration
|
||
|
* from previous frame minus time needed to transmit ACK
|
||
|
* and its SIFS
|
||
|
* PS Poll: BIT(15) | BIT(14) | aid
|
||
|
*/
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* data/mgmt */
|
||
|
if (0 /* FIX: data/mgmt during CFP */)
|
||
|
return cpu_to_le16(32768);
|
||
|
|
||
|
if (group_addr) /* Group address as the destination - no ACK */
|
||
|
return 0;
|
||
|
|
||
|
/* Individual destination address:
|
||
|
* IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
|
||
|
* CTS and ACK frames shall be transmitted using the highest rate in
|
||
|
* basic rate set that is less than or equal to the rate of the
|
||
|
* immediately previous frame and that is using the same modulation
|
||
|
* (CCK or OFDM). If no basic rate set matches with these requirements,
|
||
|
* the highest mandatory rate of the PHY that is less than or equal to
|
||
|
* the rate of the previous frame is used.
|
||
|
* Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
|
||
|
*/
|
||
|
rate = -1;
|
||
|
/* use lowest available if everything fails */
|
||
|
mrate = sband->bitrates[0].bitrate;
|
||
|
for (i = 0; i < sband->n_bitrates; i++) {
|
||
|
struct ieee80211_rate *r = &sband->bitrates[i];
|
||
|
|
||
|
if (r->bitrate > txrate->bitrate)
|
||
|
break;
|
||
|
|
||
|
if ((rate_flags & r->flags) != rate_flags)
|
||
|
continue;
|
||
|
|
||
|
if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
|
||
|
rate = DIV_ROUND_UP(r->bitrate, 1 << shift);
|
||
|
|
||
|
switch (sband->band) {
|
||
|
case NL80211_BAND_2GHZ: {
|
||
|
u32 flag;
|
||
|
if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
|
||
|
flag = IEEE80211_RATE_MANDATORY_G;
|
||
|
else
|
||
|
flag = IEEE80211_RATE_MANDATORY_B;
|
||
|
if (r->flags & flag)
|
||
|
mrate = r->bitrate;
|
||
|
break;
|
||
|
}
|
||
|
case NL80211_BAND_5GHZ:
|
||
|
if (r->flags & IEEE80211_RATE_MANDATORY_A)
|
||
|
mrate = r->bitrate;
|
||
|
break;
|
||
|
case NL80211_BAND_60GHZ:
|
||
|
/* TODO, for now fall through */
|
||
|
case NUM_NL80211_BANDS:
|
||
|
WARN_ON(1);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (rate == -1) {
|
||
|
/* No matching basic rate found; use highest suitable mandatory
|
||
|
* PHY rate */
|
||
|
rate = DIV_ROUND_UP(mrate, 1 << shift);
|
||
|
}
|
||
|
|
||
|
/* Don't calculate ACKs for QoS Frames with NoAck Policy set */
|
||
|
if (ieee80211_is_data_qos(hdr->frame_control) &&
|
||
|
*(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
|
||
|
dur = 0;
|
||
|
else
|
||
|
/* Time needed to transmit ACK
|
||
|
* (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
|
||
|
* to closest integer */
|
||
|
dur = ieee80211_frame_duration(sband->band, 10, rate, erp,
|
||
|
tx->sdata->vif.bss_conf.use_short_preamble,
|
||
|
shift);
|
||
|
|
||
|
if (next_frag_len) {
|
||
|
/* Frame is fragmented: duration increases with time needed to
|
||
|
* transmit next fragment plus ACK and 2 x SIFS. */
|
||
|
dur *= 2; /* ACK + SIFS */
|
||
|
/* next fragment */
|
||
|
dur += ieee80211_frame_duration(sband->band, next_frag_len,
|
||
|
txrate->bitrate, erp,
|
||
|
tx->sdata->vif.bss_conf.use_short_preamble,
|
||
|
shift);
|
||
|
}
|
||
|
|
||
|
return cpu_to_le16(dur);
|
||
|
}
|
||
|
|
||
|
/* tx handlers */
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_local *local = tx->local;
|
||
|
struct ieee80211_if_managed *ifmgd;
|
||
|
|
||
|
/* driver doesn't support power save */
|
||
|
if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* hardware does dynamic power save */
|
||
|
if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* dynamic power save disabled */
|
||
|
if (local->hw.conf.dynamic_ps_timeout <= 0)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* we are scanning, don't enable power save */
|
||
|
if (local->scanning)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (!local->ps_sdata)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* No point if we're going to suspend */
|
||
|
if (local->quiescing)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* dynamic ps is supported only in managed mode */
|
||
|
if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
ifmgd = &tx->sdata->u.mgd;
|
||
|
|
||
|
/*
|
||
|
* Don't wakeup from power save if u-apsd is enabled, voip ac has
|
||
|
* u-apsd enabled and the frame is in voip class. This effectively
|
||
|
* means that even if all access categories have u-apsd enabled, in
|
||
|
* practise u-apsd is only used with the voip ac. This is a
|
||
|
* workaround for the case when received voip class packets do not
|
||
|
* have correct qos tag for some reason, due the network or the
|
||
|
* peer application.
|
||
|
*
|
||
|
* Note: ifmgd->uapsd_queues access is racy here. If the value is
|
||
|
* changed via debugfs, user needs to reassociate manually to have
|
||
|
* everything in sync.
|
||
|
*/
|
||
|
if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) &&
|
||
|
(ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) &&
|
||
|
skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (local->hw.conf.flags & IEEE80211_CONF_PS) {
|
||
|
ieee80211_stop_queues_by_reason(&local->hw,
|
||
|
IEEE80211_MAX_QUEUE_MAP,
|
||
|
IEEE80211_QUEUE_STOP_REASON_PS,
|
||
|
false);
|
||
|
ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED;
|
||
|
ieee80211_queue_work(&local->hw,
|
||
|
&local->dynamic_ps_disable_work);
|
||
|
}
|
||
|
|
||
|
/* Don't restart the timer if we're not disassociated */
|
||
|
if (!ifmgd->associated)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
mod_timer(&local->dynamic_ps_timer, jiffies +
|
||
|
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
bool assoc = false;
|
||
|
|
||
|
if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) &&
|
||
|
test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) &&
|
||
|
!ieee80211_is_probe_req(hdr->frame_control) &&
|
||
|
!ieee80211_is_any_nullfunc(hdr->frame_control))
|
||
|
/*
|
||
|
* When software scanning only nullfunc frames (to notify
|
||
|
* the sleep state to the AP) and probe requests (for the
|
||
|
* active scan) are allowed, all other frames should not be
|
||
|
* sent and we should not get here, but if we do
|
||
|
* nonetheless, drop them to avoid sending them
|
||
|
* off-channel. See the link below and
|
||
|
* ieee80211_start_scan() for more.
|
||
|
*
|
||
|
* http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
|
||
|
*/
|
||
|
return TX_DROP;
|
||
|
|
||
|
if (tx->sdata->vif.type == NL80211_IFTYPE_OCB)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (tx->flags & IEEE80211_TX_PS_BUFFERED)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (tx->sta)
|
||
|
assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC);
|
||
|
|
||
|
if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
|
||
|
if (unlikely(!assoc &&
|
||
|
ieee80211_is_data(hdr->frame_control))) {
|
||
|
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
|
||
|
sdata_info(tx->sdata,
|
||
|
"dropped data frame to not associated station %pM\n",
|
||
|
hdr->addr1);
|
||
|
#endif
|
||
|
I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
|
||
|
return TX_DROP;
|
||
|
}
|
||
|
} else if (unlikely(tx->sdata->vif.type == NL80211_IFTYPE_AP &&
|
||
|
ieee80211_is_data(hdr->frame_control) &&
|
||
|
!atomic_read(&tx->sdata->u.ap.num_mcast_sta))) {
|
||
|
/*
|
||
|
* No associated STAs - no need to send multicast
|
||
|
* frames.
|
||
|
*/
|
||
|
return TX_DROP;
|
||
|
}
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
/* This function is called whenever the AP is about to exceed the maximum limit
|
||
|
* of buffered frames for power saving STAs. This situation should not really
|
||
|
* happen often during normal operation, so dropping the oldest buffered packet
|
||
|
* from each queue should be OK to make some room for new frames. */
|
||
|
static void purge_old_ps_buffers(struct ieee80211_local *local)
|
||
|
{
|
||
|
int total = 0, purged = 0;
|
||
|
struct sk_buff *skb;
|
||
|
struct ieee80211_sub_if_data *sdata;
|
||
|
struct sta_info *sta;
|
||
|
|
||
|
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
|
||
|
struct ps_data *ps;
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP)
|
||
|
ps = &sdata->u.ap.ps;
|
||
|
else if (ieee80211_vif_is_mesh(&sdata->vif))
|
||
|
ps = &sdata->u.mesh.ps;
|
||
|
else
|
||
|
continue;
|
||
|
|
||
|
skb = skb_dequeue(&ps->bc_buf);
|
||
|
if (skb) {
|
||
|
purged++;
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
}
|
||
|
total += skb_queue_len(&ps->bc_buf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Drop one frame from each station from the lowest-priority
|
||
|
* AC that has frames at all.
|
||
|
*/
|
||
|
list_for_each_entry_rcu(sta, &local->sta_list, list) {
|
||
|
int ac;
|
||
|
|
||
|
for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) {
|
||
|
skb = skb_dequeue(&sta->ps_tx_buf[ac]);
|
||
|
total += skb_queue_len(&sta->ps_tx_buf[ac]);
|
||
|
if (skb) {
|
||
|
purged++;
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
local->total_ps_buffered = total;
|
||
|
ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged);
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result
|
||
|
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
||
|
struct ps_data *ps;
|
||
|
|
||
|
/*
|
||
|
* broadcast/multicast frame
|
||
|
*
|
||
|
* If any of the associated/peer stations is in power save mode,
|
||
|
* the frame is buffered to be sent after DTIM beacon frame.
|
||
|
* This is done either by the hardware or us.
|
||
|
*/
|
||
|
|
||
|
/* powersaving STAs currently only in AP/VLAN/mesh mode */
|
||
|
if (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
|
||
|
tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
|
||
|
if (!tx->sdata->bss)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
ps = &tx->sdata->bss->ps;
|
||
|
} else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) {
|
||
|
ps = &tx->sdata->u.mesh.ps;
|
||
|
} else {
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* no buffering for ordered frames */
|
||
|
if (ieee80211_has_order(hdr->frame_control))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (ieee80211_is_probe_req(hdr->frame_control))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL))
|
||
|
info->hw_queue = tx->sdata->vif.cab_queue;
|
||
|
|
||
|
/* no stations in PS mode and no buffered packets */
|
||
|
if (!atomic_read(&ps->num_sta_ps) && skb_queue_empty(&ps->bc_buf))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
|
||
|
|
||
|
/* device releases frame after DTIM beacon */
|
||
|
if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* buffered in mac80211 */
|
||
|
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
|
||
|
purge_old_ps_buffers(tx->local);
|
||
|
|
||
|
if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) {
|
||
|
ps_dbg(tx->sdata,
|
||
|
"BC TX buffer full - dropping the oldest frame\n");
|
||
|
ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf));
|
||
|
} else
|
||
|
tx->local->total_ps_buffered++;
|
||
|
|
||
|
skb_queue_tail(&ps->bc_buf, tx->skb);
|
||
|
|
||
|
return TX_QUEUED;
|
||
|
}
|
||
|
|
||
|
static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
if (!ieee80211_is_mgmt(fc))
|
||
|
return 0;
|
||
|
|
||
|
if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP))
|
||
|
return 0;
|
||
|
|
||
|
if (!ieee80211_is_robust_mgmt_frame(skb))
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result
|
||
|
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct sta_info *sta = tx->sta;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
||
|
struct ieee80211_local *local = tx->local;
|
||
|
|
||
|
if (unlikely(!sta))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) ||
|
||
|
test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
|
||
|
test_sta_flag(sta, WLAN_STA_PS_DELIVER)) &&
|
||
|
!(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) {
|
||
|
int ac = skb_get_queue_mapping(tx->skb);
|
||
|
|
||
|
if (ieee80211_is_mgmt(hdr->frame_control) &&
|
||
|
!ieee80211_is_bufferable_mmpdu(hdr->frame_control)) {
|
||
|
info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n",
|
||
|
sta->sta.addr, sta->sta.aid, ac);
|
||
|
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
|
||
|
purge_old_ps_buffers(tx->local);
|
||
|
|
||
|
/* sync with ieee80211_sta_ps_deliver_wakeup */
|
||
|
spin_lock(&sta->ps_lock);
|
||
|
/*
|
||
|
* STA woke up the meantime and all the frames on ps_tx_buf have
|
||
|
* been queued to pending queue. No reordering can happen, go
|
||
|
* ahead and Tx the packet.
|
||
|
*/
|
||
|
if (!test_sta_flag(sta, WLAN_STA_PS_STA) &&
|
||
|
!test_sta_flag(sta, WLAN_STA_PS_DRIVER) &&
|
||
|
!test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
|
||
|
spin_unlock(&sta->ps_lock);
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) {
|
||
|
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]);
|
||
|
ps_dbg(tx->sdata,
|
||
|
"STA %pM TX buffer for AC %d full - dropping oldest frame\n",
|
||
|
sta->sta.addr, ac);
|
||
|
ieee80211_free_txskb(&local->hw, old);
|
||
|
} else
|
||
|
tx->local->total_ps_buffered++;
|
||
|
|
||
|
info->control.jiffies = jiffies;
|
||
|
info->control.vif = &tx->sdata->vif;
|
||
|
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
|
||
|
info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS;
|
||
|
skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb);
|
||
|
spin_unlock(&sta->ps_lock);
|
||
|
|
||
|
if (!timer_pending(&local->sta_cleanup))
|
||
|
mod_timer(&local->sta_cleanup,
|
||
|
round_jiffies(jiffies +
|
||
|
STA_INFO_CLEANUP_INTERVAL));
|
||
|
|
||
|
/*
|
||
|
* We queued up some frames, so the TIM bit might
|
||
|
* need to be set, recalculate it.
|
||
|
*/
|
||
|
sta_info_recalc_tim(sta);
|
||
|
|
||
|
return TX_QUEUED;
|
||
|
} else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) {
|
||
|
ps_dbg(tx->sdata,
|
||
|
"STA %pM in PS mode, but polling/in SP -> send frame\n",
|
||
|
sta->sta.addr);
|
||
|
}
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (tx->flags & IEEE80211_TX_UNICAST)
|
||
|
return ieee80211_tx_h_unicast_ps_buf(tx);
|
||
|
else
|
||
|
return ieee80211_tx_h_multicast_ps_buf(tx);
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
|
||
|
if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) {
|
||
|
if (tx->sdata->control_port_no_encrypt)
|
||
|
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
|
||
|
info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO;
|
||
|
info->flags |= IEEE80211_TX_CTL_USE_MINRATE;
|
||
|
}
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_key *key;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
||
|
|
||
|
if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
|
||
|
tx->key = NULL;
|
||
|
else if (tx->sta &&
|
||
|
(key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx])))
|
||
|
tx->key = key;
|
||
|
else if (ieee80211_is_group_privacy_action(tx->skb) &&
|
||
|
(key = rcu_dereference(tx->sdata->default_multicast_key)))
|
||
|
tx->key = key;
|
||
|
else if (ieee80211_is_mgmt(hdr->frame_control) &&
|
||
|
is_multicast_ether_addr(hdr->addr1) &&
|
||
|
ieee80211_is_robust_mgmt_frame(tx->skb) &&
|
||
|
(key = rcu_dereference(tx->sdata->default_mgmt_key)))
|
||
|
tx->key = key;
|
||
|
else if (is_multicast_ether_addr(hdr->addr1) &&
|
||
|
(key = rcu_dereference(tx->sdata->default_multicast_key)))
|
||
|
tx->key = key;
|
||
|
else if (!is_multicast_ether_addr(hdr->addr1) &&
|
||
|
(key = rcu_dereference(tx->sdata->default_unicast_key)))
|
||
|
tx->key = key;
|
||
|
else
|
||
|
tx->key = NULL;
|
||
|
|
||
|
if (tx->key) {
|
||
|
bool skip_hw = false;
|
||
|
|
||
|
/* TODO: add threshold stuff again */
|
||
|
|
||
|
switch (tx->key->conf.cipher) {
|
||
|
case WLAN_CIPHER_SUITE_WEP40:
|
||
|
case WLAN_CIPHER_SUITE_WEP104:
|
||
|
case WLAN_CIPHER_SUITE_TKIP:
|
||
|
if (!ieee80211_is_data_present(hdr->frame_control))
|
||
|
tx->key = NULL;
|
||
|
break;
|
||
|
case WLAN_CIPHER_SUITE_CCMP:
|
||
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
||
|
case WLAN_CIPHER_SUITE_GCMP:
|
||
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
||
|
if (!ieee80211_is_data_present(hdr->frame_control) &&
|
||
|
!ieee80211_use_mfp(hdr->frame_control, tx->sta,
|
||
|
tx->skb) &&
|
||
|
!ieee80211_is_group_privacy_action(tx->skb))
|
||
|
tx->key = NULL;
|
||
|
else
|
||
|
skip_hw = (tx->key->conf.flags &
|
||
|
IEEE80211_KEY_FLAG_SW_MGMT_TX) &&
|
||
|
ieee80211_is_mgmt(hdr->frame_control);
|
||
|
break;
|
||
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
||
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
||
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
||
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
||
|
if (!ieee80211_is_mgmt(hdr->frame_control))
|
||
|
tx->key = NULL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED &&
|
||
|
!ieee80211_is_deauth(hdr->frame_control)))
|
||
|
return TX_DROP;
|
||
|
|
||
|
if (!skip_hw && tx->key &&
|
||
|
tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
|
||
|
info->control.hw_key = &tx->key->conf;
|
||
|
}
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
struct ieee80211_hdr *hdr = (void *)tx->skb->data;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
u32 len;
|
||
|
struct ieee80211_tx_rate_control txrc;
|
||
|
struct ieee80211_sta_rates *ratetbl = NULL;
|
||
|
bool assoc = false;
|
||
|
|
||
|
memset(&txrc, 0, sizeof(txrc));
|
||
|
|
||
|
sband = tx->local->hw.wiphy->bands[info->band];
|
||
|
|
||
|
len = min_t(u32, tx->skb->len + FCS_LEN,
|
||
|
tx->local->hw.wiphy->frag_threshold);
|
||
|
|
||
|
/* set up the tx rate control struct we give the RC algo */
|
||
|
txrc.hw = &tx->local->hw;
|
||
|
txrc.sband = sband;
|
||
|
txrc.bss_conf = &tx->sdata->vif.bss_conf;
|
||
|
txrc.skb = tx->skb;
|
||
|
txrc.reported_rate.idx = -1;
|
||
|
txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band];
|
||
|
if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
|
||
|
txrc.max_rate_idx = -1;
|
||
|
else
|
||
|
txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
|
||
|
|
||
|
if (tx->sdata->rc_has_mcs_mask[info->band])
|
||
|
txrc.rate_idx_mcs_mask =
|
||
|
tx->sdata->rc_rateidx_mcs_mask[info->band];
|
||
|
|
||
|
txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
|
||
|
tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT ||
|
||
|
tx->sdata->vif.type == NL80211_IFTYPE_ADHOC ||
|
||
|
tx->sdata->vif.type == NL80211_IFTYPE_OCB);
|
||
|
|
||
|
/* set up RTS protection if desired */
|
||
|
if (len > tx->local->hw.wiphy->rts_threshold) {
|
||
|
txrc.rts = true;
|
||
|
}
|
||
|
|
||
|
info->control.use_rts = txrc.rts;
|
||
|
info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot;
|
||
|
|
||
|
/*
|
||
|
* Use short preamble if the BSS can handle it, but not for
|
||
|
* management frames unless we know the receiver can handle
|
||
|
* that -- the management frame might be to a station that
|
||
|
* just wants a probe response.
|
||
|
*/
|
||
|
if (tx->sdata->vif.bss_conf.use_short_preamble &&
|
||
|
(ieee80211_is_data(hdr->frame_control) ||
|
||
|
(tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
|
||
|
txrc.short_preamble = true;
|
||
|
|
||
|
info->control.short_preamble = txrc.short_preamble;
|
||
|
|
||
|
/* don't ask rate control when rate already injected via radiotap */
|
||
|
if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (tx->sta)
|
||
|
assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC);
|
||
|
|
||
|
/*
|
||
|
* Lets not bother rate control if we're associated and cannot
|
||
|
* talk to the sta. This should not happen.
|
||
|
*/
|
||
|
if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc &&
|
||
|
!rate_usable_index_exists(sband, &tx->sta->sta),
|
||
|
"%s: Dropped data frame as no usable bitrate found while "
|
||
|
"scanning and associated. Target station: "
|
||
|
"%pM on %d GHz band\n",
|
||
|
tx->sdata->name, hdr->addr1,
|
||
|
info->band ? 5 : 2))
|
||
|
return TX_DROP;
|
||
|
|
||
|
/*
|
||
|
* If we're associated with the sta at this point we know we can at
|
||
|
* least send the frame at the lowest bit rate.
|
||
|
*/
|
||
|
rate_control_get_rate(tx->sdata, tx->sta, &txrc);
|
||
|
|
||
|
if (tx->sta && !info->control.skip_table)
|
||
|
ratetbl = rcu_dereference(tx->sta->sta.rates);
|
||
|
|
||
|
if (unlikely(info->control.rates[0].idx < 0)) {
|
||
|
if (ratetbl) {
|
||
|
struct ieee80211_tx_rate rate = {
|
||
|
.idx = ratetbl->rate[0].idx,
|
||
|
.flags = ratetbl->rate[0].flags,
|
||
|
.count = ratetbl->rate[0].count
|
||
|
};
|
||
|
|
||
|
if (ratetbl->rate[0].idx < 0)
|
||
|
return TX_DROP;
|
||
|
|
||
|
tx->rate = rate;
|
||
|
} else {
|
||
|
return TX_DROP;
|
||
|
}
|
||
|
} else {
|
||
|
tx->rate = info->control.rates[0];
|
||
|
}
|
||
|
|
||
|
if (txrc.reported_rate.idx < 0) {
|
||
|
txrc.reported_rate = tx->rate;
|
||
|
if (tx->sta && ieee80211_is_data(hdr->frame_control))
|
||
|
tx->sta->tx_stats.last_rate = txrc.reported_rate;
|
||
|
} else if (tx->sta)
|
||
|
tx->sta->tx_stats.last_rate = txrc.reported_rate;
|
||
|
|
||
|
if (ratetbl)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (unlikely(!info->control.rates[0].count))
|
||
|
info->control.rates[0].count = 1;
|
||
|
|
||
|
if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
|
||
|
(info->flags & IEEE80211_TX_CTL_NO_ACK)))
|
||
|
info->control.rates[0].count = 1;
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid)
|
||
|
{
|
||
|
u16 *seq = &sta->tid_seq[tid];
|
||
|
__le16 ret = cpu_to_le16(*seq);
|
||
|
|
||
|
/* Increase the sequence number. */
|
||
|
*seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
|
||
|
u8 *qc;
|
||
|
int tid;
|
||
|
|
||
|
/*
|
||
|
* Packet injection may want to control the sequence
|
||
|
* number, if we have no matching interface then we
|
||
|
* neither assign one ourselves nor ask the driver to.
|
||
|
*/
|
||
|
if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (ieee80211_hdrlen(hdr->frame_control) < 24)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (ieee80211_is_qos_nullfunc(hdr->frame_control))
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/*
|
||
|
* Anything but QoS data that has a sequence number field
|
||
|
* (is long enough) gets a sequence number from the global
|
||
|
* counter. QoS data frames with a multicast destination
|
||
|
* also use the global counter (802.11-2012 9.3.2.10).
|
||
|
*/
|
||
|
if (!ieee80211_is_data_qos(hdr->frame_control) ||
|
||
|
is_multicast_ether_addr(hdr->addr1)) {
|
||
|
/* driver should assign sequence number */
|
||
|
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
|
||
|
/* for pure STA mode without beacons, we can do it */
|
||
|
hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
|
||
|
tx->sdata->sequence_number += 0x10;
|
||
|
if (tx->sta)
|
||
|
tx->sta->tx_stats.msdu[IEEE80211_NUM_TIDS]++;
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This should be true for injected/management frames only, for
|
||
|
* management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
|
||
|
* above since they are not QoS-data frames.
|
||
|
*/
|
||
|
if (!tx->sta)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/* include per-STA, per-TID sequence counter */
|
||
|
|
||
|
qc = ieee80211_get_qos_ctl(hdr);
|
||
|
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
|
||
|
tx->sta->tx_stats.msdu[tid]++;
|
||
|
|
||
|
hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid);
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static int ieee80211_fragment(struct ieee80211_tx_data *tx,
|
||
|
struct sk_buff *skb, int hdrlen,
|
||
|
int frag_threshold)
|
||
|
{
|
||
|
struct ieee80211_local *local = tx->local;
|
||
|
struct ieee80211_tx_info *info;
|
||
|
struct sk_buff *tmp;
|
||
|
int per_fragm = frag_threshold - hdrlen - FCS_LEN;
|
||
|
int pos = hdrlen + per_fragm;
|
||
|
int rem = skb->len - hdrlen - per_fragm;
|
||
|
|
||
|
if (WARN_ON(rem < 0))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* first fragment was already added to queue by caller */
|
||
|
|
||
|
while (rem) {
|
||
|
int fraglen = per_fragm;
|
||
|
|
||
|
if (fraglen > rem)
|
||
|
fraglen = rem;
|
||
|
rem -= fraglen;
|
||
|
tmp = dev_alloc_skb(local->tx_headroom +
|
||
|
frag_threshold +
|
||
|
tx->sdata->encrypt_headroom +
|
||
|
IEEE80211_ENCRYPT_TAILROOM);
|
||
|
if (!tmp)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
__skb_queue_tail(&tx->skbs, tmp);
|
||
|
|
||
|
skb_reserve(tmp,
|
||
|
local->tx_headroom + tx->sdata->encrypt_headroom);
|
||
|
|
||
|
/* copy control information */
|
||
|
memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
|
||
|
|
||
|
info = IEEE80211_SKB_CB(tmp);
|
||
|
info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
|
||
|
IEEE80211_TX_CTL_FIRST_FRAGMENT);
|
||
|
|
||
|
if (rem)
|
||
|
info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
|
||
|
|
||
|
skb_copy_queue_mapping(tmp, skb);
|
||
|
tmp->priority = skb->priority;
|
||
|
tmp->dev = skb->dev;
|
||
|
|
||
|
/* copy header and data */
|
||
|
memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
|
||
|
memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
|
||
|
|
||
|
pos += fraglen;
|
||
|
}
|
||
|
|
||
|
/* adjust first fragment's length */
|
||
|
skb_trim(skb, hdrlen + per_fragm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct sk_buff *skb = tx->skb;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
||
|
int frag_threshold = tx->local->hw.wiphy->frag_threshold;
|
||
|
int hdrlen;
|
||
|
int fragnum;
|
||
|
|
||
|
/* no matter what happens, tx->skb moves to tx->skbs */
|
||
|
__skb_queue_tail(&tx->skbs, skb);
|
||
|
tx->skb = NULL;
|
||
|
|
||
|
if (info->flags & IEEE80211_TX_CTL_DONTFRAG)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
if (tx->local->ops->set_frag_threshold)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
/*
|
||
|
* Warn when submitting a fragmented A-MPDU frame and drop it.
|
||
|
* This scenario is handled in ieee80211_tx_prepare but extra
|
||
|
* caution taken here as fragmented ampdu may cause Tx stop.
|
||
|
*/
|
||
|
if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
|
||
|
return TX_DROP;
|
||
|
|
||
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
||
|
|
||
|
/* internal error, why isn't DONTFRAG set? */
|
||
|
if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
|
||
|
return TX_DROP;
|
||
|
|
||
|
/*
|
||
|
* Now fragment the frame. This will allocate all the fragments and
|
||
|
* chain them (using skb as the first fragment) to skb->next.
|
||
|
* During transmission, we will remove the successfully transmitted
|
||
|
* fragments from this list. When the low-level driver rejects one
|
||
|
* of the fragments then we will simply pretend to accept the skb
|
||
|
* but store it away as pending.
|
||
|
*/
|
||
|
if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold))
|
||
|
return TX_DROP;
|
||
|
|
||
|
/* update duration/seq/flags of fragments */
|
||
|
fragnum = 0;
|
||
|
|
||
|
skb_queue_walk(&tx->skbs, skb) {
|
||
|
const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
|
||
|
|
||
|
hdr = (void *)skb->data;
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
|
||
|
if (!skb_queue_is_last(&tx->skbs, skb)) {
|
||
|
hdr->frame_control |= morefrags;
|
||
|
/*
|
||
|
* No multi-rate retries for fragmented frames, that
|
||
|
* would completely throw off the NAV at other STAs.
|
||
|
*/
|
||
|
info->control.rates[1].idx = -1;
|
||
|
info->control.rates[2].idx = -1;
|
||
|
info->control.rates[3].idx = -1;
|
||
|
BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4);
|
||
|
info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
|
||
|
} else {
|
||
|
hdr->frame_control &= ~morefrags;
|
||
|
}
|
||
|
hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
|
||
|
fragnum++;
|
||
|
}
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
int ac = -1;
|
||
|
|
||
|
if (!tx->sta)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
skb_queue_walk(&tx->skbs, skb) {
|
||
|
ac = skb_get_queue_mapping(skb);
|
||
|
tx->sta->tx_stats.bytes[ac] += skb->len;
|
||
|
}
|
||
|
if (ac >= 0)
|
||
|
tx->sta->tx_stats.packets[ac]++;
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
if (!tx->key)
|
||
|
return TX_CONTINUE;
|
||
|
|
||
|
switch (tx->key->conf.cipher) {
|
||
|
case WLAN_CIPHER_SUITE_WEP40:
|
||
|
case WLAN_CIPHER_SUITE_WEP104:
|
||
|
return ieee80211_crypto_wep_encrypt(tx);
|
||
|
case WLAN_CIPHER_SUITE_TKIP:
|
||
|
return ieee80211_crypto_tkip_encrypt(tx);
|
||
|
case WLAN_CIPHER_SUITE_CCMP:
|
||
|
return ieee80211_crypto_ccmp_encrypt(
|
||
|
tx, IEEE80211_CCMP_MIC_LEN);
|
||
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
||
|
return ieee80211_crypto_ccmp_encrypt(
|
||
|
tx, IEEE80211_CCMP_256_MIC_LEN);
|
||
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
||
|
return ieee80211_crypto_aes_cmac_encrypt(tx);
|
||
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
||
|
return ieee80211_crypto_aes_cmac_256_encrypt(tx);
|
||
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
||
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
||
|
return ieee80211_crypto_aes_gmac_encrypt(tx);
|
||
|
case WLAN_CIPHER_SUITE_GCMP:
|
||
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
||
|
return ieee80211_crypto_gcmp_encrypt(tx);
|
||
|
default:
|
||
|
return ieee80211_crypto_hw_encrypt(tx);
|
||
|
}
|
||
|
|
||
|
return TX_DROP;
|
||
|
}
|
||
|
|
||
|
static ieee80211_tx_result debug_noinline
|
||
|
ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
int next_len;
|
||
|
bool group_addr;
|
||
|
|
||
|
skb_queue_walk(&tx->skbs, skb) {
|
||
|
hdr = (void *) skb->data;
|
||
|
if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
|
||
|
break; /* must not overwrite AID */
|
||
|
if (!skb_queue_is_last(&tx->skbs, skb)) {
|
||
|
struct sk_buff *next = skb_queue_next(&tx->skbs, skb);
|
||
|
next_len = next->len;
|
||
|
} else
|
||
|
next_len = 0;
|
||
|
group_addr = is_multicast_ether_addr(hdr->addr1);
|
||
|
|
||
|
hdr->duration_id =
|
||
|
ieee80211_duration(tx, skb, group_addr, next_len);
|
||
|
}
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
/* actual transmit path */
|
||
|
|
||
|
static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
|
||
|
struct sk_buff *skb,
|
||
|
struct ieee80211_tx_info *info,
|
||
|
struct tid_ampdu_tx *tid_tx,
|
||
|
int tid)
|
||
|
{
|
||
|
bool queued = false;
|
||
|
bool reset_agg_timer = false;
|
||
|
struct sk_buff *purge_skb = NULL;
|
||
|
|
||
|
if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
|
||
|
info->flags |= IEEE80211_TX_CTL_AMPDU;
|
||
|
reset_agg_timer = true;
|
||
|
} else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
|
||
|
/*
|
||
|
* nothing -- this aggregation session is being started
|
||
|
* but that might still fail with the driver
|
||
|
*/
|
||
|
} else if (!tx->sta->sta.txq[tid]) {
|
||
|
spin_lock(&tx->sta->lock);
|
||
|
/*
|
||
|
* Need to re-check now, because we may get here
|
||
|
*
|
||
|
* 1) in the window during which the setup is actually
|
||
|
* already done, but not marked yet because not all
|
||
|
* packets are spliced over to the driver pending
|
||
|
* queue yet -- if this happened we acquire the lock
|
||
|
* either before or after the splice happens, but
|
||
|
* need to recheck which of these cases happened.
|
||
|
*
|
||
|
* 2) during session teardown, if the OPERATIONAL bit
|
||
|
* was cleared due to the teardown but the pointer
|
||
|
* hasn't been assigned NULL yet (or we loaded it
|
||
|
* before it was assigned) -- in this case it may
|
||
|
* now be NULL which means we should just let the
|
||
|
* packet pass through because splicing the frames
|
||
|
* back is already done.
|
||
|
*/
|
||
|
tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid);
|
||
|
|
||
|
if (!tid_tx) {
|
||
|
/* do nothing, let packet pass through */
|
||
|
} else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
|
||
|
info->flags |= IEEE80211_TX_CTL_AMPDU;
|
||
|
reset_agg_timer = true;
|
||
|
} else {
|
||
|
queued = true;
|
||
|
if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) {
|
||
|
clear_sta_flag(tx->sta, WLAN_STA_SP);
|
||
|
ps_dbg(tx->sta->sdata,
|
||
|
"STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n",
|
||
|
tx->sta->sta.addr, tx->sta->sta.aid);
|
||
|
}
|
||
|
info->control.vif = &tx->sdata->vif;
|
||
|
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
|
||
|
info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS;
|
||
|
__skb_queue_tail(&tid_tx->pending, skb);
|
||
|
if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER)
|
||
|
purge_skb = __skb_dequeue(&tid_tx->pending);
|
||
|
}
|
||
|
spin_unlock(&tx->sta->lock);
|
||
|
|
||
|
if (purge_skb)
|
||
|
ieee80211_free_txskb(&tx->local->hw, purge_skb);
|
||
|
}
|
||
|
|
||
|
/* reset session timer */
|
||
|
if (reset_agg_timer && tid_tx->timeout)
|
||
|
tid_tx->last_tx = jiffies;
|
||
|
|
||
|
return queued;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* initialises @tx
|
||
|
* pass %NULL for the station if unknown, a valid pointer if known
|
||
|
* or an ERR_PTR() if the station is known not to exist
|
||
|
*/
|
||
|
static ieee80211_tx_result
|
||
|
ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
|
||
|
struct ieee80211_tx_data *tx,
|
||
|
struct sta_info *sta, struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
int tid;
|
||
|
u8 *qc;
|
||
|
|
||
|
memset(tx, 0, sizeof(*tx));
|
||
|
tx->skb = skb;
|
||
|
tx->local = local;
|
||
|
tx->sdata = sdata;
|
||
|
__skb_queue_head_init(&tx->skbs);
|
||
|
|
||
|
/*
|
||
|
* If this flag is set to true anywhere, and we get here,
|
||
|
* we are doing the needed processing, so remove the flag
|
||
|
* now.
|
||
|
*/
|
||
|
info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
|
||
|
|
||
|
hdr = (struct ieee80211_hdr *) skb->data;
|
||
|
|
||
|
if (likely(sta)) {
|
||
|
if (!IS_ERR(sta))
|
||
|
tx->sta = sta;
|
||
|
} else {
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
|
||
|
tx->sta = rcu_dereference(sdata->u.vlan.sta);
|
||
|
if (!tx->sta && sdata->wdev.use_4addr)
|
||
|
return TX_DROP;
|
||
|
} else if (info->flags & (IEEE80211_TX_INTFL_NL80211_FRAME_TX |
|
||
|
IEEE80211_TX_CTL_INJECTED) ||
|
||
|
tx->sdata->control_port_protocol == tx->skb->protocol) {
|
||
|
tx->sta = sta_info_get_bss(sdata, hdr->addr1);
|
||
|
}
|
||
|
if (!tx->sta && !is_multicast_ether_addr(hdr->addr1))
|
||
|
tx->sta = sta_info_get(sdata, hdr->addr1);
|
||
|
}
|
||
|
|
||
|
if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
|
||
|
!ieee80211_is_qos_nullfunc(hdr->frame_control) &&
|
||
|
ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
|
||
|
!ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) {
|
||
|
struct tid_ampdu_tx *tid_tx;
|
||
|
|
||
|
qc = ieee80211_get_qos_ctl(hdr);
|
||
|
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
|
||
|
|
||
|
tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
|
||
|
if (tid_tx) {
|
||
|
bool queued;
|
||
|
|
||
|
queued = ieee80211_tx_prep_agg(tx, skb, info,
|
||
|
tid_tx, tid);
|
||
|
|
||
|
if (unlikely(queued))
|
||
|
return TX_QUEUED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
||
|
tx->flags &= ~IEEE80211_TX_UNICAST;
|
||
|
info->flags |= IEEE80211_TX_CTL_NO_ACK;
|
||
|
} else
|
||
|
tx->flags |= IEEE80211_TX_UNICAST;
|
||
|
|
||
|
if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) {
|
||
|
if (!(tx->flags & IEEE80211_TX_UNICAST) ||
|
||
|
skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold ||
|
||
|
info->flags & IEEE80211_TX_CTL_AMPDU)
|
||
|
info->flags |= IEEE80211_TX_CTL_DONTFRAG;
|
||
|
}
|
||
|
|
||
|
if (!tx->sta)
|
||
|
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
|
||
|
else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) {
|
||
|
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
|
||
|
ieee80211_check_fast_xmit(tx->sta);
|
||
|
}
|
||
|
|
||
|
info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
|
||
|
|
||
|
return TX_CONTINUE;
|
||
|
}
|
||
|
|
||
|
static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local,
|
||
|
struct ieee80211_vif *vif,
|
||
|
struct sta_info *sta,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_txq *txq = NULL;
|
||
|
|
||
|
if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) ||
|
||
|
(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE))
|
||
|
return NULL;
|
||
|
|
||
|
if (!ieee80211_is_data(hdr->frame_control))
|
||
|
return NULL;
|
||
|
|
||
|
if (sta) {
|
||
|
u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
|
||
|
|
||
|
if (!sta->uploaded)
|
||
|
return NULL;
|
||
|
|
||
|
txq = sta->sta.txq[tid];
|
||
|
} else if (vif) {
|
||
|
txq = vif->txq;
|
||
|
}
|
||
|
|
||
|
if (!txq)
|
||
|
return NULL;
|
||
|
|
||
|
return to_txq_info(txq);
|
||
|
}
|
||
|
|
||
|
static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb)
|
||
|
{
|
||
|
IEEE80211_SKB_CB(skb)->control.enqueue_time = codel_get_time();
|
||
|
}
|
||
|
|
||
|
static u32 codel_skb_len_func(const struct sk_buff *skb)
|
||
|
{
|
||
|
return skb->len;
|
||
|
}
|
||
|
|
||
|
static codel_time_t codel_skb_time_func(const struct sk_buff *skb)
|
||
|
{
|
||
|
const struct ieee80211_tx_info *info;
|
||
|
|
||
|
info = (const struct ieee80211_tx_info *)skb->cb;
|
||
|
return info->control.enqueue_time;
|
||
|
}
|
||
|
|
||
|
static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars,
|
||
|
void *ctx)
|
||
|
{
|
||
|
struct ieee80211_local *local;
|
||
|
struct txq_info *txqi;
|
||
|
struct fq *fq;
|
||
|
struct fq_flow *flow;
|
||
|
|
||
|
txqi = ctx;
|
||
|
local = vif_to_sdata(txqi->txq.vif)->local;
|
||
|
fq = &local->fq;
|
||
|
|
||
|
if (cvars == &txqi->def_cvars)
|
||
|
flow = &txqi->def_flow;
|
||
|
else
|
||
|
flow = &fq->flows[cvars - local->cvars];
|
||
|
|
||
|
return fq_flow_dequeue(fq, flow);
|
||
|
}
|
||
|
|
||
|
static void codel_drop_func(struct sk_buff *skb,
|
||
|
void *ctx)
|
||
|
{
|
||
|
struct ieee80211_local *local;
|
||
|
struct ieee80211_hw *hw;
|
||
|
struct txq_info *txqi;
|
||
|
|
||
|
txqi = ctx;
|
||
|
local = vif_to_sdata(txqi->txq.vif)->local;
|
||
|
hw = &local->hw;
|
||
|
|
||
|
ieee80211_free_txskb(hw, skb);
|
||
|
}
|
||
|
|
||
|
static struct sk_buff *fq_tin_dequeue_func(struct fq *fq,
|
||
|
struct fq_tin *tin,
|
||
|
struct fq_flow *flow)
|
||
|
{
|
||
|
struct ieee80211_local *local;
|
||
|
struct txq_info *txqi;
|
||
|
struct codel_vars *cvars;
|
||
|
struct codel_params *cparams;
|
||
|
struct codel_stats *cstats;
|
||
|
|
||
|
local = container_of(fq, struct ieee80211_local, fq);
|
||
|
txqi = container_of(tin, struct txq_info, tin);
|
||
|
cparams = &local->cparams;
|
||
|
cstats = &txqi->cstats;
|
||
|
|
||
|
if (flow == &txqi->def_flow)
|
||
|
cvars = &txqi->def_cvars;
|
||
|
else
|
||
|
cvars = &local->cvars[flow - fq->flows];
|
||
|
|
||
|
return codel_dequeue(txqi,
|
||
|
&flow->backlog,
|
||
|
cparams,
|
||
|
cvars,
|
||
|
cstats,
|
||
|
codel_skb_len_func,
|
||
|
codel_skb_time_func,
|
||
|
codel_drop_func,
|
||
|
codel_dequeue_func);
|
||
|
}
|
||
|
|
||
|
static void fq_skb_free_func(struct fq *fq,
|
||
|
struct fq_tin *tin,
|
||
|
struct fq_flow *flow,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_local *local;
|
||
|
|
||
|
local = container_of(fq, struct ieee80211_local, fq);
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
}
|
||
|
|
||
|
static struct fq_flow *fq_flow_get_default_func(struct fq *fq,
|
||
|
struct fq_tin *tin,
|
||
|
int idx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct txq_info *txqi;
|
||
|
|
||
|
txqi = container_of(tin, struct txq_info, tin);
|
||
|
return &txqi->def_flow;
|
||
|
}
|
||
|
|
||
|
static void ieee80211_txq_enqueue(struct ieee80211_local *local,
|
||
|
struct txq_info *txqi,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct fq *fq = &local->fq;
|
||
|
struct fq_tin *tin = &txqi->tin;
|
||
|
|
||
|
ieee80211_set_skb_enqueue_time(skb);
|
||
|
fq_tin_enqueue(fq, tin, skb,
|
||
|
fq_skb_free_func,
|
||
|
fq_flow_get_default_func);
|
||
|
}
|
||
|
|
||
|
void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta,
|
||
|
struct txq_info *txqi, int tid)
|
||
|
{
|
||
|
fq_tin_init(&txqi->tin);
|
||
|
fq_flow_init(&txqi->def_flow);
|
||
|
codel_vars_init(&txqi->def_cvars);
|
||
|
codel_stats_init(&txqi->cstats);
|
||
|
__skb_queue_head_init(&txqi->frags);
|
||
|
|
||
|
txqi->txq.vif = &sdata->vif;
|
||
|
|
||
|
if (sta) {
|
||
|
txqi->txq.sta = &sta->sta;
|
||
|
sta->sta.txq[tid] = &txqi->txq;
|
||
|
txqi->txq.tid = tid;
|
||
|
txqi->txq.ac = ieee802_1d_to_ac[tid & 7];
|
||
|
} else {
|
||
|
sdata->vif.txq = &txqi->txq;
|
||
|
txqi->txq.tid = 0;
|
||
|
txqi->txq.ac = IEEE80211_AC_BE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void ieee80211_txq_purge(struct ieee80211_local *local,
|
||
|
struct txq_info *txqi)
|
||
|
{
|
||
|
struct fq *fq = &local->fq;
|
||
|
struct fq_tin *tin = &txqi->tin;
|
||
|
|
||
|
fq_tin_reset(fq, tin, fq_skb_free_func);
|
||
|
ieee80211_purge_tx_queue(&local->hw, &txqi->frags);
|
||
|
}
|
||
|
|
||
|
int ieee80211_txq_setup_flows(struct ieee80211_local *local)
|
||
|
{
|
||
|
struct fq *fq = &local->fq;
|
||
|
int ret;
|
||
|
int i;
|
||
|
bool supp_vht = false;
|
||
|
enum nl80211_band band;
|
||
|
|
||
|
if (!local->ops->wake_tx_queue)
|
||
|
return 0;
|
||
|
|
||
|
ret = fq_init(fq, 4096);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* If the hardware doesn't support VHT, it is safe to limit the maximum
|
||
|
* queue size. 4 Mbytes is 64 max-size aggregates in 802.11n.
|
||
|
*/
|
||
|
for (band = 0; band < NUM_NL80211_BANDS; band++) {
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
|
||
|
sband = local->hw.wiphy->bands[band];
|
||
|
if (!sband)
|
||
|
continue;
|
||
|
|
||
|
supp_vht = supp_vht || sband->vht_cap.vht_supported;
|
||
|
}
|
||
|
|
||
|
if (!supp_vht)
|
||
|
fq->memory_limit = 4 << 20; /* 4 Mbytes */
|
||
|
|
||
|
codel_params_init(&local->cparams);
|
||
|
local->cparams.interval = MS2TIME(100);
|
||
|
local->cparams.target = MS2TIME(20);
|
||
|
local->cparams.ecn = true;
|
||
|
|
||
|
local->cvars = kcalloc(fq->flows_cnt, sizeof(local->cvars[0]),
|
||
|
GFP_KERNEL);
|
||
|
if (!local->cvars) {
|
||
|
spin_lock_bh(&fq->lock);
|
||
|
fq_reset(fq, fq_skb_free_func);
|
||
|
spin_unlock_bh(&fq->lock);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < fq->flows_cnt; i++)
|
||
|
codel_vars_init(&local->cvars[i]);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void ieee80211_txq_teardown_flows(struct ieee80211_local *local)
|
||
|
{
|
||
|
struct fq *fq = &local->fq;
|
||
|
|
||
|
if (!local->ops->wake_tx_queue)
|
||
|
return;
|
||
|
|
||
|
kfree(local->cvars);
|
||
|
local->cvars = NULL;
|
||
|
|
||
|
spin_lock_bh(&fq->lock);
|
||
|
fq_reset(fq, fq_skb_free_func);
|
||
|
spin_unlock_bh(&fq->lock);
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_queue_skb(struct ieee80211_local *local,
|
||
|
struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct fq *fq = &local->fq;
|
||
|
struct ieee80211_vif *vif;
|
||
|
struct txq_info *txqi;
|
||
|
|
||
|
if (!local->ops->wake_tx_queue ||
|
||
|
sdata->vif.type == NL80211_IFTYPE_MONITOR)
|
||
|
return false;
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
|
||
|
sdata = container_of(sdata->bss,
|
||
|
struct ieee80211_sub_if_data, u.ap);
|
||
|
|
||
|
vif = &sdata->vif;
|
||
|
txqi = ieee80211_get_txq(local, vif, sta, skb);
|
||
|
|
||
|
if (!txqi)
|
||
|
return false;
|
||
|
|
||
|
spin_lock_bh(&fq->lock);
|
||
|
ieee80211_txq_enqueue(local, txqi, skb);
|
||
|
spin_unlock_bh(&fq->lock);
|
||
|
|
||
|
drv_wake_tx_queue(local, txqi);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_tx_frags(struct ieee80211_local *local,
|
||
|
struct ieee80211_vif *vif,
|
||
|
struct ieee80211_sta *sta,
|
||
|
struct sk_buff_head *skbs,
|
||
|
bool txpending)
|
||
|
{
|
||
|
struct ieee80211_tx_control control = {};
|
||
|
struct sk_buff *skb, *tmp;
|
||
|
unsigned long flags;
|
||
|
|
||
|
skb_queue_walk_safe(skbs, skb, tmp) {
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
int q = info->hw_queue;
|
||
|
|
||
|
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
|
||
|
if (WARN_ON_ONCE(q >= local->hw.queues)) {
|
||
|
__skb_unlink(skb, skbs);
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
continue;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
|
||
|
if (local->queue_stop_reasons[q] ||
|
||
|
(!txpending && !skb_queue_empty(&local->pending[q]))) {
|
||
|
if (unlikely(info->flags &
|
||
|
IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) {
|
||
|
if (local->queue_stop_reasons[q] &
|
||
|
~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) {
|
||
|
/*
|
||
|
* Drop off-channel frames if queues
|
||
|
* are stopped for any reason other
|
||
|
* than off-channel operation. Never
|
||
|
* queue them.
|
||
|
*/
|
||
|
spin_unlock_irqrestore(
|
||
|
&local->queue_stop_reason_lock,
|
||
|
flags);
|
||
|
ieee80211_purge_tx_queue(&local->hw,
|
||
|
skbs);
|
||
|
return true;
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/*
|
||
|
* Since queue is stopped, queue up frames for
|
||
|
* later transmission from the tx-pending
|
||
|
* tasklet when the queue is woken again.
|
||
|
*/
|
||
|
if (txpending)
|
||
|
skb_queue_splice_init(skbs,
|
||
|
&local->pending[q]);
|
||
|
else
|
||
|
skb_queue_splice_tail_init(skbs,
|
||
|
&local->pending[q]);
|
||
|
|
||
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
|
||
|
flags);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
|
||
|
|
||
|
info->control.vif = vif;
|
||
|
control.sta = sta;
|
||
|
|
||
|
__skb_unlink(skb, skbs);
|
||
|
drv_tx(local, &control, skb);
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns false if the frame couldn't be transmitted but was queued instead.
|
||
|
*/
|
||
|
static bool __ieee80211_tx(struct ieee80211_local *local,
|
||
|
struct sk_buff_head *skbs, int led_len,
|
||
|
struct sta_info *sta, bool txpending)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info;
|
||
|
struct ieee80211_sub_if_data *sdata;
|
||
|
struct ieee80211_vif *vif;
|
||
|
struct ieee80211_sta *pubsta;
|
||
|
struct sk_buff *skb;
|
||
|
bool result = true;
|
||
|
__le16 fc;
|
||
|
|
||
|
if (WARN_ON(skb_queue_empty(skbs)))
|
||
|
return true;
|
||
|
|
||
|
skb = skb_peek(skbs);
|
||
|
fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
sdata = vif_to_sdata(info->control.vif);
|
||
|
if (sta && !sta->uploaded)
|
||
|
sta = NULL;
|
||
|
|
||
|
if (sta)
|
||
|
pubsta = &sta->sta;
|
||
|
else
|
||
|
pubsta = NULL;
|
||
|
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_MONITOR:
|
||
|
if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) {
|
||
|
vif = &sdata->vif;
|
||
|
break;
|
||
|
}
|
||
|
sdata = rcu_dereference(local->monitor_sdata);
|
||
|
if (sdata) {
|
||
|
vif = &sdata->vif;
|
||
|
info->hw_queue =
|
||
|
vif->hw_queue[skb_get_queue_mapping(skb)];
|
||
|
} else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
|
||
|
ieee80211_purge_tx_queue(&local->hw, skbs);
|
||
|
return true;
|
||
|
} else
|
||
|
vif = NULL;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
sdata = container_of(sdata->bss,
|
||
|
struct ieee80211_sub_if_data, u.ap);
|
||
|
/* fall through */
|
||
|
default:
|
||
|
vif = &sdata->vif;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
result = ieee80211_tx_frags(local, vif, pubsta, skbs,
|
||
|
txpending);
|
||
|
|
||
|
ieee80211_tpt_led_trig_tx(local, fc, led_len);
|
||
|
|
||
|
WARN_ON_ONCE(!skb_queue_empty(skbs));
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Invoke TX handlers, return 0 on success and non-zero if the
|
||
|
* frame was dropped or queued.
|
||
|
*
|
||
|
* The handlers are split into an early and late part. The latter is everything
|
||
|
* that can be sensitive to reordering, and will be deferred to after packets
|
||
|
* are dequeued from the intermediate queues (when they are enabled).
|
||
|
*/
|
||
|
static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
ieee80211_tx_result res = TX_DROP;
|
||
|
|
||
|
#define CALL_TXH(txh) \
|
||
|
do { \
|
||
|
res = txh(tx); \
|
||
|
if (res != TX_CONTINUE) \
|
||
|
goto txh_done; \
|
||
|
} while (0)
|
||
|
|
||
|
CALL_TXH(ieee80211_tx_h_dynamic_ps);
|
||
|
CALL_TXH(ieee80211_tx_h_check_assoc);
|
||
|
CALL_TXH(ieee80211_tx_h_ps_buf);
|
||
|
CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
|
||
|
CALL_TXH(ieee80211_tx_h_select_key);
|
||
|
if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL))
|
||
|
CALL_TXH(ieee80211_tx_h_rate_ctrl);
|
||
|
|
||
|
txh_done:
|
||
|
if (unlikely(res == TX_DROP)) {
|
||
|
I802_DEBUG_INC(tx->local->tx_handlers_drop);
|
||
|
if (tx->skb)
|
||
|
ieee80211_free_txskb(&tx->local->hw, tx->skb);
|
||
|
else
|
||
|
ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs);
|
||
|
return -1;
|
||
|
} else if (unlikely(res == TX_QUEUED)) {
|
||
|
I802_DEBUG_INC(tx->local->tx_handlers_queued);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Late handlers can be called while the sta lock is held. Handlers that can
|
||
|
* cause packets to be generated will cause deadlock!
|
||
|
*/
|
||
|
static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
|
||
|
ieee80211_tx_result res = TX_CONTINUE;
|
||
|
|
||
|
if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) {
|
||
|
__skb_queue_tail(&tx->skbs, tx->skb);
|
||
|
tx->skb = NULL;
|
||
|
goto txh_done;
|
||
|
}
|
||
|
|
||
|
CALL_TXH(ieee80211_tx_h_michael_mic_add);
|
||
|
CALL_TXH(ieee80211_tx_h_sequence);
|
||
|
CALL_TXH(ieee80211_tx_h_fragment);
|
||
|
/* handlers after fragment must be aware of tx info fragmentation! */
|
||
|
CALL_TXH(ieee80211_tx_h_stats);
|
||
|
CALL_TXH(ieee80211_tx_h_encrypt);
|
||
|
if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL))
|
||
|
CALL_TXH(ieee80211_tx_h_calculate_duration);
|
||
|
#undef CALL_TXH
|
||
|
|
||
|
txh_done:
|
||
|
if (unlikely(res == TX_DROP)) {
|
||
|
I802_DEBUG_INC(tx->local->tx_handlers_drop);
|
||
|
if (tx->skb)
|
||
|
ieee80211_free_txskb(&tx->local->hw, tx->skb);
|
||
|
else
|
||
|
ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs);
|
||
|
return -1;
|
||
|
} else if (unlikely(res == TX_QUEUED)) {
|
||
|
I802_DEBUG_INC(tx->local->tx_handlers_queued);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
|
||
|
{
|
||
|
int r = invoke_tx_handlers_early(tx);
|
||
|
|
||
|
if (r)
|
||
|
return r;
|
||
|
return invoke_tx_handlers_late(tx);
|
||
|
}
|
||
|
|
||
|
bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif, struct sk_buff *skb,
|
||
|
int band, struct ieee80211_sta **sta)
|
||
|
{
|
||
|
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_tx_data tx;
|
||
|
struct sk_buff *skb2;
|
||
|
|
||
|
if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP)
|
||
|
return false;
|
||
|
|
||
|
info->band = band;
|
||
|
info->control.vif = vif;
|
||
|
info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)];
|
||
|
|
||
|
if (invoke_tx_handlers(&tx))
|
||
|
return false;
|
||
|
|
||
|
if (sta) {
|
||
|
if (tx.sta)
|
||
|
*sta = &tx.sta->sta;
|
||
|
else
|
||
|
*sta = NULL;
|
||
|
}
|
||
|
|
||
|
/* this function isn't suitable for fragmented data frames */
|
||
|
skb2 = __skb_dequeue(&tx.skbs);
|
||
|
if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) {
|
||
|
ieee80211_free_txskb(hw, skb2);
|
||
|
ieee80211_purge_tx_queue(hw, &tx.skbs);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_tx_prepare_skb);
|
||
|
|
||
|
/*
|
||
|
* Returns false if the frame couldn't be transmitted but was queued instead.
|
||
|
*/
|
||
|
static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta, struct sk_buff *skb,
|
||
|
bool txpending)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct ieee80211_tx_data tx;
|
||
|
ieee80211_tx_result res_prepare;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
bool result = true;
|
||
|
int led_len;
|
||
|
|
||
|
if (unlikely(skb->len < 10)) {
|
||
|
dev_kfree_skb(skb);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* initialises tx */
|
||
|
led_len = skb->len;
|
||
|
res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb);
|
||
|
|
||
|
if (unlikely(res_prepare == TX_DROP)) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
return true;
|
||
|
} else if (unlikely(res_prepare == TX_QUEUED)) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* set up hw_queue value early */
|
||
|
if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) ||
|
||
|
!ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
|
||
|
info->hw_queue =
|
||
|
sdata->vif.hw_queue[skb_get_queue_mapping(skb)];
|
||
|
|
||
|
if (invoke_tx_handlers_early(&tx))
|
||
|
return true;
|
||
|
|
||
|
if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb))
|
||
|
return true;
|
||
|
|
||
|
if (!invoke_tx_handlers_late(&tx))
|
||
|
result = __ieee80211_tx(local, &tx.skbs, led_len,
|
||
|
tx.sta, txpending);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/* device xmit handlers */
|
||
|
|
||
|
enum ieee80211_encrypt {
|
||
|
ENCRYPT_NO,
|
||
|
ENCRYPT_MGMT,
|
||
|
ENCRYPT_DATA,
|
||
|
};
|
||
|
|
||
|
static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sk_buff *skb,
|
||
|
int head_need,
|
||
|
enum ieee80211_encrypt encrypt)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
bool enc_tailroom;
|
||
|
int tail_need = 0;
|
||
|
|
||
|
enc_tailroom = encrypt == ENCRYPT_MGMT ||
|
||
|
(encrypt == ENCRYPT_DATA &&
|
||
|
sdata->crypto_tx_tailroom_needed_cnt);
|
||
|
|
||
|
if (enc_tailroom) {
|
||
|
tail_need = IEEE80211_ENCRYPT_TAILROOM;
|
||
|
tail_need -= skb_tailroom(skb);
|
||
|
tail_need = max_t(int, tail_need, 0);
|
||
|
}
|
||
|
|
||
|
if (skb_cloned(skb) &&
|
||
|
(!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) ||
|
||
|
!skb_clone_writable(skb, ETH_HLEN) || enc_tailroom))
|
||
|
I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
|
||
|
else if (head_need || tail_need)
|
||
|
I802_DEBUG_INC(local->tx_expand_skb_head);
|
||
|
else
|
||
|
return 0;
|
||
|
|
||
|
if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
|
||
|
wiphy_debug(local->hw.wiphy,
|
||
|
"failed to reallocate TX buffer\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta, struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
|
||
|
int headroom;
|
||
|
enum ieee80211_encrypt encrypt;
|
||
|
|
||
|
if (info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)
|
||
|
encrypt = ENCRYPT_NO;
|
||
|
else if (ieee80211_is_mgmt(hdr->frame_control))
|
||
|
encrypt = ENCRYPT_MGMT;
|
||
|
else
|
||
|
encrypt = ENCRYPT_DATA;
|
||
|
|
||
|
headroom = local->tx_headroom;
|
||
|
if (encrypt != ENCRYPT_NO)
|
||
|
headroom += sdata->encrypt_headroom;
|
||
|
headroom -= skb_headroom(skb);
|
||
|
headroom = max_t(int, 0, headroom);
|
||
|
|
||
|
if (ieee80211_skb_resize(sdata, skb, headroom, encrypt)) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* reload after potential resize */
|
||
|
hdr = (struct ieee80211_hdr *) skb->data;
|
||
|
info->control.vif = &sdata->vif;
|
||
|
|
||
|
if (ieee80211_vif_is_mesh(&sdata->vif)) {
|
||
|
if (ieee80211_is_data(hdr->frame_control) &&
|
||
|
is_unicast_ether_addr(hdr->addr1)) {
|
||
|
if (mesh_nexthop_resolve(sdata, skb))
|
||
|
return; /* skb queued: don't free */
|
||
|
} else {
|
||
|
ieee80211_mps_set_frame_flags(sdata, NULL, hdr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ieee80211_set_qos_hdr(sdata, skb);
|
||
|
ieee80211_tx(sdata, sta, skb, false);
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_parse_tx_radiotap(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_radiotap_iterator iterator;
|
||
|
struct ieee80211_radiotap_header *rthdr =
|
||
|
(struct ieee80211_radiotap_header *) skb->data;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_supported_band *sband =
|
||
|
local->hw.wiphy->bands[info->band];
|
||
|
int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
|
||
|
NULL);
|
||
|
u16 txflags;
|
||
|
u16 rate = 0;
|
||
|
bool rate_found = false;
|
||
|
u8 rate_retries = 0;
|
||
|
u16 rate_flags = 0;
|
||
|
u8 mcs_known, mcs_flags, mcs_bw;
|
||
|
u16 vht_known;
|
||
|
u8 vht_mcs = 0, vht_nss = 0;
|
||
|
int i;
|
||
|
|
||
|
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
|
||
|
IEEE80211_TX_CTL_DONTFRAG;
|
||
|
|
||
|
/*
|
||
|
* for every radiotap entry that is present
|
||
|
* (ieee80211_radiotap_iterator_next returns -ENOENT when no more
|
||
|
* entries present, or -EINVAL on error)
|
||
|
*/
|
||
|
|
||
|
while (!ret) {
|
||
|
ret = ieee80211_radiotap_iterator_next(&iterator);
|
||
|
|
||
|
if (ret)
|
||
|
continue;
|
||
|
|
||
|
/* see if this argument is something we can use */
|
||
|
switch (iterator.this_arg_index) {
|
||
|
/*
|
||
|
* You must take care when dereferencing iterator.this_arg
|
||
|
* for multibyte types... the pointer is not aligned. Use
|
||
|
* get_unaligned((type *)iterator.this_arg) to dereference
|
||
|
* iterator.this_arg for type "type" safely on all arches.
|
||
|
*/
|
||
|
case IEEE80211_RADIOTAP_FLAGS:
|
||
|
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
|
||
|
/*
|
||
|
* this indicates that the skb we have been
|
||
|
* handed has the 32-bit FCS CRC at the end...
|
||
|
* we should react to that by snipping it off
|
||
|
* because it will be recomputed and added
|
||
|
* on transmission
|
||
|
*/
|
||
|
if (skb->len < (iterator._max_length + FCS_LEN))
|
||
|
return false;
|
||
|
|
||
|
skb_trim(skb, skb->len - FCS_LEN);
|
||
|
}
|
||
|
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
|
||
|
info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
|
||
|
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
|
||
|
info->flags &= ~IEEE80211_TX_CTL_DONTFRAG;
|
||
|
break;
|
||
|
|
||
|
case IEEE80211_RADIOTAP_TX_FLAGS:
|
||
|
txflags = get_unaligned_le16(iterator.this_arg);
|
||
|
if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK)
|
||
|
info->flags |= IEEE80211_TX_CTL_NO_ACK;
|
||
|
break;
|
||
|
|
||
|
case IEEE80211_RADIOTAP_RATE:
|
||
|
rate = *iterator.this_arg;
|
||
|
rate_flags = 0;
|
||
|
rate_found = true;
|
||
|
break;
|
||
|
|
||
|
case IEEE80211_RADIOTAP_DATA_RETRIES:
|
||
|
rate_retries = *iterator.this_arg;
|
||
|
break;
|
||
|
|
||
|
case IEEE80211_RADIOTAP_MCS:
|
||
|
mcs_known = iterator.this_arg[0];
|
||
|
mcs_flags = iterator.this_arg[1];
|
||
|
if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS))
|
||
|
break;
|
||
|
|
||
|
rate_found = true;
|
||
|
rate = iterator.this_arg[2];
|
||
|
rate_flags = IEEE80211_TX_RC_MCS;
|
||
|
|
||
|
if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI &&
|
||
|
mcs_flags & IEEE80211_RADIOTAP_MCS_SGI)
|
||
|
rate_flags |= IEEE80211_TX_RC_SHORT_GI;
|
||
|
|
||
|
mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK;
|
||
|
if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW &&
|
||
|
mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40)
|
||
|
rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
|
||
|
break;
|
||
|
|
||
|
case IEEE80211_RADIOTAP_VHT:
|
||
|
vht_known = get_unaligned_le16(iterator.this_arg);
|
||
|
rate_found = true;
|
||
|
|
||
|
rate_flags = IEEE80211_TX_RC_VHT_MCS;
|
||
|
if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) &&
|
||
|
(iterator.this_arg[2] &
|
||
|
IEEE80211_RADIOTAP_VHT_FLAG_SGI))
|
||
|
rate_flags |= IEEE80211_TX_RC_SHORT_GI;
|
||
|
if (vht_known &
|
||
|
IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) {
|
||
|
if (iterator.this_arg[3] == 1)
|
||
|
rate_flags |=
|
||
|
IEEE80211_TX_RC_40_MHZ_WIDTH;
|
||
|
else if (iterator.this_arg[3] == 4)
|
||
|
rate_flags |=
|
||
|
IEEE80211_TX_RC_80_MHZ_WIDTH;
|
||
|
else if (iterator.this_arg[3] == 11)
|
||
|
rate_flags |=
|
||
|
IEEE80211_TX_RC_160_MHZ_WIDTH;
|
||
|
}
|
||
|
|
||
|
vht_mcs = iterator.this_arg[4] >> 4;
|
||
|
vht_nss = iterator.this_arg[4] & 0xF;
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Please update the file
|
||
|
* Documentation/networking/mac80211-injection.txt
|
||
|
* when parsing new fields here.
|
||
|
*/
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
|
||
|
return false;
|
||
|
|
||
|
if (rate_found) {
|
||
|
info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT;
|
||
|
|
||
|
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
|
||
|
info->control.rates[i].idx = -1;
|
||
|
info->control.rates[i].flags = 0;
|
||
|
info->control.rates[i].count = 0;
|
||
|
}
|
||
|
|
||
|
if (rate_flags & IEEE80211_TX_RC_MCS) {
|
||
|
info->control.rates[0].idx = rate;
|
||
|
} else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) {
|
||
|
ieee80211_rate_set_vht(info->control.rates, vht_mcs,
|
||
|
vht_nss);
|
||
|
} else {
|
||
|
for (i = 0; i < sband->n_bitrates; i++) {
|
||
|
if (rate * 5 != sband->bitrates[i].bitrate)
|
||
|
continue;
|
||
|
|
||
|
info->control.rates[0].idx = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (info->control.rates[0].idx < 0)
|
||
|
info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT;
|
||
|
|
||
|
info->control.rates[0].flags = rate_flags;
|
||
|
info->control.rates[0].count = min_t(u8, rate_retries + 1,
|
||
|
local->hw.max_rate_tries);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* remove the radiotap header
|
||
|
* iterator->_max_length was sanity-checked against
|
||
|
* skb->len by iterator init
|
||
|
*/
|
||
|
skb_pull(skb, iterator._max_length);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
|
||
|
struct net_device *dev)
|
||
|
{
|
||
|
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
struct ieee80211_radiotap_header *prthdr =
|
||
|
(struct ieee80211_radiotap_header *)skb->data;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct ieee80211_sub_if_data *tmp_sdata, *sdata;
|
||
|
struct cfg80211_chan_def *chandef;
|
||
|
u16 len_rthdr;
|
||
|
int hdrlen;
|
||
|
|
||
|
/* check for not even having the fixed radiotap header part */
|
||
|
if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
|
||
|
goto fail; /* too short to be possibly valid */
|
||
|
|
||
|
/* is it a header version we can trust to find length from? */
|
||
|
if (unlikely(prthdr->it_version))
|
||
|
goto fail; /* only version 0 is supported */
|
||
|
|
||
|
/* then there must be a radiotap header with a length we can use */
|
||
|
len_rthdr = ieee80211_get_radiotap_len(skb->data);
|
||
|
|
||
|
/* does the skb contain enough to deliver on the alleged length? */
|
||
|
if (unlikely(skb->len < len_rthdr))
|
||
|
goto fail; /* skb too short for claimed rt header extent */
|
||
|
|
||
|
/*
|
||
|
* fix up the pointers accounting for the radiotap
|
||
|
* header still being in there. We are being given
|
||
|
* a precooked IEEE80211 header so no need for
|
||
|
* normal processing
|
||
|
*/
|
||
|
skb_set_mac_header(skb, len_rthdr);
|
||
|
/*
|
||
|
* these are just fixed to the end of the rt area since we
|
||
|
* don't have any better information and at this point, nobody cares
|
||
|
*/
|
||
|
skb_set_network_header(skb, len_rthdr);
|
||
|
skb_set_transport_header(skb, len_rthdr);
|
||
|
|
||
|
if (skb->len < len_rthdr + 2)
|
||
|
goto fail;
|
||
|
|
||
|
hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
|
||
|
hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
||
|
|
||
|
if (skb->len < len_rthdr + hdrlen)
|
||
|
goto fail;
|
||
|
|
||
|
/*
|
||
|
* Initialize skb->protocol if the injected frame is a data frame
|
||
|
* carrying a rfc1042 header
|
||
|
*/
|
||
|
if (ieee80211_is_data(hdr->frame_control) &&
|
||
|
skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) {
|
||
|
u8 *payload = (u8 *)hdr + hdrlen;
|
||
|
|
||
|
if (ether_addr_equal(payload, rfc1042_header))
|
||
|
skb->protocol = cpu_to_be16((payload[6] << 8) |
|
||
|
payload[7]);
|
||
|
}
|
||
|
|
||
|
memset(info, 0, sizeof(*info));
|
||
|
|
||
|
info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS |
|
||
|
IEEE80211_TX_CTL_INJECTED;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
/*
|
||
|
* We process outgoing injected frames that have a local address
|
||
|
* we handle as though they are non-injected frames.
|
||
|
* This code here isn't entirely correct, the local MAC address
|
||
|
* isn't always enough to find the interface to use; for proper
|
||
|
* VLAN/WDS support we will need a different mechanism (which
|
||
|
* likely isn't going to be monitor interfaces).
|
||
|
*/
|
||
|
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
|
||
|
|
||
|
list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) {
|
||
|
if (!ieee80211_sdata_running(tmp_sdata))
|
||
|
continue;
|
||
|
if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR ||
|
||
|
tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
|
||
|
tmp_sdata->vif.type == NL80211_IFTYPE_WDS)
|
||
|
continue;
|
||
|
if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) {
|
||
|
sdata = tmp_sdata;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
tmp_sdata = rcu_dereference(local->monitor_sdata);
|
||
|
if (tmp_sdata)
|
||
|
chanctx_conf =
|
||
|
rcu_dereference(tmp_sdata->vif.chanctx_conf);
|
||
|
}
|
||
|
|
||
|
if (chanctx_conf)
|
||
|
chandef = &chanctx_conf->def;
|
||
|
else if (!local->use_chanctx)
|
||
|
chandef = &local->_oper_chandef;
|
||
|
else
|
||
|
goto fail_rcu;
|
||
|
|
||
|
/*
|
||
|
* Frame injection is not allowed if beaconing is not allowed
|
||
|
* or if we need radar detection. Beaconing is usually not allowed when
|
||
|
* the mode or operation (Adhoc, AP, Mesh) does not support DFS.
|
||
|
* Passive scan is also used in world regulatory domains where
|
||
|
* your country is not known and as such it should be treated as
|
||
|
* NO TX unless the channel is explicitly allowed in which case
|
||
|
* your current regulatory domain would not have the passive scan
|
||
|
* flag.
|
||
|
*
|
||
|
* Since AP mode uses monitor interfaces to inject/TX management
|
||
|
* frames we can make AP mode the exception to this rule once it
|
||
|
* supports radar detection as its implementation can deal with
|
||
|
* radar detection by itself. We can do that later by adding a
|
||
|
* monitor flag interfaces used for AP support.
|
||
|
*/
|
||
|
if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef,
|
||
|
sdata->vif.type))
|
||
|
goto fail_rcu;
|
||
|
|
||
|
info->band = chandef->chan->band;
|
||
|
|
||
|
/* process and remove the injection radiotap header */
|
||
|
if (!ieee80211_parse_tx_radiotap(local, skb))
|
||
|
goto fail_rcu;
|
||
|
|
||
|
ieee80211_xmit(sdata, NULL, skb);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return NETDEV_TX_OK;
|
||
|
|
||
|
fail_rcu:
|
||
|
rcu_read_unlock();
|
||
|
fail:
|
||
|
dev_kfree_skb(skb);
|
||
|
return NETDEV_TX_OK; /* meaning, we dealt with the skb */
|
||
|
}
|
||
|
|
||
|
static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb)
|
||
|
{
|
||
|
u16 ethertype = (skb->data[12] << 8) | skb->data[13];
|
||
|
|
||
|
return ethertype == ETH_P_TDLS &&
|
||
|
skb->len > 14 &&
|
||
|
skb->data[14] == WLAN_TDLS_SNAP_RFTYPE;
|
||
|
}
|
||
|
|
||
|
static int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sk_buff *skb,
|
||
|
struct sta_info **sta_out)
|
||
|
{
|
||
|
struct sta_info *sta;
|
||
|
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
sta = rcu_dereference(sdata->u.vlan.sta);
|
||
|
if (sta) {
|
||
|
*sta_out = sta;
|
||
|
return 0;
|
||
|
} else if (sdata->wdev.use_4addr) {
|
||
|
return -ENOLINK;
|
||
|
}
|
||
|
/* fall through */
|
||
|
case NL80211_IFTYPE_AP:
|
||
|
case NL80211_IFTYPE_OCB:
|
||
|
case NL80211_IFTYPE_ADHOC:
|
||
|
if (is_multicast_ether_addr(skb->data)) {
|
||
|
*sta_out = ERR_PTR(-ENOENT);
|
||
|
return 0;
|
||
|
}
|
||
|
sta = sta_info_get_bss(sdata, skb->data);
|
||
|
break;
|
||
|
case NL80211_IFTYPE_WDS:
|
||
|
sta = sta_info_get(sdata, sdata->u.wds.remote_addr);
|
||
|
break;
|
||
|
#ifdef CONFIG_MAC80211_MESH
|
||
|
case NL80211_IFTYPE_MESH_POINT:
|
||
|
/* determined much later */
|
||
|
*sta_out = NULL;
|
||
|
return 0;
|
||
|
#endif
|
||
|
case NL80211_IFTYPE_STATION:
|
||
|
if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) {
|
||
|
sta = sta_info_get(sdata, skb->data);
|
||
|
if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
|
||
|
if (test_sta_flag(sta,
|
||
|
WLAN_STA_TDLS_PEER_AUTH)) {
|
||
|
*sta_out = sta;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* TDLS link during setup - throw out frames to
|
||
|
* peer. Allow TDLS-setup frames to unauthorized
|
||
|
* peers for the special case of a link teardown
|
||
|
* after a TDLS sta is removed due to being
|
||
|
* unreachable.
|
||
|
*/
|
||
|
if (!ieee80211_is_tdls_setup(skb))
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
sta = sta_info_get(sdata, sdata->u.mgd.bssid);
|
||
|
if (!sta)
|
||
|
return -ENOLINK;
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
*sta_out = sta ?: ERR_PTR(-ENOENT);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ieee80211_build_hdr - build 802.11 header in the given frame
|
||
|
* @sdata: virtual interface to build the header for
|
||
|
* @skb: the skb to build the header in
|
||
|
* @info_flags: skb flags to set
|
||
|
*
|
||
|
* This function takes the skb with 802.3 header and reformats the header to
|
||
|
* the appropriate IEEE 802.11 header based on which interface the packet is
|
||
|
* being transmitted on.
|
||
|
*
|
||
|
* Note that this function also takes care of the TX status request and
|
||
|
* potential unsharing of the SKB - this needs to be interleaved with the
|
||
|
* header building.
|
||
|
*
|
||
|
* The function requires the read-side RCU lock held
|
||
|
*
|
||
|
* Returns: the (possibly reallocated) skb or an ERR_PTR() code
|
||
|
*/
|
||
|
static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sk_buff *skb, u32 info_flags,
|
||
|
struct sta_info *sta)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct ieee80211_tx_info *info;
|
||
|
int head_need;
|
||
|
u16 ethertype, hdrlen, meshhdrlen = 0;
|
||
|
__le16 fc;
|
||
|
struct ieee80211_hdr hdr;
|
||
|
struct ieee80211s_hdr mesh_hdr __maybe_unused;
|
||
|
struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL;
|
||
|
const u8 *encaps_data;
|
||
|
int encaps_len, skip_header_bytes;
|
||
|
bool wme_sta = false, authorized = false;
|
||
|
bool tdls_peer;
|
||
|
bool multicast;
|
||
|
u16 info_id = 0;
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
struct ieee80211_sub_if_data *ap_sdata;
|
||
|
enum nl80211_band band;
|
||
|
int ret;
|
||
|
|
||
|
if (IS_ERR(sta))
|
||
|
sta = NULL;
|
||
|
|
||
|
/* convert Ethernet header to proper 802.11 header (based on
|
||
|
* operation mode) */
|
||
|
ethertype = (skb->data[12] << 8) | skb->data[13];
|
||
|
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
|
||
|
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
if (sdata->wdev.use_4addr) {
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
|
||
|
/* RA TA DA SA */
|
||
|
memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
hdrlen = 30;
|
||
|
authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
|
||
|
wme_sta = sta->sta.wme;
|
||
|
}
|
||
|
ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
|
||
|
u.ap);
|
||
|
chanctx_conf = rcu_dereference(ap_sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
ret = -ENOTCONN;
|
||
|
goto free;
|
||
|
}
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
if (sdata->wdev.use_4addr)
|
||
|
break;
|
||
|
/* fall through */
|
||
|
case NL80211_IFTYPE_AP:
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP)
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
ret = -ENOTCONN;
|
||
|
goto free;
|
||
|
}
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
|
||
|
/* DA BSSID SA */
|
||
|
memcpy(hdr.addr1, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
hdrlen = 24;
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_WDS:
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
|
||
|
/* RA TA DA SA */
|
||
|
memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
hdrlen = 30;
|
||
|
/*
|
||
|
* This is the exception! WDS style interfaces are prohibited
|
||
|
* when channel contexts are in used so this must be valid
|
||
|
*/
|
||
|
band = local->hw.conf.chandef.chan->band;
|
||
|
break;
|
||
|
#ifdef CONFIG_MAC80211_MESH
|
||
|
case NL80211_IFTYPE_MESH_POINT:
|
||
|
if (!is_multicast_ether_addr(skb->data)) {
|
||
|
struct sta_info *next_hop;
|
||
|
bool mpp_lookup = true;
|
||
|
|
||
|
mpath = mesh_path_lookup(sdata, skb->data);
|
||
|
if (mpath) {
|
||
|
mpp_lookup = false;
|
||
|
next_hop = rcu_dereference(mpath->next_hop);
|
||
|
if (!next_hop ||
|
||
|
!(mpath->flags & (MESH_PATH_ACTIVE |
|
||
|
MESH_PATH_RESOLVING)))
|
||
|
mpp_lookup = true;
|
||
|
}
|
||
|
|
||
|
if (mpp_lookup) {
|
||
|
mppath = mpp_path_lookup(sdata, skb->data);
|
||
|
if (mppath)
|
||
|
mppath->exp_time = jiffies;
|
||
|
}
|
||
|
|
||
|
if (mppath && mpath)
|
||
|
mesh_path_del(sdata, mpath->dst);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Use address extension if it is a packet from
|
||
|
* another interface or if we know the destination
|
||
|
* is being proxied by a portal (i.e. portal address
|
||
|
* differs from proxied address)
|
||
|
*/
|
||
|
if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) &&
|
||
|
!(mppath && !ether_addr_equal(mppath->mpp, skb->data))) {
|
||
|
hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
|
||
|
skb->data, skb->data + ETH_ALEN);
|
||
|
meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr,
|
||
|
NULL, NULL);
|
||
|
} else {
|
||
|
/* DS -> MBSS (802.11-2012 13.11.3.3).
|
||
|
* For unicast with unknown forwarding information,
|
||
|
* destination might be in the MBSS or if that fails
|
||
|
* forwarded to another mesh gate. In either case
|
||
|
* resolution will be handled in ieee80211_xmit(), so
|
||
|
* leave the original DA. This also works for mcast */
|
||
|
const u8 *mesh_da = skb->data;
|
||
|
|
||
|
if (mppath)
|
||
|
mesh_da = mppath->mpp;
|
||
|
else if (mpath)
|
||
|
mesh_da = mpath->dst;
|
||
|
|
||
|
hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
|
||
|
mesh_da, sdata->vif.addr);
|
||
|
if (is_multicast_ether_addr(mesh_da))
|
||
|
/* DA TA mSA AE:SA */
|
||
|
meshhdrlen = ieee80211_new_mesh_header(
|
||
|
sdata, &mesh_hdr,
|
||
|
skb->data + ETH_ALEN, NULL);
|
||
|
else
|
||
|
/* RA TA mDA mSA AE:DA SA */
|
||
|
meshhdrlen = ieee80211_new_mesh_header(
|
||
|
sdata, &mesh_hdr, skb->data,
|
||
|
skb->data + ETH_ALEN);
|
||
|
|
||
|
}
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
ret = -ENOTCONN;
|
||
|
goto free;
|
||
|
}
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
break;
|
||
|
#endif
|
||
|
case NL80211_IFTYPE_STATION:
|
||
|
/* we already did checks when looking up the RA STA */
|
||
|
tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER);
|
||
|
|
||
|
if (tdls_peer) {
|
||
|
/* DA SA BSSID */
|
||
|
memcpy(hdr.addr1, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, sdata->u.mgd.bssid, ETH_ALEN);
|
||
|
hdrlen = 24;
|
||
|
} else if (sdata->u.mgd.use_4addr &&
|
||
|
cpu_to_be16(ethertype) != sdata->control_port_protocol) {
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
|
||
|
IEEE80211_FCTL_TODS);
|
||
|
/* RA TA DA SA */
|
||
|
memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
hdrlen = 30;
|
||
|
} else {
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
|
||
|
/* BSSID SA DA */
|
||
|
memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, skb->data, ETH_ALEN);
|
||
|
hdrlen = 24;
|
||
|
}
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
ret = -ENOTCONN;
|
||
|
goto free;
|
||
|
}
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_OCB:
|
||
|
/* DA SA BSSID */
|
||
|
memcpy(hdr.addr1, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
eth_broadcast_addr(hdr.addr3);
|
||
|
hdrlen = 24;
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
ret = -ENOTCONN;
|
||
|
goto free;
|
||
|
}
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_ADHOC:
|
||
|
/* DA SA BSSID */
|
||
|
memcpy(hdr.addr1, skb->data, ETH_ALEN);
|
||
|
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
|
||
|
memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
|
||
|
hdrlen = 24;
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
ret = -ENOTCONN;
|
||
|
goto free;
|
||
|
}
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
goto free;
|
||
|
}
|
||
|
|
||
|
multicast = is_multicast_ether_addr(hdr.addr1);
|
||
|
|
||
|
/* sta is always NULL for mesh */
|
||
|
if (sta) {
|
||
|
authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
|
||
|
wme_sta = sta->sta.wme;
|
||
|
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
|
||
|
/* For mesh, the use of the QoS header is mandatory */
|
||
|
wme_sta = true;
|
||
|
}
|
||
|
|
||
|
/* receiver does QoS (which also means we do) use it */
|
||
|
if (wme_sta) {
|
||
|
fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
|
||
|
hdrlen += 2;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Drop unicast frames to unauthorised stations unless they are
|
||
|
* EAPOL frames from the local station.
|
||
|
*/
|
||
|
if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) &&
|
||
|
(sdata->vif.type != NL80211_IFTYPE_OCB) &&
|
||
|
!multicast && !authorized &&
|
||
|
(cpu_to_be16(ethertype) != sdata->control_port_protocol ||
|
||
|
!ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN)))) {
|
||
|
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
|
||
|
net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n",
|
||
|
sdata->name, hdr.addr1);
|
||
|
#endif
|
||
|
|
||
|
I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
|
||
|
|
||
|
ret = -EPERM;
|
||
|
goto free;
|
||
|
}
|
||
|
|
||
|
if (unlikely(!multicast && skb->sk &&
|
||
|
skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) {
|
||
|
struct sk_buff *ack_skb = skb_clone_sk(skb);
|
||
|
|
||
|
if (ack_skb) {
|
||
|
unsigned long flags;
|
||
|
int id;
|
||
|
|
||
|
spin_lock_irqsave(&local->ack_status_lock, flags);
|
||
|
id = idr_alloc(&local->ack_status_frames, ack_skb,
|
||
|
1, 0x10000, GFP_ATOMIC);
|
||
|
spin_unlock_irqrestore(&local->ack_status_lock, flags);
|
||
|
|
||
|
if (id >= 0) {
|
||
|
info_id = id;
|
||
|
info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
|
||
|
} else {
|
||
|
kfree_skb(ack_skb);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the skb is shared we need to obtain our own copy.
|
||
|
*/
|
||
|
if (skb_shared(skb)) {
|
||
|
struct sk_buff *tmp_skb = skb;
|
||
|
|
||
|
/* can't happen -- skb is a clone if info_id != 0 */
|
||
|
WARN_ON(info_id);
|
||
|
|
||
|
skb = skb_clone(skb, GFP_ATOMIC);
|
||
|
kfree_skb(tmp_skb);
|
||
|
|
||
|
if (!skb) {
|
||
|
ret = -ENOMEM;
|
||
|
goto free;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
hdr.frame_control = fc;
|
||
|
hdr.duration_id = 0;
|
||
|
hdr.seq_ctrl = 0;
|
||
|
|
||
|
skip_header_bytes = ETH_HLEN;
|
||
|
if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
|
||
|
encaps_data = bridge_tunnel_header;
|
||
|
encaps_len = sizeof(bridge_tunnel_header);
|
||
|
skip_header_bytes -= 2;
|
||
|
} else if (ethertype >= ETH_P_802_3_MIN) {
|
||
|
encaps_data = rfc1042_header;
|
||
|
encaps_len = sizeof(rfc1042_header);
|
||
|
skip_header_bytes -= 2;
|
||
|
} else {
|
||
|
encaps_data = NULL;
|
||
|
encaps_len = 0;
|
||
|
}
|
||
|
|
||
|
skb_pull(skb, skip_header_bytes);
|
||
|
head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
|
||
|
|
||
|
/*
|
||
|
* So we need to modify the skb header and hence need a copy of
|
||
|
* that. The head_need variable above doesn't, so far, include
|
||
|
* the needed header space that we don't need right away. If we
|
||
|
* can, then we don't reallocate right now but only after the
|
||
|
* frame arrives at the master device (if it does...)
|
||
|
*
|
||
|
* If we cannot, however, then we will reallocate to include all
|
||
|
* the ever needed space. Also, if we need to reallocate it anyway,
|
||
|
* make it big enough for everything we may ever need.
|
||
|
*/
|
||
|
|
||
|
if (head_need > 0 || skb_cloned(skb)) {
|
||
|
head_need += sdata->encrypt_headroom;
|
||
|
head_need += local->tx_headroom;
|
||
|
head_need = max_t(int, 0, head_need);
|
||
|
if (ieee80211_skb_resize(sdata, skb, head_need, ENCRYPT_DATA)) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
skb = NULL;
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (encaps_data)
|
||
|
memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
|
||
|
|
||
|
#ifdef CONFIG_MAC80211_MESH
|
||
|
if (meshhdrlen > 0)
|
||
|
memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
|
||
|
#endif
|
||
|
|
||
|
if (ieee80211_is_data_qos(fc)) {
|
||
|
__le16 *qos_control;
|
||
|
|
||
|
qos_control = (__le16 *) skb_push(skb, 2);
|
||
|
memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
|
||
|
/*
|
||
|
* Maybe we could actually set some fields here, for now just
|
||
|
* initialise to zero to indicate no special operation.
|
||
|
*/
|
||
|
*qos_control = 0;
|
||
|
} else
|
||
|
memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
|
||
|
|
||
|
skb_reset_mac_header(skb);
|
||
|
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
memset(info, 0, sizeof(*info));
|
||
|
|
||
|
info->flags = info_flags;
|
||
|
info->ack_frame_id = info_id;
|
||
|
info->band = band;
|
||
|
|
||
|
return skb;
|
||
|
free:
|
||
|
kfree_skb(skb);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* fast-xmit overview
|
||
|
*
|
||
|
* The core idea of this fast-xmit is to remove per-packet checks by checking
|
||
|
* them out of band. ieee80211_check_fast_xmit() implements the out-of-band
|
||
|
* checks that are needed to get the sta->fast_tx pointer assigned, after which
|
||
|
* much less work can be done per packet. For example, fragmentation must be
|
||
|
* disabled or the fast_tx pointer will not be set. All the conditions are seen
|
||
|
* in the code here.
|
||
|
*
|
||
|
* Once assigned, the fast_tx data structure also caches the per-packet 802.11
|
||
|
* header and other data to aid packet processing in ieee80211_xmit_fast().
|
||
|
*
|
||
|
* The most difficult part of this is that when any of these assumptions
|
||
|
* change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(),
|
||
|
* ieee80211_check_fast_xmit() or friends) is required to reset the data,
|
||
|
* since the per-packet code no longer checks the conditions. This is reflected
|
||
|
* by the calls to these functions throughout the rest of the code, and must be
|
||
|
* maintained if any of the TX path checks change.
|
||
|
*/
|
||
|
|
||
|
void ieee80211_check_fast_xmit(struct sta_info *sta)
|
||
|
{
|
||
|
struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old;
|
||
|
struct ieee80211_local *local = sta->local;
|
||
|
struct ieee80211_sub_if_data *sdata = sta->sdata;
|
||
|
struct ieee80211_hdr *hdr = (void *)build.hdr;
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
__le16 fc;
|
||
|
|
||
|
if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT))
|
||
|
return;
|
||
|
|
||
|
/* Locking here protects both the pointer itself, and against concurrent
|
||
|
* invocations winning data access races to, e.g., the key pointer that
|
||
|
* is used.
|
||
|
* Without it, the invocation of this function right after the key
|
||
|
* pointer changes wouldn't be sufficient, as another CPU could access
|
||
|
* the pointer, then stall, and then do the cache update after the CPU
|
||
|
* that invalidated the key.
|
||
|
* With the locking, such scenarios cannot happen as the check for the
|
||
|
* key and the fast-tx assignment are done atomically, so the CPU that
|
||
|
* modifies the key will either wait or other one will see the key
|
||
|
* cleared/changed already.
|
||
|
*/
|
||
|
spin_lock_bh(&sta->lock);
|
||
|
if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
|
||
|
!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
|
||
|
sdata->vif.type == NL80211_IFTYPE_STATION)
|
||
|
goto out;
|
||
|
|
||
|
if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
|
||
|
goto out;
|
||
|
|
||
|
if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
|
||
|
test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
|
||
|
test_sta_flag(sta, WLAN_STA_PS_DELIVER) ||
|
||
|
test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT))
|
||
|
goto out;
|
||
|
|
||
|
if (sdata->noack_map)
|
||
|
goto out;
|
||
|
|
||
|
/* fast-xmit doesn't handle fragmentation at all */
|
||
|
if (local->hw.wiphy->frag_threshold != (u32)-1 &&
|
||
|
!local->ops->set_frag_threshold)
|
||
|
goto out;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (!chanctx_conf) {
|
||
|
rcu_read_unlock();
|
||
|
goto out;
|
||
|
}
|
||
|
build.band = chanctx_conf->def.chan->band;
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
|
||
|
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_ADHOC:
|
||
|
/* DA SA BSSID */
|
||
|
build.da_offs = offsetof(struct ieee80211_hdr, addr1);
|
||
|
build.sa_offs = offsetof(struct ieee80211_hdr, addr2);
|
||
|
memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN);
|
||
|
build.hdr_len = 24;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_STATION:
|
||
|
if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
|
||
|
/* DA SA BSSID */
|
||
|
build.da_offs = offsetof(struct ieee80211_hdr, addr1);
|
||
|
build.sa_offs = offsetof(struct ieee80211_hdr, addr2);
|
||
|
memcpy(hdr->addr3, sdata->u.mgd.bssid, ETH_ALEN);
|
||
|
build.hdr_len = 24;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (sdata->u.mgd.use_4addr) {
|
||
|
/* non-regular ethertype cannot use the fastpath */
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
|
||
|
IEEE80211_FCTL_TODS);
|
||
|
/* RA TA DA SA */
|
||
|
memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN);
|
||
|
memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
build.da_offs = offsetof(struct ieee80211_hdr, addr3);
|
||
|
build.sa_offs = offsetof(struct ieee80211_hdr, addr4);
|
||
|
build.hdr_len = 30;
|
||
|
break;
|
||
|
}
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
|
||
|
/* BSSID SA DA */
|
||
|
memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN);
|
||
|
build.da_offs = offsetof(struct ieee80211_hdr, addr3);
|
||
|
build.sa_offs = offsetof(struct ieee80211_hdr, addr2);
|
||
|
build.hdr_len = 24;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
if (sdata->wdev.use_4addr) {
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
|
||
|
IEEE80211_FCTL_TODS);
|
||
|
/* RA TA DA SA */
|
||
|
memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN);
|
||
|
memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
build.da_offs = offsetof(struct ieee80211_hdr, addr3);
|
||
|
build.sa_offs = offsetof(struct ieee80211_hdr, addr4);
|
||
|
build.hdr_len = 30;
|
||
|
break;
|
||
|
}
|
||
|
/* fall through */
|
||
|
case NL80211_IFTYPE_AP:
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
|
||
|
/* DA BSSID SA */
|
||
|
build.da_offs = offsetof(struct ieee80211_hdr, addr1);
|
||
|
memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN);
|
||
|
build.sa_offs = offsetof(struct ieee80211_hdr, addr3);
|
||
|
build.hdr_len = 24;
|
||
|
break;
|
||
|
default:
|
||
|
/* not handled on fast-xmit */
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (sta->sta.wme) {
|
||
|
build.hdr_len += 2;
|
||
|
fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
|
||
|
}
|
||
|
|
||
|
/* We store the key here so there's no point in using rcu_dereference()
|
||
|
* but that's fine because the code that changes the pointers will call
|
||
|
* this function after doing so. For a single CPU that would be enough,
|
||
|
* for multiple see the comment above.
|
||
|
*/
|
||
|
build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]);
|
||
|
if (!build.key)
|
||
|
build.key = rcu_access_pointer(sdata->default_unicast_key);
|
||
|
if (build.key) {
|
||
|
bool gen_iv, iv_spc, mmic;
|
||
|
|
||
|
gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV;
|
||
|
iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE;
|
||
|
mmic = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC;
|
||
|
|
||
|
/* don't handle software crypto */
|
||
|
if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
|
||
|
goto out;
|
||
|
|
||
|
switch (build.key->conf.cipher) {
|
||
|
case WLAN_CIPHER_SUITE_CCMP:
|
||
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
||
|
/* add fixed key ID */
|
||
|
if (gen_iv) {
|
||
|
(build.hdr + build.hdr_len)[3] =
|
||
|
0x20 | (build.key->conf.keyidx << 6);
|
||
|
build.pn_offs = build.hdr_len;
|
||
|
}
|
||
|
if (gen_iv || iv_spc)
|
||
|
build.hdr_len += IEEE80211_CCMP_HDR_LEN;
|
||
|
break;
|
||
|
case WLAN_CIPHER_SUITE_GCMP:
|
||
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
||
|
/* add fixed key ID */
|
||
|
if (gen_iv) {
|
||
|
(build.hdr + build.hdr_len)[3] =
|
||
|
0x20 | (build.key->conf.keyidx << 6);
|
||
|
build.pn_offs = build.hdr_len;
|
||
|
}
|
||
|
if (gen_iv || iv_spc)
|
||
|
build.hdr_len += IEEE80211_GCMP_HDR_LEN;
|
||
|
break;
|
||
|
case WLAN_CIPHER_SUITE_TKIP:
|
||
|
/* cannot handle MMIC or IV generation in xmit-fast */
|
||
|
if (mmic || gen_iv)
|
||
|
goto out;
|
||
|
if (iv_spc)
|
||
|
build.hdr_len += IEEE80211_TKIP_IV_LEN;
|
||
|
break;
|
||
|
case WLAN_CIPHER_SUITE_WEP40:
|
||
|
case WLAN_CIPHER_SUITE_WEP104:
|
||
|
/* cannot handle IV generation in fast-xmit */
|
||
|
if (gen_iv)
|
||
|
goto out;
|
||
|
if (iv_spc)
|
||
|
build.hdr_len += IEEE80211_WEP_IV_LEN;
|
||
|
break;
|
||
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
||
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
||
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
||
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
||
|
WARN(1,
|
||
|
"management cipher suite 0x%x enabled for data\n",
|
||
|
build.key->conf.cipher);
|
||
|
goto out;
|
||
|
default:
|
||
|
/* we don't know how to generate IVs for this at all */
|
||
|
if (WARN_ON(gen_iv))
|
||
|
goto out;
|
||
|
/* pure hardware keys are OK, of course */
|
||
|
if (!(build.key->flags & KEY_FLAG_CIPHER_SCHEME))
|
||
|
break;
|
||
|
/* cipher scheme might require space allocation */
|
||
|
if (iv_spc &&
|
||
|
build.key->conf.iv_len > IEEE80211_FAST_XMIT_MAX_IV)
|
||
|
goto out;
|
||
|
if (iv_spc)
|
||
|
build.hdr_len += build.key->conf.iv_len;
|
||
|
}
|
||
|
|
||
|
fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
|
||
|
}
|
||
|
|
||
|
hdr->frame_control = fc;
|
||
|
|
||
|
memcpy(build.hdr + build.hdr_len,
|
||
|
rfc1042_header, sizeof(rfc1042_header));
|
||
|
build.hdr_len += sizeof(rfc1042_header);
|
||
|
|
||
|
fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC);
|
||
|
/* if the kmemdup fails, continue w/o fast_tx */
|
||
|
if (!fast_tx)
|
||
|
goto out;
|
||
|
|
||
|
out:
|
||
|
/* we might have raced against another call to this function */
|
||
|
old = rcu_dereference_protected(sta->fast_tx,
|
||
|
lockdep_is_held(&sta->lock));
|
||
|
rcu_assign_pointer(sta->fast_tx, fast_tx);
|
||
|
if (old)
|
||
|
kfree_rcu(old, rcu_head);
|
||
|
spin_unlock_bh(&sta->lock);
|
||
|
}
|
||
|
|
||
|
void ieee80211_check_fast_xmit_all(struct ieee80211_local *local)
|
||
|
{
|
||
|
struct sta_info *sta;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
list_for_each_entry_rcu(sta, &local->sta_list, list)
|
||
|
ieee80211_check_fast_xmit(sta);
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct sta_info *sta;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
list_for_each_entry_rcu(sta, &local->sta_list, list) {
|
||
|
if (sdata != sta->sdata &&
|
||
|
(!sta->sdata->bss || sta->sdata->bss != sdata->bss))
|
||
|
continue;
|
||
|
ieee80211_check_fast_xmit(sta);
|
||
|
}
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
void ieee80211_clear_fast_xmit(struct sta_info *sta)
|
||
|
{
|
||
|
struct ieee80211_fast_tx *fast_tx;
|
||
|
|
||
|
spin_lock_bh(&sta->lock);
|
||
|
fast_tx = rcu_dereference_protected(sta->fast_tx,
|
||
|
lockdep_is_held(&sta->lock));
|
||
|
RCU_INIT_POINTER(sta->fast_tx, NULL);
|
||
|
spin_unlock_bh(&sta->lock);
|
||
|
|
||
|
if (fast_tx)
|
||
|
kfree_rcu(fast_tx, rcu_head);
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_amsdu_realloc_pad(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb, int headroom,
|
||
|
int *subframe_len)
|
||
|
{
|
||
|
int amsdu_len = *subframe_len + sizeof(struct ethhdr);
|
||
|
int padding = (4 - amsdu_len) & 3;
|
||
|
|
||
|
if (skb_headroom(skb) < headroom || skb_tailroom(skb) < padding) {
|
||
|
I802_DEBUG_INC(local->tx_expand_skb_head);
|
||
|
|
||
|
if (pskb_expand_head(skb, headroom, padding, GFP_ATOMIC)) {
|
||
|
wiphy_debug(local->hw.wiphy,
|
||
|
"failed to reallocate TX buffer\n");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (padding) {
|
||
|
*subframe_len += padding;
|
||
|
memset(skb_put(skb, padding), 0, padding);
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_amsdu_prepare_head(struct ieee80211_sub_if_data *sdata,
|
||
|
struct ieee80211_fast_tx *fast_tx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct ethhdr amsdu_hdr;
|
||
|
int hdr_len = fast_tx->hdr_len - sizeof(rfc1042_header);
|
||
|
int subframe_len = skb->len - hdr_len;
|
||
|
void *data;
|
||
|
u8 *qc;
|
||
|
|
||
|
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
|
||
|
return false;
|
||
|
|
||
|
if (info->control.flags & IEEE80211_TX_CTRL_AMSDU)
|
||
|
return true;
|
||
|
|
||
|
if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(amsdu_hdr),
|
||
|
&subframe_len))
|
||
|
return false;
|
||
|
|
||
|
amsdu_hdr.h_proto = cpu_to_be16(subframe_len);
|
||
|
memcpy(amsdu_hdr.h_source, skb->data + fast_tx->sa_offs, ETH_ALEN);
|
||
|
memcpy(amsdu_hdr.h_dest, skb->data + fast_tx->da_offs, ETH_ALEN);
|
||
|
|
||
|
data = skb_push(skb, sizeof(amsdu_hdr));
|
||
|
memmove(data, data + sizeof(amsdu_hdr), hdr_len);
|
||
|
memcpy(data + hdr_len, &amsdu_hdr, sizeof(amsdu_hdr));
|
||
|
|
||
|
hdr = data;
|
||
|
qc = ieee80211_get_qos_ctl(hdr);
|
||
|
*qc |= IEEE80211_QOS_CTL_A_MSDU_PRESENT;
|
||
|
|
||
|
info->control.flags |= IEEE80211_TX_CTRL_AMSDU;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_amsdu_aggregate(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta,
|
||
|
struct ieee80211_fast_tx *fast_tx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
struct fq *fq = &local->fq;
|
||
|
struct fq_tin *tin;
|
||
|
struct fq_flow *flow;
|
||
|
u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
|
||
|
struct ieee80211_txq *txq = sta->sta.txq[tid];
|
||
|
struct txq_info *txqi;
|
||
|
struct sk_buff **frag_tail, *head;
|
||
|
int subframe_len = skb->len - ETH_ALEN;
|
||
|
u8 max_subframes = sta->sta.max_amsdu_subframes;
|
||
|
int max_frags = local->hw.max_tx_fragments;
|
||
|
int max_amsdu_len = sta->sta.max_amsdu_len;
|
||
|
__be16 len;
|
||
|
void *data;
|
||
|
bool ret = false;
|
||
|
unsigned int orig_len;
|
||
|
int n = 1, nfrags;
|
||
|
|
||
|
if (!ieee80211_hw_check(&local->hw, TX_AMSDU))
|
||
|
return false;
|
||
|
|
||
|
if (!txq)
|
||
|
return false;
|
||
|
|
||
|
txqi = to_txq_info(txq);
|
||
|
if (test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags))
|
||
|
return false;
|
||
|
|
||
|
if (sta->sta.max_rc_amsdu_len)
|
||
|
max_amsdu_len = min_t(int, max_amsdu_len,
|
||
|
sta->sta.max_rc_amsdu_len);
|
||
|
|
||
|
spin_lock_bh(&fq->lock);
|
||
|
|
||
|
/* TODO: Ideally aggregation should be done on dequeue to remain
|
||
|
* responsive to environment changes.
|
||
|
*/
|
||
|
|
||
|
tin = &txqi->tin;
|
||
|
flow = fq_flow_classify(fq, tin, skb, fq_flow_get_default_func);
|
||
|
head = skb_peek_tail(&flow->queue);
|
||
|
if (!head)
|
||
|
goto out;
|
||
|
|
||
|
orig_len = head->len;
|
||
|
|
||
|
if (skb->len + head->len > max_amsdu_len)
|
||
|
goto out;
|
||
|
|
||
|
if (!ieee80211_amsdu_prepare_head(sdata, fast_tx, head))
|
||
|
goto out;
|
||
|
|
||
|
nfrags = 1 + skb_shinfo(skb)->nr_frags;
|
||
|
nfrags += 1 + skb_shinfo(head)->nr_frags;
|
||
|
frag_tail = &skb_shinfo(head)->frag_list;
|
||
|
while (*frag_tail) {
|
||
|
nfrags += 1 + skb_shinfo(*frag_tail)->nr_frags;
|
||
|
frag_tail = &(*frag_tail)->next;
|
||
|
n++;
|
||
|
}
|
||
|
|
||
|
if (max_subframes && n > max_subframes)
|
||
|
goto out;
|
||
|
|
||
|
if (max_frags && nfrags > max_frags)
|
||
|
goto out;
|
||
|
|
||
|
if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(rfc1042_header) + 2,
|
||
|
&subframe_len))
|
||
|
goto out;
|
||
|
|
||
|
ret = true;
|
||
|
data = skb_push(skb, ETH_ALEN + 2);
|
||
|
memmove(data, data + ETH_ALEN + 2, 2 * ETH_ALEN);
|
||
|
|
||
|
data += 2 * ETH_ALEN;
|
||
|
len = cpu_to_be16(subframe_len);
|
||
|
memcpy(data, &len, 2);
|
||
|
memcpy(data + 2, rfc1042_header, sizeof(rfc1042_header));
|
||
|
|
||
|
head->len += skb->len;
|
||
|
head->data_len += skb->len;
|
||
|
*frag_tail = skb;
|
||
|
|
||
|
flow->backlog += head->len - orig_len;
|
||
|
tin->backlog_bytes += head->len - orig_len;
|
||
|
|
||
|
fq_recalc_backlog(fq, tin, flow);
|
||
|
|
||
|
out:
|
||
|
spin_unlock_bh(&fq->lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Can be called while the sta lock is held. Anything that can cause packets to
|
||
|
* be generated will cause deadlock!
|
||
|
*/
|
||
|
static void ieee80211_xmit_fast_finish(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta, u8 pn_offs,
|
||
|
struct ieee80211_key *key,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
||
|
u8 tid = IEEE80211_NUM_TIDS;
|
||
|
|
||
|
if (key)
|
||
|
info->control.hw_key = &key->conf;
|
||
|
|
||
|
ieee80211_tx_stats(skb->dev, skb->len);
|
||
|
|
||
|
if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
|
||
|
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
|
||
|
hdr->seq_ctrl = ieee80211_tx_next_seq(sta, tid);
|
||
|
} else {
|
||
|
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
|
||
|
hdr->seq_ctrl = cpu_to_le16(sdata->sequence_number);
|
||
|
sdata->sequence_number += 0x10;
|
||
|
}
|
||
|
|
||
|
if (skb_shinfo(skb)->gso_size)
|
||
|
sta->tx_stats.msdu[tid] +=
|
||
|
DIV_ROUND_UP(skb->len, skb_shinfo(skb)->gso_size);
|
||
|
else
|
||
|
sta->tx_stats.msdu[tid]++;
|
||
|
|
||
|
info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)];
|
||
|
|
||
|
/* statistics normally done by ieee80211_tx_h_stats (but that
|
||
|
* has to consider fragmentation, so is more complex)
|
||
|
*/
|
||
|
sta->tx_stats.bytes[skb_get_queue_mapping(skb)] += skb->len;
|
||
|
sta->tx_stats.packets[skb_get_queue_mapping(skb)]++;
|
||
|
|
||
|
if (pn_offs) {
|
||
|
u64 pn;
|
||
|
u8 *crypto_hdr = skb->data + pn_offs;
|
||
|
|
||
|
switch (key->conf.cipher) {
|
||
|
case WLAN_CIPHER_SUITE_CCMP:
|
||
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
||
|
case WLAN_CIPHER_SUITE_GCMP:
|
||
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
||
|
pn = atomic64_inc_return(&key->conf.tx_pn);
|
||
|
crypto_hdr[0] = pn;
|
||
|
crypto_hdr[1] = pn >> 8;
|
||
|
crypto_hdr[4] = pn >> 16;
|
||
|
crypto_hdr[5] = pn >> 24;
|
||
|
crypto_hdr[6] = pn >> 32;
|
||
|
crypto_hdr[7] = pn >> 40;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sta_info *sta,
|
||
|
struct ieee80211_fast_tx *fast_tx,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
u16 ethertype = (skb->data[12] << 8) | skb->data[13];
|
||
|
int extra_head = fast_tx->hdr_len - (ETH_HLEN - 2);
|
||
|
int hw_headroom = sdata->local->hw.extra_tx_headroom;
|
||
|
struct ethhdr eth;
|
||
|
struct ieee80211_tx_info *info;
|
||
|
struct ieee80211_hdr *hdr = (void *)fast_tx->hdr;
|
||
|
struct ieee80211_tx_data tx;
|
||
|
ieee80211_tx_result r;
|
||
|
struct tid_ampdu_tx *tid_tx = NULL;
|
||
|
u8 tid = IEEE80211_NUM_TIDS;
|
||
|
|
||
|
/* control port protocol needs a lot of special handling */
|
||
|
if (cpu_to_be16(ethertype) == sdata->control_port_protocol)
|
||
|
return false;
|
||
|
|
||
|
/* only RFC 1042 SNAP */
|
||
|
if (ethertype < ETH_P_802_3_MIN)
|
||
|
return false;
|
||
|
|
||
|
/* don't handle TX status request here either */
|
||
|
if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)
|
||
|
return false;
|
||
|
|
||
|
if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
|
||
|
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
|
||
|
tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]);
|
||
|
if (tid_tx) {
|
||
|
if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state))
|
||
|
return false;
|
||
|
if (tid_tx->timeout)
|
||
|
tid_tx->last_tx = jiffies;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* after this point (skb is modified) we cannot return false */
|
||
|
|
||
|
if (skb_shared(skb)) {
|
||
|
struct sk_buff *tmp_skb = skb;
|
||
|
|
||
|
skb = skb_clone(skb, GFP_ATOMIC);
|
||
|
kfree_skb(tmp_skb);
|
||
|
|
||
|
if (!skb)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if ((hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) &&
|
||
|
ieee80211_amsdu_aggregate(sdata, sta, fast_tx, skb))
|
||
|
return true;
|
||
|
|
||
|
/* will not be crypto-handled beyond what we do here, so use false
|
||
|
* as the may-encrypt argument for the resize to not account for
|
||
|
* more room than we already have in 'extra_head'
|
||
|
*/
|
||
|
if (unlikely(ieee80211_skb_resize(sdata, skb,
|
||
|
max_t(int, extra_head + hw_headroom -
|
||
|
skb_headroom(skb), 0),
|
||
|
ENCRYPT_NO))) {
|
||
|
kfree_skb(skb);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
memcpy(ð, skb->data, ETH_HLEN - 2);
|
||
|
hdr = (void *)skb_push(skb, extra_head);
|
||
|
memcpy(skb->data, fast_tx->hdr, fast_tx->hdr_len);
|
||
|
memcpy(skb->data + fast_tx->da_offs, eth.h_dest, ETH_ALEN);
|
||
|
memcpy(skb->data + fast_tx->sa_offs, eth.h_source, ETH_ALEN);
|
||
|
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
memset(info, 0, sizeof(*info));
|
||
|
info->band = fast_tx->band;
|
||
|
info->control.vif = &sdata->vif;
|
||
|
info->flags = IEEE80211_TX_CTL_FIRST_FRAGMENT |
|
||
|
IEEE80211_TX_CTL_DONTFRAG |
|
||
|
(tid_tx ? IEEE80211_TX_CTL_AMPDU : 0);
|
||
|
info->control.flags = IEEE80211_TX_CTRL_FAST_XMIT;
|
||
|
|
||
|
if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
|
||
|
tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
|
||
|
*ieee80211_get_qos_ctl(hdr) = tid;
|
||
|
}
|
||
|
|
||
|
__skb_queue_head_init(&tx.skbs);
|
||
|
|
||
|
tx.flags = IEEE80211_TX_UNICAST;
|
||
|
tx.local = local;
|
||
|
tx.sdata = sdata;
|
||
|
tx.sta = sta;
|
||
|
tx.key = fast_tx->key;
|
||
|
|
||
|
if (!ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) {
|
||
|
tx.skb = skb;
|
||
|
r = ieee80211_tx_h_rate_ctrl(&tx);
|
||
|
skb = tx.skb;
|
||
|
tx.skb = NULL;
|
||
|
|
||
|
if (r != TX_CONTINUE) {
|
||
|
if (r != TX_QUEUED)
|
||
|
kfree_skb(skb);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ieee80211_queue_skb(local, sdata, sta, skb))
|
||
|
return true;
|
||
|
|
||
|
ieee80211_xmit_fast_finish(sdata, sta, fast_tx->pn_offs,
|
||
|
fast_tx->key, skb);
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
|
||
|
sdata = container_of(sdata->bss,
|
||
|
struct ieee80211_sub_if_data, u.ap);
|
||
|
|
||
|
__skb_queue_tail(&tx.skbs, skb);
|
||
|
ieee80211_tx_frags(local, &sdata->vif, &sta->sta, &tx.skbs, false);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_txq *txq)
|
||
|
{
|
||
|
struct ieee80211_local *local = hw_to_local(hw);
|
||
|
struct txq_info *txqi = container_of(txq, struct txq_info, txq);
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct sk_buff *skb = NULL;
|
||
|
struct fq *fq = &local->fq;
|
||
|
struct fq_tin *tin = &txqi->tin;
|
||
|
struct ieee80211_tx_info *info;
|
||
|
struct ieee80211_tx_data tx;
|
||
|
ieee80211_tx_result r;
|
||
|
struct ieee80211_vif *vif;
|
||
|
|
||
|
spin_lock_bh(&fq->lock);
|
||
|
|
||
|
if (test_bit(IEEE80211_TXQ_STOP, &txqi->flags))
|
||
|
goto out;
|
||
|
|
||
|
/* Make sure fragments stay together. */
|
||
|
skb = __skb_dequeue(&txqi->frags);
|
||
|
if (skb)
|
||
|
goto out;
|
||
|
|
||
|
begin:
|
||
|
skb = fq_tin_dequeue(fq, tin, fq_tin_dequeue_func);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
|
||
|
hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
|
||
|
memset(&tx, 0, sizeof(tx));
|
||
|
__skb_queue_head_init(&tx.skbs);
|
||
|
tx.local = local;
|
||
|
tx.skb = skb;
|
||
|
tx.sdata = vif_to_sdata(info->control.vif);
|
||
|
|
||
|
if (txq->sta) {
|
||
|
tx.sta = container_of(txq->sta, struct sta_info, sta);
|
||
|
/*
|
||
|
* Drop unicast frames to unauthorised stations unless they are
|
||
|
* EAPOL frames from the local station.
|
||
|
*/
|
||
|
if (unlikely(ieee80211_is_data(hdr->frame_control) &&
|
||
|
!ieee80211_vif_is_mesh(&tx.sdata->vif) &&
|
||
|
tx.sdata->vif.type != NL80211_IFTYPE_OCB &&
|
||
|
!is_multicast_ether_addr(hdr->addr1) &&
|
||
|
!test_sta_flag(tx.sta, WLAN_STA_AUTHORIZED) &&
|
||
|
(!(info->control.flags &
|
||
|
IEEE80211_TX_CTRL_PORT_CTRL_PROTO) ||
|
||
|
!ether_addr_equal(tx.sdata->vif.addr,
|
||
|
hdr->addr2)))) {
|
||
|
I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
goto begin;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The key can be removed while the packet was queued, so need to call
|
||
|
* this here to get the current key.
|
||
|
*/
|
||
|
r = ieee80211_tx_h_select_key(&tx);
|
||
|
if (r != TX_CONTINUE) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
goto begin;
|
||
|
}
|
||
|
|
||
|
if (test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags))
|
||
|
info->flags |= IEEE80211_TX_CTL_AMPDU;
|
||
|
else
|
||
|
info->flags &= ~IEEE80211_TX_CTL_AMPDU;
|
||
|
|
||
|
if (info->control.flags & IEEE80211_TX_CTRL_FAST_XMIT) {
|
||
|
struct sta_info *sta = container_of(txq->sta, struct sta_info,
|
||
|
sta);
|
||
|
u8 pn_offs = 0;
|
||
|
|
||
|
if (tx.key &&
|
||
|
(tx.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV))
|
||
|
pn_offs = ieee80211_hdrlen(hdr->frame_control);
|
||
|
|
||
|
ieee80211_xmit_fast_finish(sta->sdata, sta, pn_offs,
|
||
|
tx.key, skb);
|
||
|
} else {
|
||
|
if (invoke_tx_handlers_late(&tx))
|
||
|
goto begin;
|
||
|
|
||
|
skb = __skb_dequeue(&tx.skbs);
|
||
|
|
||
|
if (!skb_queue_empty(&tx.skbs))
|
||
|
skb_queue_splice_tail(&tx.skbs, &txqi->frags);
|
||
|
}
|
||
|
|
||
|
if (skb && skb_has_frag_list(skb) &&
|
||
|
!ieee80211_hw_check(&local->hw, TX_FRAG_LIST)) {
|
||
|
if (skb_linearize(skb)) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
goto begin;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
switch (tx.sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_MONITOR:
|
||
|
if (tx.sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) {
|
||
|
vif = &tx.sdata->vif;
|
||
|
break;
|
||
|
}
|
||
|
tx.sdata = rcu_dereference(local->monitor_sdata);
|
||
|
if (tx.sdata) {
|
||
|
vif = &tx.sdata->vif;
|
||
|
info->hw_queue =
|
||
|
vif->hw_queue[skb_get_queue_mapping(skb)];
|
||
|
} else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
goto begin;
|
||
|
} else {
|
||
|
vif = NULL;
|
||
|
}
|
||
|
break;
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
tx.sdata = container_of(tx.sdata->bss,
|
||
|
struct ieee80211_sub_if_data, u.ap);
|
||
|
/* fall through */
|
||
|
default:
|
||
|
vif = &tx.sdata->vif;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
IEEE80211_SKB_CB(skb)->control.vif = vif;
|
||
|
out:
|
||
|
spin_unlock_bh(&fq->lock);
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_tx_dequeue);
|
||
|
|
||
|
void __ieee80211_subif_start_xmit(struct sk_buff *skb,
|
||
|
struct net_device *dev,
|
||
|
u32 info_flags)
|
||
|
{
|
||
|
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
|
||
|
struct sta_info *sta;
|
||
|
struct sk_buff *next;
|
||
|
|
||
|
if (unlikely(skb->len < ETH_HLEN)) {
|
||
|
kfree_skb(skb);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
if (ieee80211_lookup_ra_sta(sdata, skb, &sta))
|
||
|
goto out_free;
|
||
|
|
||
|
if (!IS_ERR_OR_NULL(sta)) {
|
||
|
struct ieee80211_fast_tx *fast_tx;
|
||
|
|
||
|
fast_tx = rcu_dereference(sta->fast_tx);
|
||
|
|
||
|
if (fast_tx &&
|
||
|
ieee80211_xmit_fast(sdata, sta, fast_tx, skb))
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (skb_is_gso(skb)) {
|
||
|
struct sk_buff *segs;
|
||
|
|
||
|
segs = skb_gso_segment(skb, 0);
|
||
|
if (IS_ERR(segs)) {
|
||
|
goto out_free;
|
||
|
} else if (segs) {
|
||
|
consume_skb(skb);
|
||
|
skb = segs;
|
||
|
}
|
||
|
} else {
|
||
|
/* we cannot process non-linear frames on this path */
|
||
|
if (skb_linearize(skb)) {
|
||
|
kfree_skb(skb);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* the frame could be fragmented, software-encrypted, and other
|
||
|
* things so we cannot really handle checksum offload with it -
|
||
|
* fix it up in software before we handle anything else.
|
||
|
*/
|
||
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
||
|
skb_set_transport_header(skb,
|
||
|
skb_checksum_start_offset(skb));
|
||
|
if (skb_checksum_help(skb))
|
||
|
goto out_free;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
next = skb;
|
||
|
while (next) {
|
||
|
skb = next;
|
||
|
next = skb->next;
|
||
|
|
||
|
skb->prev = NULL;
|
||
|
skb->next = NULL;
|
||
|
|
||
|
skb = ieee80211_build_hdr(sdata, skb, info_flags, sta);
|
||
|
if (IS_ERR(skb))
|
||
|
goto out;
|
||
|
|
||
|
ieee80211_tx_stats(dev, skb->len);
|
||
|
|
||
|
ieee80211_xmit(sdata, sta, skb);
|
||
|
}
|
||
|
goto out;
|
||
|
out_free:
|
||
|
kfree_skb(skb);
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ieee80211_subif_start_xmit - netif start_xmit function for 802.3 vifs
|
||
|
* @skb: packet to be sent
|
||
|
* @dev: incoming interface
|
||
|
*
|
||
|
* On failure skb will be freed.
|
||
|
*/
|
||
|
netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
|
||
|
struct net_device *dev)
|
||
|
{
|
||
|
__ieee80211_subif_start_xmit(skb, dev, 0);
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
struct sk_buff *
|
||
|
ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sk_buff *skb, u32 info_flags)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct ieee80211_tx_data tx = {
|
||
|
.local = sdata->local,
|
||
|
.sdata = sdata,
|
||
|
};
|
||
|
struct sta_info *sta;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) {
|
||
|
kfree_skb(skb);
|
||
|
skb = ERR_PTR(-EINVAL);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
skb = ieee80211_build_hdr(sdata, skb, info_flags, sta);
|
||
|
if (IS_ERR(skb))
|
||
|
goto out;
|
||
|
|
||
|
hdr = (void *)skb->data;
|
||
|
tx.sta = sta_info_get(sdata, hdr->addr1);
|
||
|
tx.skb = skb;
|
||
|
|
||
|
if (ieee80211_tx_h_select_key(&tx) != TX_CONTINUE) {
|
||
|
rcu_read_unlock();
|
||
|
kfree_skb(skb);
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
return skb;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ieee80211_clear_tx_pending may not be called in a context where
|
||
|
* it is possible that it packets could come in again.
|
||
|
*/
|
||
|
void ieee80211_clear_tx_pending(struct ieee80211_local *local)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < local->hw.queues; i++) {
|
||
|
while ((skb = skb_dequeue(&local->pending[i])) != NULL)
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns false if the frame couldn't be transmitted but was queued instead,
|
||
|
* which in this case means re-queued -- take as an indication to stop sending
|
||
|
* more pending frames.
|
||
|
*/
|
||
|
static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
struct ieee80211_sub_if_data *sdata;
|
||
|
struct sta_info *sta;
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
bool result;
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
|
||
|
sdata = vif_to_sdata(info->control.vif);
|
||
|
|
||
|
if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
if (unlikely(!chanctx_conf)) {
|
||
|
dev_kfree_skb(skb);
|
||
|
return true;
|
||
|
}
|
||
|
info->band = chanctx_conf->def.chan->band;
|
||
|
result = ieee80211_tx(sdata, NULL, skb, true);
|
||
|
} else {
|
||
|
struct sk_buff_head skbs;
|
||
|
|
||
|
__skb_queue_head_init(&skbs);
|
||
|
__skb_queue_tail(&skbs, skb);
|
||
|
|
||
|
hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
sta = sta_info_get(sdata, hdr->addr1);
|
||
|
|
||
|
result = __ieee80211_tx(local, &skbs, skb->len, sta, true);
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Transmit all pending packets. Called from tasklet.
|
||
|
*/
|
||
|
void ieee80211_tx_pending(unsigned long data)
|
||
|
{
|
||
|
struct ieee80211_local *local = (struct ieee80211_local *)data;
|
||
|
unsigned long flags;
|
||
|
int i;
|
||
|
bool txok;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
|
||
|
for (i = 0; i < local->hw.queues; i++) {
|
||
|
/*
|
||
|
* If queue is stopped by something other than due to pending
|
||
|
* frames, or we have no pending frames, proceed to next queue.
|
||
|
*/
|
||
|
if (local->queue_stop_reasons[i] ||
|
||
|
skb_queue_empty(&local->pending[i]))
|
||
|
continue;
|
||
|
|
||
|
while (!skb_queue_empty(&local->pending[i])) {
|
||
|
struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
|
||
|
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
|
||
|
|
||
|
if (WARN_ON(!info->control.vif)) {
|
||
|
ieee80211_free_txskb(&local->hw, skb);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
|
||
|
flags);
|
||
|
|
||
|
txok = ieee80211_tx_pending_skb(local, skb);
|
||
|
spin_lock_irqsave(&local->queue_stop_reason_lock,
|
||
|
flags);
|
||
|
if (!txok)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (skb_queue_empty(&local->pending[i]))
|
||
|
ieee80211_propagate_queue_wake(local, i);
|
||
|
}
|
||
|
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
/* functions for drivers to get certain frames */
|
||
|
|
||
|
static void __ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata,
|
||
|
struct ps_data *ps, struct sk_buff *skb,
|
||
|
bool is_template)
|
||
|
{
|
||
|
u8 *pos, *tim;
|
||
|
int aid0 = 0;
|
||
|
int i, have_bits = 0, n1, n2;
|
||
|
|
||
|
/* Generate bitmap for TIM only if there are any STAs in power save
|
||
|
* mode. */
|
||
|
if (atomic_read(&ps->num_sta_ps) > 0)
|
||
|
/* in the hope that this is faster than
|
||
|
* checking byte-for-byte */
|
||
|
have_bits = !bitmap_empty((unsigned long *)ps->tim,
|
||
|
IEEE80211_MAX_AID+1);
|
||
|
if (!is_template) {
|
||
|
if (ps->dtim_count == 0)
|
||
|
ps->dtim_count = sdata->vif.bss_conf.dtim_period - 1;
|
||
|
else
|
||
|
ps->dtim_count--;
|
||
|
}
|
||
|
|
||
|
tim = pos = (u8 *) skb_put(skb, 6);
|
||
|
*pos++ = WLAN_EID_TIM;
|
||
|
*pos++ = 4;
|
||
|
*pos++ = ps->dtim_count;
|
||
|
*pos++ = sdata->vif.bss_conf.dtim_period;
|
||
|
|
||
|
if (ps->dtim_count == 0 && !skb_queue_empty(&ps->bc_buf))
|
||
|
aid0 = 1;
|
||
|
|
||
|
ps->dtim_bc_mc = aid0 == 1;
|
||
|
|
||
|
if (have_bits) {
|
||
|
/* Find largest even number N1 so that bits numbered 1 through
|
||
|
* (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
|
||
|
* (N2 + 1) x 8 through 2007 are 0. */
|
||
|
n1 = 0;
|
||
|
for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
|
||
|
if (ps->tim[i]) {
|
||
|
n1 = i & 0xfe;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
n2 = n1;
|
||
|
for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
|
||
|
if (ps->tim[i]) {
|
||
|
n2 = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Bitmap control */
|
||
|
*pos++ = n1 | aid0;
|
||
|
/* Part Virt Bitmap */
|
||
|
skb_put(skb, n2 - n1);
|
||
|
memcpy(pos, ps->tim + n1, n2 - n1 + 1);
|
||
|
|
||
|
tim[1] = n2 - n1 + 4;
|
||
|
} else {
|
||
|
*pos++ = aid0; /* Bitmap control */
|
||
|
*pos++ = 0; /* Part Virt Bitmap */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata,
|
||
|
struct ps_data *ps, struct sk_buff *skb,
|
||
|
bool is_template)
|
||
|
{
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
|
||
|
/*
|
||
|
* Not very nice, but we want to allow the driver to call
|
||
|
* ieee80211_beacon_get() as a response to the set_tim()
|
||
|
* callback. That, however, is already invoked under the
|
||
|
* sta_lock to guarantee consistent and race-free update
|
||
|
* of the tim bitmap in mac80211 and the driver.
|
||
|
*/
|
||
|
if (local->tim_in_locked_section) {
|
||
|
__ieee80211_beacon_add_tim(sdata, ps, skb, is_template);
|
||
|
} else {
|
||
|
spin_lock_bh(&local->tim_lock);
|
||
|
__ieee80211_beacon_add_tim(sdata, ps, skb, is_template);
|
||
|
spin_unlock_bh(&local->tim_lock);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void ieee80211_set_csa(struct ieee80211_sub_if_data *sdata,
|
||
|
struct beacon_data *beacon)
|
||
|
{
|
||
|
struct probe_resp *resp;
|
||
|
u8 *beacon_data;
|
||
|
size_t beacon_data_len;
|
||
|
int i;
|
||
|
u8 count = beacon->csa_current_counter;
|
||
|
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_AP:
|
||
|
beacon_data = beacon->tail;
|
||
|
beacon_data_len = beacon->tail_len;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_ADHOC:
|
||
|
beacon_data = beacon->head;
|
||
|
beacon_data_len = beacon->head_len;
|
||
|
break;
|
||
|
case NL80211_IFTYPE_MESH_POINT:
|
||
|
beacon_data = beacon->head;
|
||
|
beacon_data_len = beacon->head_len;
|
||
|
break;
|
||
|
default:
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
rcu_read_lock();
|
||
|
for (i = 0; i < IEEE80211_MAX_CSA_COUNTERS_NUM; ++i) {
|
||
|
resp = rcu_dereference(sdata->u.ap.probe_resp);
|
||
|
|
||
|
if (beacon->csa_counter_offsets[i]) {
|
||
|
if (WARN_ON_ONCE(beacon->csa_counter_offsets[i] >=
|
||
|
beacon_data_len)) {
|
||
|
rcu_read_unlock();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
beacon_data[beacon->csa_counter_offsets[i]] = count;
|
||
|
}
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP && resp)
|
||
|
resp->data[resp->csa_counter_offsets[i]] = count;
|
||
|
}
|
||
|
rcu_read_unlock();
|
||
|
}
|
||
|
|
||
|
static u8 __ieee80211_csa_update_counter(struct beacon_data *beacon)
|
||
|
{
|
||
|
beacon->csa_current_counter--;
|
||
|
|
||
|
/* the counter should never reach 0 */
|
||
|
WARN_ON_ONCE(!beacon->csa_current_counter);
|
||
|
|
||
|
return beacon->csa_current_counter;
|
||
|
}
|
||
|
|
||
|
u8 ieee80211_csa_update_counter(struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
|
||
|
struct beacon_data *beacon = NULL;
|
||
|
u8 count = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP)
|
||
|
beacon = rcu_dereference(sdata->u.ap.beacon);
|
||
|
else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
|
||
|
beacon = rcu_dereference(sdata->u.ibss.presp);
|
||
|
else if (ieee80211_vif_is_mesh(&sdata->vif))
|
||
|
beacon = rcu_dereference(sdata->u.mesh.beacon);
|
||
|
|
||
|
if (!beacon)
|
||
|
goto unlock;
|
||
|
|
||
|
count = __ieee80211_csa_update_counter(beacon);
|
||
|
|
||
|
unlock:
|
||
|
rcu_read_unlock();
|
||
|
return count;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_csa_update_counter);
|
||
|
|
||
|
bool ieee80211_csa_is_complete(struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
|
||
|
struct beacon_data *beacon = NULL;
|
||
|
u8 *beacon_data;
|
||
|
size_t beacon_data_len;
|
||
|
int ret = false;
|
||
|
|
||
|
if (!ieee80211_sdata_running(sdata))
|
||
|
return false;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
if (vif->type == NL80211_IFTYPE_AP) {
|
||
|
struct ieee80211_if_ap *ap = &sdata->u.ap;
|
||
|
|
||
|
beacon = rcu_dereference(ap->beacon);
|
||
|
if (WARN_ON(!beacon || !beacon->tail))
|
||
|
goto out;
|
||
|
beacon_data = beacon->tail;
|
||
|
beacon_data_len = beacon->tail_len;
|
||
|
} else if (vif->type == NL80211_IFTYPE_ADHOC) {
|
||
|
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
|
||
|
|
||
|
beacon = rcu_dereference(ifibss->presp);
|
||
|
if (!beacon)
|
||
|
goto out;
|
||
|
|
||
|
beacon_data = beacon->head;
|
||
|
beacon_data_len = beacon->head_len;
|
||
|
} else if (vif->type == NL80211_IFTYPE_MESH_POINT) {
|
||
|
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
|
||
|
|
||
|
beacon = rcu_dereference(ifmsh->beacon);
|
||
|
if (!beacon)
|
||
|
goto out;
|
||
|
|
||
|
beacon_data = beacon->head;
|
||
|
beacon_data_len = beacon->head_len;
|
||
|
} else {
|
||
|
WARN_ON(1);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!beacon->csa_counter_offsets[0])
|
||
|
goto out;
|
||
|
|
||
|
if (WARN_ON_ONCE(beacon->csa_counter_offsets[0] > beacon_data_len))
|
||
|
goto out;
|
||
|
|
||
|
if (beacon_data[beacon->csa_counter_offsets[0]] == 1)
|
||
|
ret = true;
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_csa_is_complete);
|
||
|
|
||
|
static struct sk_buff *
|
||
|
__ieee80211_beacon_get(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif,
|
||
|
struct ieee80211_mutable_offsets *offs,
|
||
|
bool is_template)
|
||
|
{
|
||
|
struct ieee80211_local *local = hw_to_local(hw);
|
||
|
struct beacon_data *beacon = NULL;
|
||
|
struct sk_buff *skb = NULL;
|
||
|
struct ieee80211_tx_info *info;
|
||
|
struct ieee80211_sub_if_data *sdata = NULL;
|
||
|
enum nl80211_band band;
|
||
|
struct ieee80211_tx_rate_control txrc;
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
int csa_off_base = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
sdata = vif_to_sdata(vif);
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
|
||
|
if (!ieee80211_sdata_running(sdata) || !chanctx_conf)
|
||
|
goto out;
|
||
|
|
||
|
if (offs)
|
||
|
memset(offs, 0, sizeof(*offs));
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP) {
|
||
|
struct ieee80211_if_ap *ap = &sdata->u.ap;
|
||
|
|
||
|
beacon = rcu_dereference(ap->beacon);
|
||
|
if (beacon) {
|
||
|
if (beacon->csa_counter_offsets[0]) {
|
||
|
if (!is_template)
|
||
|
__ieee80211_csa_update_counter(beacon);
|
||
|
|
||
|
ieee80211_set_csa(sdata, beacon);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* headroom, head length,
|
||
|
* tail length and maximum TIM length
|
||
|
*/
|
||
|
skb = dev_alloc_skb(local->tx_headroom +
|
||
|
beacon->head_len +
|
||
|
beacon->tail_len + 256 +
|
||
|
local->hw.extra_beacon_tailroom);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
|
||
|
skb_reserve(skb, local->tx_headroom);
|
||
|
memcpy(skb_put(skb, beacon->head_len), beacon->head,
|
||
|
beacon->head_len);
|
||
|
|
||
|
ieee80211_beacon_add_tim(sdata, &ap->ps, skb,
|
||
|
is_template);
|
||
|
|
||
|
if (offs) {
|
||
|
offs->tim_offset = beacon->head_len;
|
||
|
offs->tim_length = skb->len - beacon->head_len;
|
||
|
|
||
|
/* for AP the csa offsets are from tail */
|
||
|
csa_off_base = skb->len;
|
||
|
}
|
||
|
|
||
|
if (beacon->tail)
|
||
|
memcpy(skb_put(skb, beacon->tail_len),
|
||
|
beacon->tail, beacon->tail_len);
|
||
|
} else
|
||
|
goto out;
|
||
|
} else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
|
||
|
struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
|
||
|
beacon = rcu_dereference(ifibss->presp);
|
||
|
if (!beacon)
|
||
|
goto out;
|
||
|
|
||
|
if (beacon->csa_counter_offsets[0]) {
|
||
|
if (!is_template)
|
||
|
__ieee80211_csa_update_counter(beacon);
|
||
|
|
||
|
ieee80211_set_csa(sdata, beacon);
|
||
|
}
|
||
|
|
||
|
skb = dev_alloc_skb(local->tx_headroom + beacon->head_len +
|
||
|
local->hw.extra_beacon_tailroom);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
skb_reserve(skb, local->tx_headroom);
|
||
|
memcpy(skb_put(skb, beacon->head_len), beacon->head,
|
||
|
beacon->head_len);
|
||
|
|
||
|
hdr = (struct ieee80211_hdr *) skb->data;
|
||
|
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
|
||
|
IEEE80211_STYPE_BEACON);
|
||
|
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
|
||
|
struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
|
||
|
|
||
|
beacon = rcu_dereference(ifmsh->beacon);
|
||
|
if (!beacon)
|
||
|
goto out;
|
||
|
|
||
|
if (beacon->csa_counter_offsets[0]) {
|
||
|
if (!is_template)
|
||
|
/* TODO: For mesh csa_counter is in TU, so
|
||
|
* decrementing it by one isn't correct, but
|
||
|
* for now we leave it consistent with overall
|
||
|
* mac80211's behavior.
|
||
|
*/
|
||
|
__ieee80211_csa_update_counter(beacon);
|
||
|
|
||
|
ieee80211_set_csa(sdata, beacon);
|
||
|
}
|
||
|
|
||
|
if (ifmsh->sync_ops)
|
||
|
ifmsh->sync_ops->adjust_tbtt(sdata, beacon);
|
||
|
|
||
|
skb = dev_alloc_skb(local->tx_headroom +
|
||
|
beacon->head_len +
|
||
|
256 + /* TIM IE */
|
||
|
beacon->tail_len +
|
||
|
local->hw.extra_beacon_tailroom);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
skb_reserve(skb, local->tx_headroom);
|
||
|
memcpy(skb_put(skb, beacon->head_len), beacon->head,
|
||
|
beacon->head_len);
|
||
|
ieee80211_beacon_add_tim(sdata, &ifmsh->ps, skb, is_template);
|
||
|
|
||
|
if (offs) {
|
||
|
offs->tim_offset = beacon->head_len;
|
||
|
offs->tim_length = skb->len - beacon->head_len;
|
||
|
}
|
||
|
|
||
|
memcpy(skb_put(skb, beacon->tail_len), beacon->tail,
|
||
|
beacon->tail_len);
|
||
|
} else {
|
||
|
WARN_ON(1);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* CSA offsets */
|
||
|
if (offs && beacon) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < IEEE80211_MAX_CSA_COUNTERS_NUM; i++) {
|
||
|
u16 csa_off = beacon->csa_counter_offsets[i];
|
||
|
|
||
|
if (!csa_off)
|
||
|
continue;
|
||
|
|
||
|
offs->csa_counter_offs[i] = csa_off_base + csa_off;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
band = chanctx_conf->def.chan->band;
|
||
|
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
|
||
|
info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
|
||
|
info->flags |= IEEE80211_TX_CTL_NO_ACK;
|
||
|
info->band = band;
|
||
|
|
||
|
memset(&txrc, 0, sizeof(txrc));
|
||
|
txrc.hw = hw;
|
||
|
txrc.sband = local->hw.wiphy->bands[band];
|
||
|
txrc.bss_conf = &sdata->vif.bss_conf;
|
||
|
txrc.skb = skb;
|
||
|
txrc.reported_rate.idx = -1;
|
||
|
txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
|
||
|
if (txrc.rate_idx_mask == (1 << txrc.sband->n_bitrates) - 1)
|
||
|
txrc.max_rate_idx = -1;
|
||
|
else
|
||
|
txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
|
||
|
txrc.bss = true;
|
||
|
rate_control_get_rate(sdata, NULL, &txrc);
|
||
|
|
||
|
info->control.vif = vif;
|
||
|
|
||
|
info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
|
||
|
IEEE80211_TX_CTL_ASSIGN_SEQ |
|
||
|
IEEE80211_TX_CTL_FIRST_FRAGMENT;
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
return skb;
|
||
|
|
||
|
}
|
||
|
|
||
|
struct sk_buff *
|
||
|
ieee80211_beacon_get_template(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif,
|
||
|
struct ieee80211_mutable_offsets *offs)
|
||
|
{
|
||
|
return __ieee80211_beacon_get(hw, vif, offs, true);
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_beacon_get_template);
|
||
|
|
||
|
struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif,
|
||
|
u16 *tim_offset, u16 *tim_length)
|
||
|
{
|
||
|
struct ieee80211_mutable_offsets offs = {};
|
||
|
struct sk_buff *bcn = __ieee80211_beacon_get(hw, vif, &offs, false);
|
||
|
struct sk_buff *copy;
|
||
|
struct ieee80211_supported_band *sband;
|
||
|
int shift;
|
||
|
|
||
|
if (!bcn)
|
||
|
return bcn;
|
||
|
|
||
|
if (tim_offset)
|
||
|
*tim_offset = offs.tim_offset;
|
||
|
|
||
|
if (tim_length)
|
||
|
*tim_length = offs.tim_length;
|
||
|
|
||
|
if (ieee80211_hw_check(hw, BEACON_TX_STATUS) ||
|
||
|
!hw_to_local(hw)->monitors)
|
||
|
return bcn;
|
||
|
|
||
|
/* send a copy to monitor interfaces */
|
||
|
copy = skb_copy(bcn, GFP_ATOMIC);
|
||
|
if (!copy)
|
||
|
return bcn;
|
||
|
|
||
|
shift = ieee80211_vif_get_shift(vif);
|
||
|
sband = ieee80211_get_sband(vif_to_sdata(vif));
|
||
|
if (!sband)
|
||
|
return bcn;
|
||
|
|
||
|
ieee80211_tx_monitor(hw_to_local(hw), copy, sband, 1, shift, false);
|
||
|
|
||
|
return bcn;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_beacon_get_tim);
|
||
|
|
||
|
struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct ieee80211_if_ap *ap = NULL;
|
||
|
struct sk_buff *skb = NULL;
|
||
|
struct probe_resp *presp = NULL;
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
|
||
|
|
||
|
if (sdata->vif.type != NL80211_IFTYPE_AP)
|
||
|
return NULL;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
ap = &sdata->u.ap;
|
||
|
presp = rcu_dereference(ap->probe_resp);
|
||
|
if (!presp)
|
||
|
goto out;
|
||
|
|
||
|
skb = dev_alloc_skb(presp->len);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
|
||
|
memcpy(skb_put(skb, presp->len), presp->data, presp->len);
|
||
|
|
||
|
hdr = (struct ieee80211_hdr *) skb->data;
|
||
|
memset(hdr->addr1, 0, sizeof(hdr->addr1));
|
||
|
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
return skb;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_proberesp_get);
|
||
|
|
||
|
struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct ieee80211_sub_if_data *sdata;
|
||
|
struct ieee80211_if_managed *ifmgd;
|
||
|
struct ieee80211_pspoll *pspoll;
|
||
|
struct ieee80211_local *local;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
|
||
|
return NULL;
|
||
|
|
||
|
sdata = vif_to_sdata(vif);
|
||
|
ifmgd = &sdata->u.mgd;
|
||
|
local = sdata->local;
|
||
|
|
||
|
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
|
||
|
if (!skb)
|
||
|
return NULL;
|
||
|
|
||
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
||
|
|
||
|
pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
|
||
|
memset(pspoll, 0, sizeof(*pspoll));
|
||
|
pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
|
||
|
IEEE80211_STYPE_PSPOLL);
|
||
|
pspoll->aid = cpu_to_le16(ifmgd->aid);
|
||
|
|
||
|
/* aid in PS-Poll has its two MSBs each set to 1 */
|
||
|
pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
|
||
|
|
||
|
memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
|
||
|
memcpy(pspoll->ta, vif->addr, ETH_ALEN);
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_pspoll_get);
|
||
|
|
||
|
struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct ieee80211_hdr_3addr *nullfunc;
|
||
|
struct ieee80211_sub_if_data *sdata;
|
||
|
struct ieee80211_if_managed *ifmgd;
|
||
|
struct ieee80211_local *local;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
|
||
|
return NULL;
|
||
|
|
||
|
sdata = vif_to_sdata(vif);
|
||
|
ifmgd = &sdata->u.mgd;
|
||
|
local = sdata->local;
|
||
|
|
||
|
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
|
||
|
if (!skb)
|
||
|
return NULL;
|
||
|
|
||
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
||
|
|
||
|
nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
|
||
|
sizeof(*nullfunc));
|
||
|
memset(nullfunc, 0, sizeof(*nullfunc));
|
||
|
nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
|
||
|
IEEE80211_STYPE_NULLFUNC |
|
||
|
IEEE80211_FCTL_TODS);
|
||
|
memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
|
||
|
memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
|
||
|
memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_nullfunc_get);
|
||
|
|
||
|
struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
|
||
|
const u8 *src_addr,
|
||
|
const u8 *ssid, size_t ssid_len,
|
||
|
size_t tailroom)
|
||
|
{
|
||
|
struct ieee80211_local *local = hw_to_local(hw);
|
||
|
struct ieee80211_hdr_3addr *hdr;
|
||
|
struct sk_buff *skb;
|
||
|
size_t ie_ssid_len;
|
||
|
u8 *pos;
|
||
|
|
||
|
ie_ssid_len = 2 + ssid_len;
|
||
|
|
||
|
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
|
||
|
ie_ssid_len + tailroom);
|
||
|
if (!skb)
|
||
|
return NULL;
|
||
|
|
||
|
skb_reserve(skb, local->hw.extra_tx_headroom);
|
||
|
|
||
|
hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
|
||
|
memset(hdr, 0, sizeof(*hdr));
|
||
|
hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
|
||
|
IEEE80211_STYPE_PROBE_REQ);
|
||
|
eth_broadcast_addr(hdr->addr1);
|
||
|
memcpy(hdr->addr2, src_addr, ETH_ALEN);
|
||
|
eth_broadcast_addr(hdr->addr3);
|
||
|
|
||
|
pos = skb_put(skb, ie_ssid_len);
|
||
|
*pos++ = WLAN_EID_SSID;
|
||
|
*pos++ = ssid_len;
|
||
|
if (ssid_len)
|
||
|
memcpy(pos, ssid, ssid_len);
|
||
|
pos += ssid_len;
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_probereq_get);
|
||
|
|
||
|
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
|
||
|
const void *frame, size_t frame_len,
|
||
|
const struct ieee80211_tx_info *frame_txctl,
|
||
|
struct ieee80211_rts *rts)
|
||
|
{
|
||
|
const struct ieee80211_hdr *hdr = frame;
|
||
|
|
||
|
rts->frame_control =
|
||
|
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
|
||
|
rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
|
||
|
frame_txctl);
|
||
|
memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
|
||
|
memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_rts_get);
|
||
|
|
||
|
void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
|
||
|
const void *frame, size_t frame_len,
|
||
|
const struct ieee80211_tx_info *frame_txctl,
|
||
|
struct ieee80211_cts *cts)
|
||
|
{
|
||
|
const struct ieee80211_hdr *hdr = frame;
|
||
|
|
||
|
cts->frame_control =
|
||
|
cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
|
||
|
cts->duration = ieee80211_ctstoself_duration(hw, vif,
|
||
|
frame_len, frame_txctl);
|
||
|
memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_ctstoself_get);
|
||
|
|
||
|
struct sk_buff *
|
||
|
ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
|
||
|
struct ieee80211_vif *vif)
|
||
|
{
|
||
|
struct ieee80211_local *local = hw_to_local(hw);
|
||
|
struct sk_buff *skb = NULL;
|
||
|
struct ieee80211_tx_data tx;
|
||
|
struct ieee80211_sub_if_data *sdata;
|
||
|
struct ps_data *ps;
|
||
|
struct ieee80211_tx_info *info;
|
||
|
struct ieee80211_chanctx_conf *chanctx_conf;
|
||
|
|
||
|
sdata = vif_to_sdata(vif);
|
||
|
|
||
|
rcu_read_lock();
|
||
|
chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
|
||
|
|
||
|
if (!chanctx_conf)
|
||
|
goto out;
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP) {
|
||
|
struct beacon_data *beacon =
|
||
|
rcu_dereference(sdata->u.ap.beacon);
|
||
|
|
||
|
if (!beacon || !beacon->head)
|
||
|
goto out;
|
||
|
|
||
|
ps = &sdata->u.ap.ps;
|
||
|
} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
|
||
|
ps = &sdata->u.mesh.ps;
|
||
|
} else {
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (ps->dtim_count != 0 || !ps->dtim_bc_mc)
|
||
|
goto out; /* send buffered bc/mc only after DTIM beacon */
|
||
|
|
||
|
while (1) {
|
||
|
skb = skb_dequeue(&ps->bc_buf);
|
||
|
if (!skb)
|
||
|
goto out;
|
||
|
local->total_ps_buffered--;
|
||
|
|
||
|
if (!skb_queue_empty(&ps->bc_buf) && skb->len >= 2) {
|
||
|
struct ieee80211_hdr *hdr =
|
||
|
(struct ieee80211_hdr *) skb->data;
|
||
|
/* more buffered multicast/broadcast frames ==> set
|
||
|
* MoreData flag in IEEE 802.11 header to inform PS
|
||
|
* STAs */
|
||
|
hdr->frame_control |=
|
||
|
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
|
||
|
}
|
||
|
|
||
|
if (sdata->vif.type == NL80211_IFTYPE_AP)
|
||
|
sdata = IEEE80211_DEV_TO_SUB_IF(skb->dev);
|
||
|
if (!ieee80211_tx_prepare(sdata, &tx, NULL, skb))
|
||
|
break;
|
||
|
ieee80211_free_txskb(hw, skb);
|
||
|
}
|
||
|
|
||
|
info = IEEE80211_SKB_CB(skb);
|
||
|
|
||
|
tx.flags |= IEEE80211_TX_PS_BUFFERED;
|
||
|
info->band = chanctx_conf->def.chan->band;
|
||
|
|
||
|
if (invoke_tx_handlers(&tx))
|
||
|
skb = NULL;
|
||
|
out:
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
return skb;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_get_buffered_bc);
|
||
|
|
||
|
int ieee80211_reserve_tid(struct ieee80211_sta *pubsta, u8 tid)
|
||
|
{
|
||
|
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
|
||
|
struct ieee80211_sub_if_data *sdata = sta->sdata;
|
||
|
struct ieee80211_local *local = sdata->local;
|
||
|
int ret;
|
||
|
u32 queues;
|
||
|
|
||
|
lockdep_assert_held(&local->sta_mtx);
|
||
|
|
||
|
/* only some cases are supported right now */
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_STATION:
|
||
|
case NL80211_IFTYPE_AP:
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON(1);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON(tid >= IEEE80211_NUM_UPS))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (sta->reserved_tid == tid) {
|
||
|
ret = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (sta->reserved_tid != IEEE80211_TID_UNRESERVED) {
|
||
|
sdata_err(sdata, "TID reservation already active\n");
|
||
|
ret = -EALREADY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ieee80211_stop_vif_queues(sdata->local, sdata,
|
||
|
IEEE80211_QUEUE_STOP_REASON_RESERVE_TID);
|
||
|
|
||
|
synchronize_net();
|
||
|
|
||
|
/* Tear down BA sessions so we stop aggregating on this TID */
|
||
|
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
|
||
|
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
|
||
|
__ieee80211_stop_tx_ba_session(sta, tid,
|
||
|
AGG_STOP_LOCAL_REQUEST);
|
||
|
}
|
||
|
|
||
|
queues = BIT(sdata->vif.hw_queue[ieee802_1d_to_ac[tid]]);
|
||
|
__ieee80211_flush_queues(local, sdata, queues, false);
|
||
|
|
||
|
sta->reserved_tid = tid;
|
||
|
|
||
|
ieee80211_wake_vif_queues(local, sdata,
|
||
|
IEEE80211_QUEUE_STOP_REASON_RESERVE_TID);
|
||
|
|
||
|
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION))
|
||
|
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
|
||
|
|
||
|
ret = 0;
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_reserve_tid);
|
||
|
|
||
|
void ieee80211_unreserve_tid(struct ieee80211_sta *pubsta, u8 tid)
|
||
|
{
|
||
|
struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
|
||
|
struct ieee80211_sub_if_data *sdata = sta->sdata;
|
||
|
|
||
|
lockdep_assert_held(&sdata->local->sta_mtx);
|
||
|
|
||
|
/* only some cases are supported right now */
|
||
|
switch (sdata->vif.type) {
|
||
|
case NL80211_IFTYPE_STATION:
|
||
|
case NL80211_IFTYPE_AP:
|
||
|
case NL80211_IFTYPE_AP_VLAN:
|
||
|
break;
|
||
|
default:
|
||
|
WARN_ON(1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (tid != sta->reserved_tid) {
|
||
|
sdata_err(sdata, "TID to unreserve (%d) isn't reserved\n", tid);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
sta->reserved_tid = IEEE80211_TID_UNRESERVED;
|
||
|
}
|
||
|
EXPORT_SYMBOL(ieee80211_unreserve_tid);
|
||
|
|
||
|
void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata,
|
||
|
struct sk_buff *skb, int tid,
|
||
|
enum nl80211_band band)
|
||
|
{
|
||
|
int ac = ieee802_1d_to_ac[tid & 7];
|
||
|
|
||
|
skb_reset_mac_header(skb);
|
||
|
skb_set_queue_mapping(skb, ac);
|
||
|
skb->priority = tid;
|
||
|
|
||
|
skb->dev = sdata->dev;
|
||
|
|
||
|
/*
|
||
|
* The other path calling ieee80211_xmit is from the tasklet,
|
||
|
* and while we can handle concurrent transmissions locking
|
||
|
* requirements are that we do not come into tx with bhs on.
|
||
|
*/
|
||
|
local_bh_disable();
|
||
|
IEEE80211_SKB_CB(skb)->band = band;
|
||
|
ieee80211_xmit(sdata, NULL, skb);
|
||
|
local_bh_enable();
|
||
|
}
|