668 lines
14 KiB
C
668 lines
14 KiB
C
|
/* Authors: Karl MacMillan <kmacmillan@tresys.com>
|
||
|
* Frank Mayer <mayerf@tresys.com>
|
||
|
*
|
||
|
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation, version 2.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include "security.h"
|
||
|
#include "conditional.h"
|
||
|
#include "services.h"
|
||
|
|
||
|
/*
|
||
|
* cond_evaluate_expr evaluates a conditional expr
|
||
|
* in reverse polish notation. It returns true (1), false (0),
|
||
|
* or undefined (-1). Undefined occurs when the expression
|
||
|
* exceeds the stack depth of COND_EXPR_MAXDEPTH.
|
||
|
*/
|
||
|
static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
|
||
|
{
|
||
|
|
||
|
struct cond_expr *cur;
|
||
|
int s[COND_EXPR_MAXDEPTH];
|
||
|
int sp = -1;
|
||
|
|
||
|
for (cur = expr; cur; cur = cur->next) {
|
||
|
switch (cur->expr_type) {
|
||
|
case COND_BOOL:
|
||
|
if (sp == (COND_EXPR_MAXDEPTH - 1))
|
||
|
return -1;
|
||
|
sp++;
|
||
|
s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
|
||
|
break;
|
||
|
case COND_NOT:
|
||
|
if (sp < 0)
|
||
|
return -1;
|
||
|
s[sp] = !s[sp];
|
||
|
break;
|
||
|
case COND_OR:
|
||
|
if (sp < 1)
|
||
|
return -1;
|
||
|
sp--;
|
||
|
s[sp] |= s[sp + 1];
|
||
|
break;
|
||
|
case COND_AND:
|
||
|
if (sp < 1)
|
||
|
return -1;
|
||
|
sp--;
|
||
|
s[sp] &= s[sp + 1];
|
||
|
break;
|
||
|
case COND_XOR:
|
||
|
if (sp < 1)
|
||
|
return -1;
|
||
|
sp--;
|
||
|
s[sp] ^= s[sp + 1];
|
||
|
break;
|
||
|
case COND_EQ:
|
||
|
if (sp < 1)
|
||
|
return -1;
|
||
|
sp--;
|
||
|
s[sp] = (s[sp] == s[sp + 1]);
|
||
|
break;
|
||
|
case COND_NEQ:
|
||
|
if (sp < 1)
|
||
|
return -1;
|
||
|
sp--;
|
||
|
s[sp] = (s[sp] != s[sp + 1]);
|
||
|
break;
|
||
|
default:
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
return s[0];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* evaluate_cond_node evaluates the conditional stored in
|
||
|
* a struct cond_node and if the result is different than the
|
||
|
* current state of the node it sets the rules in the true/false
|
||
|
* list appropriately. If the result of the expression is undefined
|
||
|
* all of the rules are disabled for safety.
|
||
|
*/
|
||
|
int evaluate_cond_node(struct policydb *p, struct cond_node *node)
|
||
|
{
|
||
|
int new_state;
|
||
|
struct cond_av_list *cur;
|
||
|
|
||
|
new_state = cond_evaluate_expr(p, node->expr);
|
||
|
if (new_state != node->cur_state) {
|
||
|
node->cur_state = new_state;
|
||
|
if (new_state == -1)
|
||
|
printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
|
||
|
/* turn the rules on or off */
|
||
|
for (cur = node->true_list; cur; cur = cur->next) {
|
||
|
if (new_state <= 0)
|
||
|
cur->node->key.specified &= ~AVTAB_ENABLED;
|
||
|
else
|
||
|
cur->node->key.specified |= AVTAB_ENABLED;
|
||
|
}
|
||
|
|
||
|
for (cur = node->false_list; cur; cur = cur->next) {
|
||
|
/* -1 or 1 */
|
||
|
if (new_state)
|
||
|
cur->node->key.specified &= ~AVTAB_ENABLED;
|
||
|
else
|
||
|
cur->node->key.specified |= AVTAB_ENABLED;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int cond_policydb_init(struct policydb *p)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
p->bool_val_to_struct = NULL;
|
||
|
p->cond_list = NULL;
|
||
|
|
||
|
rc = avtab_init(&p->te_cond_avtab);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void cond_av_list_destroy(struct cond_av_list *list)
|
||
|
{
|
||
|
struct cond_av_list *cur, *next;
|
||
|
for (cur = list; cur; cur = next) {
|
||
|
next = cur->next;
|
||
|
/* the avtab_ptr_t node is destroy by the avtab */
|
||
|
kfree(cur);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void cond_node_destroy(struct cond_node *node)
|
||
|
{
|
||
|
struct cond_expr *cur_expr, *next_expr;
|
||
|
|
||
|
for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
|
||
|
next_expr = cur_expr->next;
|
||
|
kfree(cur_expr);
|
||
|
}
|
||
|
cond_av_list_destroy(node->true_list);
|
||
|
cond_av_list_destroy(node->false_list);
|
||
|
kfree(node);
|
||
|
}
|
||
|
|
||
|
static void cond_list_destroy(struct cond_node *list)
|
||
|
{
|
||
|
struct cond_node *next, *cur;
|
||
|
|
||
|
if (list == NULL)
|
||
|
return;
|
||
|
|
||
|
for (cur = list; cur; cur = next) {
|
||
|
next = cur->next;
|
||
|
cond_node_destroy(cur);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void cond_policydb_destroy(struct policydb *p)
|
||
|
{
|
||
|
kfree(p->bool_val_to_struct);
|
||
|
avtab_destroy(&p->te_cond_avtab);
|
||
|
cond_list_destroy(p->cond_list);
|
||
|
}
|
||
|
|
||
|
int cond_init_bool_indexes(struct policydb *p)
|
||
|
{
|
||
|
kfree(p->bool_val_to_struct);
|
||
|
p->bool_val_to_struct =
|
||
|
kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
|
||
|
if (!p->bool_val_to_struct)
|
||
|
return -ENOMEM;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int cond_destroy_bool(void *key, void *datum, void *p)
|
||
|
{
|
||
|
kfree(key);
|
||
|
kfree(datum);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int cond_index_bool(void *key, void *datum, void *datap)
|
||
|
{
|
||
|
struct policydb *p;
|
||
|
struct cond_bool_datum *booldatum;
|
||
|
struct flex_array *fa;
|
||
|
|
||
|
booldatum = datum;
|
||
|
p = datap;
|
||
|
|
||
|
if (!booldatum->value || booldatum->value > p->p_bools.nprim)
|
||
|
return -EINVAL;
|
||
|
|
||
|
fa = p->sym_val_to_name[SYM_BOOLS];
|
||
|
if (flex_array_put_ptr(fa, booldatum->value - 1, key,
|
||
|
GFP_KERNEL | __GFP_ZERO))
|
||
|
BUG();
|
||
|
p->bool_val_to_struct[booldatum->value - 1] = booldatum;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int bool_isvalid(struct cond_bool_datum *b)
|
||
|
{
|
||
|
if (!(b->state == 0 || b->state == 1))
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
|
||
|
{
|
||
|
char *key = NULL;
|
||
|
struct cond_bool_datum *booldatum;
|
||
|
__le32 buf[3];
|
||
|
u32 len;
|
||
|
int rc;
|
||
|
|
||
|
booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
|
||
|
if (!booldatum)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rc = next_entry(buf, fp, sizeof buf);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
|
||
|
booldatum->value = le32_to_cpu(buf[0]);
|
||
|
booldatum->state = le32_to_cpu(buf[1]);
|
||
|
|
||
|
rc = -EINVAL;
|
||
|
if (!bool_isvalid(booldatum))
|
||
|
goto err;
|
||
|
|
||
|
len = le32_to_cpu(buf[2]);
|
||
|
if (((len == 0) || (len == (u32)-1)))
|
||
|
goto err;
|
||
|
|
||
|
rc = -ENOMEM;
|
||
|
key = kmalloc(len + 1, GFP_KERNEL);
|
||
|
if (!key)
|
||
|
goto err;
|
||
|
rc = next_entry(key, fp, len);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
key[len] = '\0';
|
||
|
rc = hashtab_insert(h, key, booldatum);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
|
||
|
return 0;
|
||
|
err:
|
||
|
cond_destroy_bool(key, booldatum, NULL);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
struct cond_insertf_data {
|
||
|
struct policydb *p;
|
||
|
struct cond_av_list *other;
|
||
|
struct cond_av_list *head;
|
||
|
struct cond_av_list *tail;
|
||
|
};
|
||
|
|
||
|
static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
|
||
|
{
|
||
|
struct cond_insertf_data *data = ptr;
|
||
|
struct policydb *p = data->p;
|
||
|
struct cond_av_list *other = data->other, *list, *cur;
|
||
|
struct avtab_node *node_ptr;
|
||
|
u8 found;
|
||
|
int rc = -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* For type rules we have to make certain there aren't any
|
||
|
* conflicting rules by searching the te_avtab and the
|
||
|
* cond_te_avtab.
|
||
|
*/
|
||
|
if (k->specified & AVTAB_TYPE) {
|
||
|
if (avtab_search(&p->te_avtab, k)) {
|
||
|
printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
|
||
|
goto err;
|
||
|
}
|
||
|
/*
|
||
|
* If we are reading the false list other will be a pointer to
|
||
|
* the true list. We can have duplicate entries if there is only
|
||
|
* 1 other entry and it is in our true list.
|
||
|
*
|
||
|
* If we are reading the true list (other == NULL) there shouldn't
|
||
|
* be any other entries.
|
||
|
*/
|
||
|
if (other) {
|
||
|
node_ptr = avtab_search_node(&p->te_cond_avtab, k);
|
||
|
if (node_ptr) {
|
||
|
if (avtab_search_node_next(node_ptr, k->specified)) {
|
||
|
printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
|
||
|
goto err;
|
||
|
}
|
||
|
found = 0;
|
||
|
for (cur = other; cur; cur = cur->next) {
|
||
|
if (cur->node == node_ptr) {
|
||
|
found = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!found) {
|
||
|
printk(KERN_ERR "SELinux: conflicting type rules.\n");
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (avtab_search(&p->te_cond_avtab, k)) {
|
||
|
printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
|
||
|
if (!node_ptr) {
|
||
|
printk(KERN_ERR "SELinux: could not insert rule.\n");
|
||
|
rc = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
|
||
|
if (!list) {
|
||
|
rc = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
list->node = node_ptr;
|
||
|
if (!data->head)
|
||
|
data->head = list;
|
||
|
else
|
||
|
data->tail->next = list;
|
||
|
data->tail = list;
|
||
|
return 0;
|
||
|
|
||
|
err:
|
||
|
cond_av_list_destroy(data->head);
|
||
|
data->head = NULL;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
|
||
|
{
|
||
|
int i, rc;
|
||
|
__le32 buf[1];
|
||
|
u32 len;
|
||
|
struct cond_insertf_data data;
|
||
|
|
||
|
*ret_list = NULL;
|
||
|
|
||
|
len = 0;
|
||
|
rc = next_entry(buf, fp, sizeof(u32));
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
len = le32_to_cpu(buf[0]);
|
||
|
if (len == 0)
|
||
|
return 0;
|
||
|
|
||
|
data.p = p;
|
||
|
data.other = other;
|
||
|
data.head = NULL;
|
||
|
data.tail = NULL;
|
||
|
for (i = 0; i < len; i++) {
|
||
|
rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
|
||
|
&data);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
*ret_list = data.head;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
|
||
|
{
|
||
|
if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
|
||
|
printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (expr->bool > p->p_bools.nprim) {
|
||
|
printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
|
||
|
{
|
||
|
__le32 buf[2];
|
||
|
u32 len, i;
|
||
|
int rc;
|
||
|
struct cond_expr *expr = NULL, *last = NULL;
|
||
|
|
||
|
rc = next_entry(buf, fp, sizeof(u32) * 2);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
|
||
|
node->cur_state = le32_to_cpu(buf[0]);
|
||
|
|
||
|
/* expr */
|
||
|
len = le32_to_cpu(buf[1]);
|
||
|
|
||
|
for (i = 0; i < len; i++) {
|
||
|
rc = next_entry(buf, fp, sizeof(u32) * 2);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
|
||
|
rc = -ENOMEM;
|
||
|
expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
|
||
|
if (!expr)
|
||
|
goto err;
|
||
|
|
||
|
expr->expr_type = le32_to_cpu(buf[0]);
|
||
|
expr->bool = le32_to_cpu(buf[1]);
|
||
|
|
||
|
if (!expr_isvalid(p, expr)) {
|
||
|
rc = -EINVAL;
|
||
|
kfree(expr);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (i == 0)
|
||
|
node->expr = expr;
|
||
|
else
|
||
|
last->next = expr;
|
||
|
last = expr;
|
||
|
}
|
||
|
|
||
|
rc = cond_read_av_list(p, fp, &node->true_list, NULL);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
return 0;
|
||
|
err:
|
||
|
cond_node_destroy(node);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int cond_read_list(struct policydb *p, void *fp)
|
||
|
{
|
||
|
struct cond_node *node, *last = NULL;
|
||
|
__le32 buf[1];
|
||
|
u32 i, len;
|
||
|
int rc;
|
||
|
|
||
|
rc = next_entry(buf, fp, sizeof buf);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
len = le32_to_cpu(buf[0]);
|
||
|
|
||
|
rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
|
||
|
for (i = 0; i < len; i++) {
|
||
|
rc = -ENOMEM;
|
||
|
node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
|
||
|
if (!node)
|
||
|
goto err;
|
||
|
|
||
|
rc = cond_read_node(p, node, fp);
|
||
|
if (rc)
|
||
|
goto err;
|
||
|
|
||
|
if (i == 0)
|
||
|
p->cond_list = node;
|
||
|
else
|
||
|
last->next = node;
|
||
|
last = node;
|
||
|
}
|
||
|
return 0;
|
||
|
err:
|
||
|
cond_list_destroy(p->cond_list);
|
||
|
p->cond_list = NULL;
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
int cond_write_bool(void *vkey, void *datum, void *ptr)
|
||
|
{
|
||
|
char *key = vkey;
|
||
|
struct cond_bool_datum *booldatum = datum;
|
||
|
struct policy_data *pd = ptr;
|
||
|
void *fp = pd->fp;
|
||
|
__le32 buf[3];
|
||
|
u32 len;
|
||
|
int rc;
|
||
|
|
||
|
len = strlen(key);
|
||
|
buf[0] = cpu_to_le32(booldatum->value);
|
||
|
buf[1] = cpu_to_le32(booldatum->state);
|
||
|
buf[2] = cpu_to_le32(len);
|
||
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
rc = put_entry(key, 1, len, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* cond_write_cond_av_list doesn't write out the av_list nodes.
|
||
|
* Instead it writes out the key/value pairs from the avtab. This
|
||
|
* is necessary because there is no way to uniquely identifying rules
|
||
|
* in the avtab so it is not possible to associate individual rules
|
||
|
* in the avtab with a conditional without saving them as part of
|
||
|
* the conditional. This means that the avtab with the conditional
|
||
|
* rules will not be saved but will be rebuilt on policy load.
|
||
|
*/
|
||
|
static int cond_write_av_list(struct policydb *p,
|
||
|
struct cond_av_list *list, struct policy_file *fp)
|
||
|
{
|
||
|
__le32 buf[1];
|
||
|
struct cond_av_list *cur_list;
|
||
|
u32 len;
|
||
|
int rc;
|
||
|
|
||
|
len = 0;
|
||
|
for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
|
||
|
len++;
|
||
|
|
||
|
buf[0] = cpu_to_le32(len);
|
||
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
if (len == 0)
|
||
|
return 0;
|
||
|
|
||
|
for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
|
||
|
rc = avtab_write_item(p, cur_list->node, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cond_write_node(struct policydb *p, struct cond_node *node,
|
||
|
struct policy_file *fp)
|
||
|
{
|
||
|
struct cond_expr *cur_expr;
|
||
|
__le32 buf[2];
|
||
|
int rc;
|
||
|
u32 len = 0;
|
||
|
|
||
|
buf[0] = cpu_to_le32(node->cur_state);
|
||
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
|
||
|
len++;
|
||
|
|
||
|
buf[0] = cpu_to_le32(len);
|
||
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
|
||
|
buf[0] = cpu_to_le32(cur_expr->expr_type);
|
||
|
buf[1] = cpu_to_le32(cur_expr->bool);
|
||
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
rc = cond_write_av_list(p, node->true_list, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
rc = cond_write_av_list(p, node->false_list, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
|
||
|
{
|
||
|
struct cond_node *cur;
|
||
|
u32 len;
|
||
|
__le32 buf[1];
|
||
|
int rc;
|
||
|
|
||
|
len = 0;
|
||
|
for (cur = list; cur != NULL; cur = cur->next)
|
||
|
len++;
|
||
|
buf[0] = cpu_to_le32(len);
|
||
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
for (cur = list; cur != NULL; cur = cur->next) {
|
||
|
rc = cond_write_node(p, cur, fp);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
|
||
|
struct extended_perms_decision *xpermd)
|
||
|
{
|
||
|
struct avtab_node *node;
|
||
|
|
||
|
if (!ctab || !key || !xpermd)
|
||
|
return;
|
||
|
|
||
|
for (node = avtab_search_node(ctab, key); node;
|
||
|
node = avtab_search_node_next(node, key->specified)) {
|
||
|
if (node->key.specified & AVTAB_ENABLED)
|
||
|
services_compute_xperms_decision(xpermd, node);
|
||
|
}
|
||
|
return;
|
||
|
|
||
|
}
|
||
|
/* Determine whether additional permissions are granted by the conditional
|
||
|
* av table, and if so, add them to the result
|
||
|
*/
|
||
|
void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
|
||
|
struct av_decision *avd, struct extended_perms *xperms)
|
||
|
{
|
||
|
struct avtab_node *node;
|
||
|
|
||
|
if (!ctab || !key || !avd)
|
||
|
return;
|
||
|
|
||
|
for (node = avtab_search_node(ctab, key); node;
|
||
|
node = avtab_search_node_next(node, key->specified)) {
|
||
|
if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
|
||
|
(node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
|
||
|
avd->allowed |= node->datum.u.data;
|
||
|
if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
|
||
|
(node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
|
||
|
/* Since a '0' in an auditdeny mask represents a
|
||
|
* permission we do NOT want to audit (dontaudit), we use
|
||
|
* the '&' operand to ensure that all '0's in the mask
|
||
|
* are retained (much unlike the allow and auditallow cases).
|
||
|
*/
|
||
|
avd->auditdeny &= node->datum.u.data;
|
||
|
if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
|
||
|
(node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
|
||
|
avd->auditallow |= node->datum.u.data;
|
||
|
if (xperms && (node->key.specified & AVTAB_ENABLED) &&
|
||
|
(node->key.specified & AVTAB_XPERMS))
|
||
|
services_compute_xperms_drivers(xperms, node);
|
||
|
}
|
||
|
return;
|
||
|
}
|