tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd/dhd_pcie.c

4812 lines
127 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* DHD Bus Module for PCIE
*
* Copyright (C) 1999-2015, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: dhd_pcie.c 530336 2015-01-29 22:52:35Z $
*/
/* include files */
#include <typedefs.h>
#include <bcmutils.h>
#include <bcmdevs.h>
#include <siutils.h>
#include <hndsoc.h>
#include <hndpmu.h>
#include <sbchipc.h>
#if defined(DHD_DEBUG)
#include <hnd_armtrap.h>
#include <hnd_cons.h>
#endif /* defined(DHD_DEBUG) */
#include <dngl_stats.h>
#include <pcie_core.h>
#include <dhd.h>
#include <dhd_bus.h>
#include <dhd_flowring.h>
#include <dhd_proto.h>
#include <dhd_dbg.h>
#include <dhdioctl.h>
#include <sdiovar.h>
#include <bcmmsgbuf.h>
#include <pcicfg.h>
#include <dhd_pcie.h>
#include <bcmpcie.h>
#include <bcmendian.h>
#ifdef DHDTCPACK_SUPPRESS
#include <dhd_ip.h>
#endif /* DHDTCPACK_SUPPRESS */
#ifdef BCMEMBEDIMAGE
#include BCMEMBEDIMAGE
#endif /* BCMEMBEDIMAGE */
#define MEMBLOCK 2048 /* Block size used for downloading of dongle image */
#define MAX_NVRAMBUF_SIZE 6144 /* max nvram buf size */
#define ARMCR4REG_BANKIDX (0x40/sizeof(uint32))
#define ARMCR4REG_BANKPDA (0x4C/sizeof(uint32))
/* Temporary war to fix precommit till sync issue between trunk & precommit branch is resolved */
#if defined(SUPPORT_MULTIPLE_BOARD_REV)
extern unsigned int system_rev;
#endif /* SUPPORT_MULTIPLE_BOARD_REV */
int dhd_dongle_memsize;
int dhd_dongle_ramsize;
#ifdef DHD_DEBUG
static int dhdpcie_checkdied(dhd_bus_t *bus, char *data, uint size);
static int dhdpcie_bus_readconsole(dhd_bus_t *bus);
static int dhdpcie_mem_dump(dhd_bus_t *bus);
#endif
static int dhdpcie_bus_membytes(dhd_bus_t *bus, bool write, ulong address, uint8 *data, uint size);
static int dhdpcie_bus_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid,
const char *name, void *params,
int plen, void *arg, int len, int val_size);
static int dhdpcie_bus_lpback_req(struct dhd_bus *bus, uint32 intval);
static int dhdpcie_bus_dmaxfer_req(struct dhd_bus *bus,
uint32 len, uint32 srcdelay, uint32 destdelay);
static int dhdpcie_bus_download_state(dhd_bus_t *bus, bool enter);
static int _dhdpcie_download_firmware(struct dhd_bus *bus);
static int dhdpcie_download_firmware(dhd_bus_t *bus, osl_t *osh);
static int dhdpcie_bus_write_vars(dhd_bus_t *bus);
static bool dhdpcie_bus_process_mailbox_intr(dhd_bus_t *bus, uint32 intstatus);
static bool dhdpci_bus_read_frames(dhd_bus_t *bus);
static int dhdpcie_readshared(dhd_bus_t *bus);
static void dhdpcie_init_shared_addr(dhd_bus_t *bus);
static bool dhdpcie_dongle_attach(dhd_bus_t *bus);
static void dhdpcie_bus_intr_enable(dhd_bus_t *bus);
static void dhdpcie_bus_dongle_setmemsize(dhd_bus_t *bus, int mem_size);
static void dhdpcie_bus_release_dongle(dhd_bus_t *bus, osl_t *osh,
bool dongle_isolation, bool reset_flag);
static void dhdpcie_bus_release_malloc(dhd_bus_t *bus, osl_t *osh);
static int dhdpcie_downloadvars(dhd_bus_t *bus, void *arg, int len);
static uint8 dhdpcie_bus_rtcm8(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm8(dhd_bus_t *bus, ulong offset, uint8 data);
static void dhdpcie_bus_wtcm16(dhd_bus_t *bus, ulong offset, uint16 data);
static uint16 dhdpcie_bus_rtcm16(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm32(dhd_bus_t *bus, ulong offset, uint32 data);
static uint32 dhdpcie_bus_rtcm32(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_wtcm64(dhd_bus_t *bus, ulong offset, uint64 data);
static uint64 dhdpcie_bus_rtcm64(dhd_bus_t *bus, ulong offset);
static void dhdpcie_bus_cfg_set_bar0_win(dhd_bus_t *bus, uint32 data);
#ifdef CONFIG_ARCH_MSM8994
static void dhdpcie_bus_cfg_set_bar1_win(dhd_bus_t *bus, uint32 data);
static ulong dhd_bus_cmn_check_offset(dhd_bus_t *bus, ulong offset);
#endif
static void dhdpcie_bus_reg_unmap(osl_t *osh, ulong addr, int size);
static int dhdpcie_cc_nvmshadow(dhd_bus_t *bus, struct bcmstrbuf *b);
static void dhdpcie_send_mb_data(dhd_bus_t *bus, uint32 h2d_mb_data);
static void dhd_fillup_ring_sharedptr_info(dhd_bus_t *bus, ring_info_t *ring_info);
extern void dhd_dpc_kill(dhd_pub_t *dhdp);
#ifdef BCMEMBEDIMAGE
static int dhdpcie_download_code_array(dhd_bus_t *bus);
#endif /* BCMEMBEDIMAGE */
#define PCI_VENDOR_ID_BROADCOM 0x14e4
/* IOVar table */
enum {
IOV_INTR = 1,
IOV_MEMBYTES,
IOV_MEMSIZE,
IOV_SET_DOWNLOAD_STATE,
IOV_DEVRESET,
IOV_VARS,
IOV_MSI_SIM,
IOV_PCIE_LPBK,
IOV_CC_NVMSHADOW,
IOV_RAMSIZE,
IOV_RAMSTART,
IOV_SLEEP_ALLOWED,
IOV_PCIE_DMAXFER,
IOV_PCIE_SUSPEND,
IOV_PCIEREG,
IOV_PCIECFGREG,
IOV_PCIECOREREG,
IOV_PCIESERDESREG,
IOV_BAR0_SECWIN_REG,
IOV_SBREG,
IOV_DONGLEISOLATION,
IOV_LTRSLEEPON_UNLOOAD,
IOV_RX_METADATALEN,
IOV_TX_METADATALEN,
IOV_TXP_THRESHOLD,
IOV_BUZZZ_DUMP,
IOV_DUMP_RINGUPD_BLOCK,
IOV_DMA_RINGINDICES,
IOV_DB1_FOR_MB,
IOV_FLOW_PRIO_MAP,
IOV_RXBOUND,
IOV_TXBOUND
};
const bcm_iovar_t dhdpcie_iovars[] = {
{"intr", IOV_INTR, 0, IOVT_BOOL, 0 },
{"membytes", IOV_MEMBYTES, 0, IOVT_BUFFER, 2 * sizeof(int) },
{"memsize", IOV_MEMSIZE, 0, IOVT_UINT32, 0 },
{"dwnldstate", IOV_SET_DOWNLOAD_STATE, 0, IOVT_BOOL, 0 },
{"vars", IOV_VARS, 0, IOVT_BUFFER, 0 },
{"devreset", IOV_DEVRESET, 0, IOVT_BOOL, 0 },
{"pcie_lpbk", IOV_PCIE_LPBK, 0, IOVT_UINT32, 0 },
{"cc_nvmshadow", IOV_CC_NVMSHADOW, 0, IOVT_BUFFER, 0 },
{"ramsize", IOV_RAMSIZE, 0, IOVT_UINT32, 0 },
{"ramstart", IOV_RAMSTART, 0, IOVT_UINT32, 0 },
{"pciereg", IOV_PCIEREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pciecfgreg", IOV_PCIECFGREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pciecorereg", IOV_PCIECOREREG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"pcieserdesreg", IOV_PCIESERDESREG, 0, IOVT_BUFFER, 3 * sizeof(int32) },
{"bar0secwinreg", IOV_BAR0_SECWIN_REG, 0, IOVT_BUFFER, 2 * sizeof(int32) },
{"sbreg", IOV_SBREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"pcie_dmaxfer", IOV_PCIE_DMAXFER, 0, IOVT_BUFFER, 3 * sizeof(int32) },
{"pcie_suspend", IOV_PCIE_SUSPEND, 0, IOVT_UINT32, 0 },
{"sleep_allowed", IOV_SLEEP_ALLOWED, 0, IOVT_BOOL, 0 },
{"dngl_isolation", IOV_DONGLEISOLATION, 0, IOVT_UINT32, 0 },
{"ltrsleep_on_unload", IOV_LTRSLEEPON_UNLOOAD, 0, IOVT_UINT32, 0 },
{"dump_ringupdblk", IOV_DUMP_RINGUPD_BLOCK, 0, IOVT_BUFFER, 0 },
{"dma_ring_indices", IOV_DMA_RINGINDICES, 0, IOVT_UINT32, 0},
{"rx_metadata_len", IOV_RX_METADATALEN, 0, IOVT_UINT32, 0 },
{"tx_metadata_len", IOV_TX_METADATALEN, 0, IOVT_UINT32, 0 },
{"db1_for_mb", IOV_DB1_FOR_MB, 0, IOVT_UINT32, 0 },
{"txp_thresh", IOV_TXP_THRESHOLD, 0, IOVT_UINT32, 0 },
{"buzzz_dump", IOV_BUZZZ_DUMP, 0, IOVT_UINT32, 0 },
{"flow_prio_map", IOV_FLOW_PRIO_MAP, 0, IOVT_UINT32, 0 },
{"rxbound", IOV_RXBOUND, 0, IOVT_UINT32, 0 },
{"txbound", IOV_TXBOUND, 0, IOVT_UINT32, 0 },
{NULL, 0, 0, 0, 0 }
};
#define MAX_READ_TIMEOUT 5 * 1000 * 1000
#ifndef DHD_RXBOUND
#define DHD_RXBOUND 64
#endif
#ifndef DHD_TXBOUND
#define DHD_TXBOUND 64
#endif
uint dhd_rxbound = DHD_RXBOUND;
uint dhd_txbound = DHD_TXBOUND;
/* Register/Unregister functions are called by the main DHD entry
* point (e.g. module insertion) to link with the bus driver, in
* order to look for or await the device.
*/
int
dhd_bus_register(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
return dhdpcie_bus_register();
}
void
dhd_bus_unregister(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
dhdpcie_bus_unregister();
return;
}
/** returns a host virtual address */
uint32 *
dhdpcie_bus_reg_map(osl_t *osh, ulong addr, int size)
{
return (uint32 *)REG_MAP(addr, size);
}
void
dhdpcie_bus_reg_unmap(osl_t *osh, ulong addr, int size)
{
REG_UNMAP((void*)(uintptr)addr);
return;
}
/**
* 'regs' is the host virtual address that maps to the start of the PCIe BAR0 window. The first 4096
* bytes in this window are mapped to the backplane address in the PCIEBAR0Window register. The
* precondition is that the PCIEBAR0Window register 'points' at the PCIe core.
*
* 'tcm' is the *host* virtual address at which tcm is mapped.
*/
dhd_bus_t* dhdpcie_bus_attach(osl_t *osh, volatile char* regs, volatile char* tcm, uint32 tcm_size)
{
dhd_bus_t *bus;
DHD_TRACE(("%s: ENTER\n", __FUNCTION__));
do {
if (!(bus = MALLOC(osh, sizeof(dhd_bus_t)))) {
DHD_ERROR(("%s: MALLOC of dhd_bus_t failed\n", __FUNCTION__));
break;
}
bzero(bus, sizeof(dhd_bus_t));
bus->regs = regs;
bus->tcm = tcm;
bus->tcm_size = tcm_size;
bus->osh = osh;
dll_init(&bus->const_flowring);
/* Attach pcie shared structure */
bus->pcie_sh = MALLOC(osh, sizeof(pciedev_shared_t));
if (!bus->pcie_sh) {
DHD_ERROR(("%s: MALLOC of bus->pcie_sh failed\n", __FUNCTION__));
break;
}
/* dhd_common_init(osh); */
if (dhdpcie_dongle_attach(bus)) {
DHD_ERROR(("%s: dhdpcie_probe_attach failed\n", __FUNCTION__));
break;
}
/* software resources */
if (!(bus->dhd = dhd_attach(osh, bus, PCMSGBUF_HDRLEN))) {
DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__));
break;
}
bus->dhd->busstate = DHD_BUS_DOWN;
bus->db1_for_mb = TRUE;
bus->dhd->hang_report = TRUE;
DHD_TRACE(("%s: EXIT SUCCESS\n",
__FUNCTION__));
return bus;
} while (0);
DHD_TRACE(("%s: EXIT FAILURE\n", __FUNCTION__));
if (bus && bus->pcie_sh)
MFREE(osh, bus->pcie_sh, sizeof(pciedev_shared_t));
if (bus)
MFREE(osh, bus, sizeof(dhd_bus_t));
return NULL;
}
uint
dhd_bus_chip(struct dhd_bus *bus)
{
ASSERT(bus->sih != NULL);
return bus->sih->chip;
}
uint
dhd_bus_chiprev(struct dhd_bus *bus)
{
ASSERT(bus);
ASSERT(bus->sih != NULL);
return bus->sih->chiprev;
}
void *
dhd_bus_pub(struct dhd_bus *bus)
{
return bus->dhd;
}
void *
dhd_bus_sih(struct dhd_bus *bus)
{
return (void *)bus->sih;
}
void *
dhd_bus_txq(struct dhd_bus *bus)
{
return &bus->txq;
}
/* Get Chip ID version */
uint dhd_bus_chip_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chip;
}
/* Get Chip Rev ID version */
uint dhd_bus_chiprev_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chiprev;
}
/* Get Chip Pkg ID version */
uint dhd_bus_chippkg_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chippkg;
}
/*
Name: dhdpcie_bus_isr
Parametrs:
1: IN int irq -- interrupt vector
2: IN void *arg -- handle to private data structure
Return value:
Status (TRUE or FALSE)
Description:
Interrupt Service routine checks for the status register,
disable interrupt and queue DPC if mail box interrupts are raised.
*/
int32
dhdpcie_bus_isr(dhd_bus_t *bus)
{
do {
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* verify argument */
if (!bus) {
DHD_ERROR(("%s : bus is null pointer , exit \n", __FUNCTION__));
break;
}
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_TRACE(("%s : bus is down. we have nothing to do\n",
__FUNCTION__));
break;
}
/* Overall operation:
* - Mask further interrupts
* - Read/ack intstatus
* - Take action based on bits and state
* - Reenable interrupts (as per state)
*/
/* Count the interrupt call */
bus->intrcount++;
/* read interrupt status register!! Status bits will be cleared in DPC !! */
bus->ipend = TRUE;
dhdpcie_bus_intr_disable(bus); /* Disable interrupt!! */
bus->intdis = TRUE;
#if defined(PCIE_ISR_THREAD)
DHD_TRACE(("Calling dhd_bus_dpc() from %s\n", __FUNCTION__));
DHD_OS_WAKE_LOCK(bus->dhd);
while (dhd_bus_dpc(bus));
DHD_OS_WAKE_UNLOCK(bus->dhd);
#else
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd); /* queue DPC now!! */
#endif /* defined(SDIO_ISR_THREAD) */
DHD_TRACE(("%s: Exit Success DPC Queued\n", __FUNCTION__));
return TRUE;
} while (0);
DHD_TRACE(("%s: Exit Failure\n", __FUNCTION__));
return FALSE;
}
static bool
dhdpcie_dongle_attach(dhd_bus_t *bus)
{
osl_t *osh = bus->osh;
void *regsva = (void*)bus->regs;
uint16 devid = bus->cl_devid;
uint32 val;
sbpcieregs_t *sbpcieregs;
DHD_TRACE(("%s: ENTER\n",
__FUNCTION__));
bus->alp_only = TRUE;
bus->sih = NULL;
/* Set bar0 window to si_enum_base */
dhdpcie_bus_cfg_set_bar0_win(bus, SI_ENUM_BASE);
#ifdef CONFIG_ARCH_MSM8994
/* Read bar1 window */
bus->bar1_win_base = OSL_PCI_READ_CONFIG(bus->osh, PCI_BAR1_WIN, 4);
DHD_ERROR(("%s: PCI_BAR1_WIN = %x\n", __FUNCTION__, bus->bar1_win_base));
#endif
/* si_attach() will provide an SI handle and scan the backplane */
if (!(bus->sih = si_attach((uint)devid, osh, regsva, PCI_BUS, bus,
&bus->vars, &bus->varsz))) {
DHD_ERROR(("%s: si_attach failed!\n", __FUNCTION__));
goto fail;
}
si_setcore(bus->sih, PCIE2_CORE_ID, 0);
sbpcieregs = (sbpcieregs_t*)(bus->regs);
/* WAR where the BAR1 window may not be sized properly */
W_REG(osh, &sbpcieregs->configaddr, 0x4e0);
val = R_REG(osh, &sbpcieregs->configdata);
#ifdef CONFIG_ARCH_MSM8994
bus->bar1_win_mask = 0xffffffff - (bus->tcm_size - 1);
DHD_ERROR(("%s: BAR1 window val=%d mask=%x\n", __FUNCTION__, val, bus->bar1_win_mask));
#endif
W_REG(osh, &sbpcieregs->configdata, val);
/* Get info on the ARM and SOCRAM cores... */
/* Should really be qualified by device id */
if ((si_setcore(bus->sih, ARM7S_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCM3_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) {
bus->armrev = si_corerev(bus->sih);
} else {
DHD_ERROR(("%s: failed to find ARM core!\n", __FUNCTION__));
goto fail;
}
if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(bus->orig_ramsize = si_socram_size(bus->sih))) {
DHD_ERROR(("%s: failed to find SOCRAM memory!\n", __FUNCTION__));
goto fail;
}
} else {
/* cr4 has a different way to find the RAM size from TCM's */
if (!(bus->orig_ramsize = si_tcm_size(bus->sih))) {
DHD_ERROR(("%s: failed to find CR4-TCM memory!\n", __FUNCTION__));
goto fail;
}
/* also populate base address */
switch ((uint16)bus->sih->chip) {
case BCM4339_CHIP_ID:
case BCM4335_CHIP_ID:
bus->dongle_ram_base = CR4_4335_RAM_BASE;
break;
case BCM4358_CHIP_ID:
case BCM4356_CHIP_ID:
case BCM4354_CHIP_ID:
case BCM43567_CHIP_ID:
case BCM43569_CHIP_ID:
case BCM4350_CHIP_ID:
case BCM43570_CHIP_ID:
bus->dongle_ram_base = CR4_4350_RAM_BASE;
break;
case BCM4360_CHIP_ID:
bus->dongle_ram_base = CR4_4360_RAM_BASE;
break;
case BCM4345_CHIP_ID:
bus->dongle_ram_base = CR4_4345_RAM_BASE;
break;
case BCM43602_CHIP_ID:
bus->dongle_ram_base = CR4_43602_RAM_BASE;
break;
case BCM4349_CHIP_GRPID:
bus->dongle_ram_base = CR4_4349_RAM_BASE;
break;
default:
bus->dongle_ram_base = 0;
DHD_ERROR(("%s: WARNING: Using default ram base at 0x%x\n",
__FUNCTION__, bus->dongle_ram_base));
}
}
bus->ramsize = bus->orig_ramsize;
if (dhd_dongle_memsize)
dhdpcie_bus_dongle_setmemsize(bus, dhd_dongle_memsize);
DHD_ERROR(("DHD: dongle ram size is set to %d(orig %d) at 0x%x\n",
bus->ramsize, bus->orig_ramsize, bus->dongle_ram_base));
bus->srmemsize = si_socram_srmem_size(bus->sih);
bus->def_intmask = PCIE_MB_D2H_MB_MASK | PCIE_MB_TOPCIE_FN0_0 | PCIE_MB_TOPCIE_FN0_1;
/* Set the poll and/or interrupt flags */
bus->intr = (bool)dhd_intr;
bus->wait_for_d3_ack = 1;
bus->suspended = FALSE;
bus->force_suspend = 0;
DHD_TRACE(("%s: EXIT: SUCCESS\n",
__FUNCTION__));
return 0;
fail:
if (bus->sih != NULL)
si_detach(bus->sih);
DHD_TRACE(("%s: EXIT: FAILURE\n",
__FUNCTION__));
return -1;
}
int
dhpcie_bus_unmask_interrupt(dhd_bus_t *bus)
{
dhdpcie_bus_cfg_write_dword(bus, PCIIntmask, 4, I_MB);
return 0;
}
int
dhpcie_bus_mask_interrupt(dhd_bus_t *bus)
{
dhdpcie_bus_cfg_write_dword(bus, PCIIntmask, 4, 0x0);
return 0;
}
void
dhdpcie_bus_intr_enable(dhd_bus_t *bus)
{
DHD_TRACE(("enable interrupts\n"));
if (!bus || !bus->sih)
return;
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
dhpcie_bus_unmask_interrupt(bus);
}
else if (bus->sih) {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask,
bus->def_intmask, bus->def_intmask);
}
}
void
dhdpcie_bus_intr_disable(dhd_bus_t *bus)
{
DHD_TRACE(("%s Enter\n", __FUNCTION__));
if (!bus || !bus->sih)
return;
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
dhpcie_bus_mask_interrupt(bus);
}
else if (bus->sih) {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxMask,
bus->def_intmask, 0);
}
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
void
dhdpcie_bus_remove_prep(dhd_bus_t *bus)
{
DHD_TRACE(("%s Enter\n", __FUNCTION__));
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_TRACE(("%s Exit, bus is already down\n", __FUNCTION__));
return;
}
dhd_os_sdlock(bus->dhd);
bus->dhd->busstate = DHD_BUS_DOWN;
dhdpcie_bus_intr_disable(bus);
pcie_watchdog_reset(bus->osh, bus->sih, (sbpcieregs_t *)(bus->regs));
dhd_os_sdunlock(bus->dhd);
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
/* Detach and free everything */
void
dhdpcie_bus_release(dhd_bus_t *bus)
{
bool dongle_isolation = FALSE;
osl_t *osh = NULL;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
osh = bus->osh;
ASSERT(osh);
if (bus->dhd) {
dongle_isolation = bus->dhd->dongle_isolation;
if (bus->intr && (bus->dhd->busstate != DHD_BUS_DOWN)) {
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
dhd_detach(bus->dhd);
dhdpcie_bus_release_dongle(bus, osh, dongle_isolation, TRUE);
dhd_free(bus->dhd);
bus->dhd = NULL;
}
/* unmap the regs and tcm here!! */
if (bus->regs) {
dhdpcie_bus_reg_unmap(osh, (ulong)bus->regs, DONGLE_REG_MAP_SIZE);
bus->regs = NULL;
}
if (bus->tcm) {
dhdpcie_bus_reg_unmap(osh, (ulong)bus->tcm, bus->tcm_size);
bus->tcm = NULL;
}
dhdpcie_bus_release_malloc(bus, osh);
/* Detach pcie shared structure */
if (bus->pcie_sh)
MFREE(osh, bus->pcie_sh, sizeof(pciedev_shared_t));
#ifdef DHD_DEBUG
if (bus->console.buf != NULL)
MFREE(osh, bus->console.buf, bus->console.bufsize);
#endif
/* Finally free bus info */
MFREE(osh, bus, sizeof(dhd_bus_t));
}
DHD_TRACE(("%s: Exit\n", __FUNCTION__));
}
void
dhdpcie_bus_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag)
{
DHD_TRACE(("%s: Enter bus->dhd %p bus->dhd->dongle_reset %d \n", __FUNCTION__,
bus->dhd, bus->dhd->dongle_reset));
if ((bus->dhd && bus->dhd->dongle_reset) && reset_flag) {
DHD_TRACE(("%s Exit\n", __FUNCTION__));
return;
}
if (bus->sih) {
if (!dongle_isolation)
pcie_watchdog_reset(bus->osh, bus->sih, (sbpcieregs_t *)(bus->regs));
if (bus->ltrsleep_on_unload) {
si_corereg(bus->sih, bus->sih->buscoreidx,
OFFSETOF(sbpcieregs_t, u.pcie2.ltr_state), ~0, 0);
}
si_detach(bus->sih);
if (bus->vars && bus->varsz)
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s Exit\n", __FUNCTION__));
}
uint32
dhdpcie_bus_cfg_read_dword(dhd_bus_t *bus, uint32 addr, uint32 size)
{
uint32 data = OSL_PCI_READ_CONFIG(bus->osh, addr, size);
return data;
}
/* 32 bit config write */
void
dhdpcie_bus_cfg_write_dword(dhd_bus_t *bus, uint32 addr, uint32 size, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, addr, size, data);
}
void
dhdpcie_bus_cfg_set_bar0_win(dhd_bus_t *bus, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, PCI_BAR0_WIN, 4, data);
}
#ifdef CONFIG_ARCH_MSM8994
void
dhdpcie_bus_cfg_set_bar1_win(dhd_bus_t *bus, uint32 data)
{
OSL_PCI_WRITE_CONFIG(bus->osh, PCI_BAR1_WIN, 4, data);
}
#endif
void
dhdpcie_bus_dongle_setmemsize(struct dhd_bus *bus, int mem_size)
{
int32 min_size = DONGLE_MIN_MEMSIZE;
/* Restrict the memsize to user specified limit */
DHD_ERROR(("user: Restrict the dongle ram size to %d, min accepted %d\n",
dhd_dongle_memsize, min_size));
if ((dhd_dongle_memsize > min_size) &&
(dhd_dongle_memsize < (int32)bus->orig_ramsize))
bus->ramsize = dhd_dongle_memsize;
}
void
dhdpcie_bus_release_malloc(dhd_bus_t *bus, osl_t *osh)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd && bus->dhd->dongle_reset)
return;
if (bus->vars && bus->varsz) {
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s: Exit\n", __FUNCTION__));
return;
}
/* Stop bus module: clear pending frames, disable data flow */
void dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex)
{
uint32 status;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!bus->dhd)
return;
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: already down by net_dev_reset\n", __FUNCTION__));
goto done;
}
bus->dhd->busstate = DHD_BUS_DOWN;
dhdpcie_bus_intr_disable(bus);
status = dhdpcie_bus_cfg_read_dword(bus, PCIIntstatus, 4);
dhdpcie_bus_cfg_write_dword(bus, PCIIntstatus, 4, status);
if (!dhd_download_fw_on_driverload)
dhd_dpc_kill(bus->dhd);
/* Clear rx control and wake any waiters */
bus->rxlen = 0;
dhd_os_ioctl_resp_wake(bus->dhd);
done:
return;
}
/* Watchdog timer function */
bool dhd_bus_watchdog(dhd_pub_t *dhd)
{
#ifdef DHD_DEBUG
dhd_bus_t *bus;
bus = dhd->bus;
/* Poll for console output periodically */
if (dhd->busstate == DHD_BUS_DATA && dhd_console_ms != 0) {
bus->console.count += dhd_watchdog_ms;
if (bus->console.count >= dhd_console_ms) {
bus->console.count -= dhd_console_ms;
/* Make sure backplane clock is on */
if (dhdpcie_bus_readconsole(bus) < 0)
dhd_console_ms = 0; /* On error, stop trying */
}
}
#endif /* DHD_DEBUG */
return FALSE;
}
/* Download firmware image and nvram image */
int
dhd_bus_download_firmware(struct dhd_bus *bus, osl_t *osh,
char *pfw_path, char *pnv_path)
{
int ret;
bus->fw_path = pfw_path;
bus->nv_path = pnv_path;
ret = dhdpcie_download_firmware(bus, osh);
return ret;
}
static int
dhdpcie_download_firmware(struct dhd_bus *bus, osl_t *osh)
{
int ret = 0;
#if defined(BCM_REQUEST_FW)
uint chipid = bus->sih->chip;
uint revid = bus->sih->chiprev;
char fw_path[64] = "/lib/firmware/brcm/bcm"; /* path to firmware image */
char nv_path[64]; /* path to nvram vars file */
bus->fw_path = fw_path;
bus->nv_path = nv_path;
switch (chipid) {
case BCM43570_CHIP_ID:
bcmstrncat(fw_path, "43570", 5);
switch (revid) {
case 0:
bcmstrncat(fw_path, "a0", 2);
break;
case 2:
bcmstrncat(fw_path, "a2", 2);
break;
default:
DHD_ERROR(("%s: revid is not found %x\n", __FUNCTION__,
revid));
break;
}
break;
default:
DHD_ERROR(("%s: unsupported device %x\n", __FUNCTION__,
chipid));
return 0;
}
/* load board specific nvram file */
snprintf(bus->nv_path, sizeof(nv_path), "%s.nvm", fw_path);
/* load firmware */
snprintf(bus->fw_path, sizeof(fw_path), "%s-firmware.bin", fw_path);
#endif /* BCM_REQUEST_FW */
DHD_TRACE_HW4(("%s: firmware path=%s, nvram path=%s\n",
__FUNCTION__, bus->fw_path, bus->nv_path));
DHD_OS_WAKE_LOCK(bus->dhd);
ret = _dhdpcie_download_firmware(bus);
DHD_OS_WAKE_UNLOCK(bus->dhd);
return ret;
}
static int
dhdpcie_download_code_file(struct dhd_bus *bus, char *pfw_path)
{
int bcmerror = -1;
int offset = 0;
int len;
void *image = NULL;
uint8 *memblock = NULL, *memptr;
DHD_ERROR(("%s: download firmware %s\n", __FUNCTION__, pfw_path));
/* Should succeed in opening image if it is actually given through registry
* entry or in module param.
*/
image = dhd_os_open_image(pfw_path);
if (image == NULL)
goto err;
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
/* Download image */
while ((len = dhd_os_get_image_block((char*)memptr, MEMBLOCK, image))) {
if (len < 0) {
DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len));
bcmerror = BCME_ERROR;
goto err;
}
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, memptr, len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
if (image)
dhd_os_close_image(image);
return bcmerror;
}
static int
dhdpcie_download_nvram(struct dhd_bus *bus)
{
int bcmerror = -1;
uint len;
void * image = NULL;
char * memblock = NULL;
char *bufp;
char *pnv_path;
bool nvram_file_exists;
pnv_path = bus->nv_path;
nvram_file_exists = ((pnv_path != NULL) && (pnv_path[0] != '\0'));
if (!nvram_file_exists && (bus->nvram_params == NULL))
return (0);
if (nvram_file_exists) {
image = dhd_os_open_image(pnv_path);
if (image == NULL)
goto err;
}
memblock = MALLOC(bus->dhd->osh, MAX_NVRAMBUF_SIZE);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n",
__FUNCTION__, MAX_NVRAMBUF_SIZE));
goto err;
}
/* Download variables */
if (nvram_file_exists) {
len = dhd_os_get_image_block(memblock, MAX_NVRAMBUF_SIZE, image);
}
else {
/* nvram is string with null terminated. cannot use strlen */
len = bus->nvram_params_len;
ASSERT(len <= MAX_NVRAMBUF_SIZE);
memcpy(memblock, bus->nvram_params, len);
}
if (len > 0 && len < MAX_NVRAMBUF_SIZE) {
bufp = (char *)memblock;
bufp[len] = 0;
if (nvram_file_exists)
len = process_nvram_vars(bufp, len);
if (len % 4) {
len += 4 - (len % 4);
}
bufp += len;
*bufp++ = 0;
if (len)
bcmerror = dhdpcie_downloadvars(bus, memblock, len + 1);
if (bcmerror) {
DHD_ERROR(("%s: error downloading vars: %d\n",
__FUNCTION__, bcmerror));
}
}
else {
DHD_ERROR(("%s: error reading nvram file: %d\n",
__FUNCTION__, len));
bcmerror = BCME_ERROR;
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MAX_NVRAMBUF_SIZE);
if (image)
dhd_os_close_image(image);
return bcmerror;
}
#ifdef BCMEMBEDIMAGE
int
dhdpcie_download_code_array(struct dhd_bus *bus)
{
int bcmerror = -1;
int offset = 0;
unsigned char *p_dlarray = NULL;
unsigned int dlarray_size = 0;
unsigned int downloded_len, remaining_len, len;
char *p_dlimagename, *p_dlimagever, *p_dlimagedate;
uint8 *memblock = NULL, *memptr;
downloded_len = 0;
remaining_len = 0;
len = 0;
p_dlarray = dlarray;
dlarray_size = sizeof(dlarray);
p_dlimagename = dlimagename;
p_dlimagever = dlimagever;
p_dlimagedate = dlimagedate;
if ((p_dlarray == 0) || (dlarray_size == 0) ||(dlarray_size > bus->ramsize) ||
(p_dlimagename == 0) || (p_dlimagever == 0) || (p_dlimagedate == 0))
goto err;
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
while (downloded_len < dlarray_size) {
remaining_len = dlarray_size - downloded_len;
if (remaining_len >= MEMBLOCK)
len = MEMBLOCK;
else
len = remaining_len;
memcpy(memptr, (p_dlarray + downloded_len), len);
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdpcie_bus_membytes(bus, TRUE, offset, (uint8 *)memptr, len);
downloded_len += len;
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
#ifdef DHD_DEBUG
/* Upload and compare the downloaded code */
{
unsigned char *ularray = NULL;
unsigned int uploded_len;
uploded_len = 0;
bcmerror = -1;
ularray = MALLOC(bus->dhd->osh, dlarray_size);
if (ularray == NULL)
goto upload_err;
/* Upload image to verify downloaded contents. */
offset = bus->dongle_ram_base;
memset(ularray, 0xaa, dlarray_size);
while (uploded_len < dlarray_size) {
remaining_len = dlarray_size - uploded_len;
if (remaining_len >= MEMBLOCK)
len = MEMBLOCK;
else
len = remaining_len;
bcmerror = dhdpcie_bus_membytes(bus, FALSE, offset,
(uint8 *)(ularray + uploded_len), len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto upload_err;
}
uploded_len += len;
offset += MEMBLOCK;
}
if (memcmp(p_dlarray, ularray, dlarray_size)) {
DHD_ERROR(("%s: Downloaded image is corrupted (%s, %s, %s).\n",
__FUNCTION__, p_dlimagename, p_dlimagever, p_dlimagedate));
goto upload_err;
} else
DHD_ERROR(("%s: Download, Upload and compare succeeded (%s, %s, %s).\n",
__FUNCTION__, p_dlimagename, p_dlimagever, p_dlimagedate));
upload_err:
if (ularray)
MFREE(bus->dhd->osh, ularray, dlarray_size);
}
#endif /* DHD_DEBUG */
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
return bcmerror;
}
#endif /* BCMEMBEDIMAGE */
static int
_dhdpcie_download_firmware(struct dhd_bus *bus)
{
int bcmerror = -1;
bool embed = FALSE; /* download embedded firmware */
bool dlok = FALSE; /* download firmware succeeded */
/* Out immediately if no image to download */
if ((bus->fw_path == NULL) || (bus->fw_path[0] == '\0')) {
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
DHD_ERROR(("%s: no fimrware file\n", __FUNCTION__));
return 0;
#endif
}
/* Keep arm in reset */
if (dhdpcie_bus_download_state(bus, TRUE)) {
DHD_ERROR(("%s: error placing ARM core in reset\n", __FUNCTION__));
goto err;
}
/* External image takes precedence if specified */
if ((bus->fw_path != NULL) && (bus->fw_path[0] != '\0')) {
if (dhdpcie_download_code_file(bus, bus->fw_path)) {
DHD_ERROR(("%s: dongle image file download failed\n", __FUNCTION__));
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
goto err;
#endif
}
else {
embed = FALSE;
dlok = TRUE;
}
}
#ifdef BCMEMBEDIMAGE
if (embed) {
if (dhdpcie_download_code_array(bus)) {
DHD_ERROR(("%s: dongle image array download failed\n", __FUNCTION__));
goto err;
}
else {
dlok = TRUE;
}
}
#else
BCM_REFERENCE(embed);
#endif
if (!dlok) {
DHD_ERROR(("%s: dongle image download failed\n", __FUNCTION__));
goto err;
}
/* EXAMPLE: nvram_array */
/* If a valid nvram_arry is specified as above, it can be passed down to dongle */
/* dhd_bus_set_nvram_params(bus, (char *)&nvram_array); */
/* External nvram takes precedence if specified */
if (dhdpcie_download_nvram(bus)) {
DHD_ERROR(("%s: dongle nvram file download failed\n", __FUNCTION__));
goto err;
}
/* Take arm out of reset */
if (dhdpcie_bus_download_state(bus, FALSE)) {
DHD_ERROR(("%s: error getting out of ARM core reset\n", __FUNCTION__));
goto err;
}
bcmerror = 0;
err:
return bcmerror;
}
int dhd_bus_rxctl(struct dhd_bus *bus, uchar *msg, uint msglen)
{
int timeleft;
uint rxlen = 0;
bool pending;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd->dongle_reset)
return -EIO;
/* Wait until control frame is available */
timeleft = dhd_os_ioctl_resp_wait(bus->dhd, &bus->rxlen, &pending);
rxlen = bus->rxlen;
bcopy(&bus->ioct_resp, msg, MIN(rxlen, sizeof(ioctl_comp_resp_msg_t)));
bus->rxlen = 0;
if (rxlen) {
DHD_CTL(("%s: resumed on rxctl frame, got %d\n", __FUNCTION__, rxlen));
} else if (timeleft == 0) {
DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__));
bus->ioct_resp.cmn_hdr.request_id = 0;
bus->ioct_resp.compl_hdr.status = 0xffff;
bus->dhd->rxcnt_timeout++;
DHD_ERROR(("%s: rxcnt_timeout=%d\n", __FUNCTION__, bus->dhd->rxcnt_timeout));
} else if (pending == TRUE) {
DHD_CTL(("%s: canceled\n", __FUNCTION__));
return -ERESTARTSYS;
} else {
DHD_CTL(("%s: resumed for unknown reason?\n", __FUNCTION__));
}
if (timeleft != 0)
bus->dhd->rxcnt_timeout = 0;
if (rxlen)
bus->dhd->rx_ctlpkts++;
else
bus->dhd->rx_ctlerrs++;
if (bus->dhd->rxcnt_timeout >= MAX_CNTL_TX_TIMEOUT)
return -ETIMEDOUT;
if (bus->dhd->dongle_trap_occured)
return -EREMOTEIO;
return rxlen ? (int)rxlen : -EIO;
}
#define CONSOLE_LINE_MAX 192
#ifdef DHD_DEBUG
static int
dhdpcie_bus_readconsole(dhd_bus_t *bus)
{
dhd_console_t *c = &bus->console;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return -1;
/* Read console log struct */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, (uint8 *)&c->log, sizeof(c->log))) < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = ltoh32(c->log.buf_size);
if ((c->buf = MALLOC(bus->dhd->osh, c->bufsize)) == NULL)
return BCME_NOMEM;
}
idx = ltoh32(c->log.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return BCME_ERROR;
/* Skip reading the console buffer if the index pointer has not moved */
if (idx == c->last)
return BCME_OK;
/* Read the console buffer */
addr = ltoh32(c->log.buf);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, c->buf, c->bufsize)) < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line. Instead, back up
* the buffer pointer and output this line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
printf("CONSOLE: %s\n", line);
}
}
break2:
return BCME_OK;
}
static int
dhdpcie_checkdied(dhd_bus_t *bus, char *data, uint size)
{
int bcmerror = 0;
uint msize = 512;
char *mbuffer = NULL;
char *console_buffer = NULL;
uint maxstrlen = 256;
char *str = NULL;
trap_t tr;
pciedev_shared_t *pciedev_shared = bus->pcie_sh;
struct bcmstrbuf strbuf;
uint32 console_ptr, console_size, console_index;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, i, addr;
int rv;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (DHD_NOCHECKDIED_ON())
return 0;
if (data == NULL) {
/*
* Called after a rx ctrl timeout. "data" is NULL.
* allocate memory to trace the trap or assert.
*/
size = msize;
mbuffer = data = MALLOC(bus->dhd->osh, msize);
if (mbuffer == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, msize));
bcmerror = BCME_NOMEM;
goto done;
}
}
if ((str = MALLOC(bus->dhd->osh, maxstrlen)) == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, maxstrlen));
bcmerror = BCME_NOMEM;
goto done;
}
if ((bcmerror = dhdpcie_readshared(bus)) < 0)
goto done;
bcm_binit(&strbuf, data, size);
bcm_bprintf(&strbuf, "msgtrace address : 0x%08X\nconsole address : 0x%08X\n",
pciedev_shared->msgtrace_addr, pciedev_shared->console_addr);
if ((pciedev_shared->flags & PCIE_SHARED_ASSERT_BUILT) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "Assrt not built in dongle\n");
}
if ((bus->pcie_sh->flags & (PCIE_SHARED_ASSERT|PCIE_SHARED_TRAP)) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "No trap%s in dongle",
(bus->pcie_sh->flags & PCIE_SHARED_ASSERT_BUILT)
?"/assrt" :"");
} else {
if (bus->pcie_sh->flags & PCIE_SHARED_ASSERT) {
/* Download assert */
bcm_bprintf(&strbuf, "Dongle assert");
if (bus->pcie_sh->assert_exp_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->assert_exp_addr,
(uint8 *)str, maxstrlen)) < 0)
goto done;
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " expr \"%s\"", str);
}
if (bus->pcie_sh->assert_file_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->assert_file_addr,
(uint8 *)str, maxstrlen)) < 0)
goto done;
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " file \"%s\"", str);
}
bcm_bprintf(&strbuf, " line %d ", bus->pcie_sh->assert_line);
}
if (bus->pcie_sh->flags & PCIE_SHARED_TRAP) {
bus->dhd->dongle_trap_occured = TRUE;
if ((bcmerror = dhdpcie_bus_membytes(bus, FALSE,
bus->pcie_sh->trap_addr,
(uint8*)&tr, sizeof(trap_t))) < 0)
goto done;
bcm_bprintf(&strbuf,
"Dongle trap type 0x%x @ epc 0x%x, cpsr 0x%x, spsr 0x%x, sp 0x%x,"
"lp 0x%x, rpc 0x%x Trap offset 0x%x, "
"r0 0x%x, r1 0x%x, r2 0x%x, r3 0x%x, "
"r4 0x%x, r5 0x%x, r6 0x%x, r7 0x%x\n\n",
ltoh32(tr.type), ltoh32(tr.epc), ltoh32(tr.cpsr), ltoh32(tr.spsr),
ltoh32(tr.r13), ltoh32(tr.r14), ltoh32(tr.pc),
ltoh32(bus->pcie_sh->trap_addr),
ltoh32(tr.r0), ltoh32(tr.r1), ltoh32(tr.r2), ltoh32(tr.r3),
ltoh32(tr.r4), ltoh32(tr.r5), ltoh32(tr.r6), ltoh32(tr.r7));
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_ptr, sizeof(console_ptr))) < 0)
goto printbuf;
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log.buf_size);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_size, sizeof(console_size))) < 0)
goto printbuf;
addr = bus->pcie_sh->console_addr + OFFSETOF(hnd_cons_t, log.idx);
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr,
(uint8 *)&console_index, sizeof(console_index))) < 0)
goto printbuf;
console_ptr = ltoh32(console_ptr);
console_size = ltoh32(console_size);
console_index = ltoh32(console_index);
if (console_size > CONSOLE_BUFFER_MAX ||
!(console_buffer = MALLOC(bus->dhd->osh, console_size)))
goto printbuf;
if ((rv = dhdpcie_bus_membytes(bus, FALSE, console_ptr,
(uint8 *)console_buffer, console_size)) < 0)
goto printbuf;
for (i = 0, n = 0; i < console_size; i += n + 1) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
ch = console_buffer[(console_index + i + n) % console_size];
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
/* Don't use DHD_ERROR macro since we print
* a lot of information quickly. The macro
* will truncate a lot of the printfs
*/
if (dhd_msg_level & DHD_ERROR_VAL)
printf("CONSOLE: %s\n", line);
}
}
}
/* write core dump to file */
dhdpcie_mem_dump(bus);
/* Get backtrace in the kernel log. */
WARN_ON(1);
}
printbuf:
if (bus->pcie_sh->flags & (PCIE_SHARED_ASSERT | PCIE_SHARED_TRAP)) {
DHD_ERROR(("%s: %s\n", __FUNCTION__, strbuf.origbuf));
}
done:
if (mbuffer)
MFREE(bus->dhd->osh, mbuffer, msize);
if (str)
MFREE(bus->dhd->osh, str, maxstrlen);
if (console_buffer)
MFREE(bus->dhd->osh, console_buffer, console_size);
return bcmerror;
}
static int
dhdpcie_mem_dump(dhd_bus_t *bus)
{
int ret = 0;
int size; /* Full mem size */
int start = bus->dongle_ram_base; /* Start address */
int read_size = 0; /* Read size of each iteration */
uint8 *buf = NULL, *databuf = NULL;
/* Get full mem size */
size = bus->ramsize;
buf = MALLOC(bus->dhd->osh, size);
if (!buf) {
DHD_ERROR(("%s: Out of memory (%d bytes)\n", __FUNCTION__, size));
return BCME_ERROR;
}
/* Read mem content */
DHD_TRACE(("Dump dongle memory"));
databuf = buf;
while (size)
{
read_size = MIN(MEMBLOCK, size);
if ((ret = dhdpcie_bus_membytes(bus, FALSE, start, databuf, read_size)))
{
DHD_ERROR(("%s: Error membytes %d\n", __FUNCTION__, ret));
if (buf) {
MFREE(bus->dhd->osh, buf, size);
}
return BCME_ERROR;
}
DHD_TRACE(("."));
/* Decrement size and increment start address */
size -= read_size;
start += read_size;
databuf += read_size;
}
DHD_TRACE(("%s FUNC: Copy fw image to the embedded buffer \n", __FUNCTION__));
dhd_save_fwdump(bus->dhd, buf, bus->ramsize);
dhd_schedule_memdump(bus->dhd, buf, bus->ramsize);
/* buf free handled in write_to_file, not here */
return ret;
}
int
dhd_bus_mem_dump(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return dhdpcie_mem_dump(bus);
}
#endif /* DHD_DEBUG */
/**
* Transfers bytes from host to dongle using pio mode.
* Parameter 'address' is a backplane address.
*/
static int
dhdpcie_bus_membytes(dhd_bus_t *bus, bool write, ulong address, uint8 *data, uint size)
{
int bcmerror = 0;
uint dsize;
int detect_endian_flag = 0x01;
bool little_endian;
#if defined (CONFIG_ARCH_MSM8994) || defined (CONFIG_ARCH_TEGRA)
bool is_64bit_unaligned;
#endif
/* Detect endianness. */
little_endian = *(char *)&detect_endian_flag;
#if defined (CONFIG_ARCH_MSM8994) || defined (CONFIG_ARCH_TEGRA)
/* Check 64bit aligned or not. */
is_64bit_unaligned = (address & 0x7);
#endif
/* In remap mode, adjust address beyond socram and redirect
* to devram at SOCDEVRAM_BP_ADDR since remap address > orig_ramsize
* is not backplane accessible
*/
/* Determine initial transfer parameters */
dsize = sizeof(uint64);
/* Do the transfer(s) */
if (write) {
while (size) {
if (size >= sizeof(uint64) && little_endian) {
#if defined (CONFIG_ARCH_MSM8994) || defined (CONFIG_ARCH_TEGRA)
if (is_64bit_unaligned) {
DHD_INFO(("%s: write unaligned %lx\n",
__FUNCTION__, address));
dhdpcie_bus_wtcm32(bus, address, *((uint32 *)data));
data += 4;
size -= 4;
address += 4;
is_64bit_unaligned = (address & 0x7);
continue;
}
else
#endif
dhdpcie_bus_wtcm64(bus, address, *((uint64 *)data));
} else {
dsize = sizeof(uint8);
dhdpcie_bus_wtcm8(bus, address, *data);
}
/* Adjust for next transfer (if any) */
if ((size -= dsize)) {
data += dsize;
address += dsize;
}
}
} else {
while (size) {
if (size >= sizeof(uint64) && little_endian) {
#if defined (CONFIG_ARCH_MSM8994) || defined (CONFIG_ARCH_TEGRA)
if (is_64bit_unaligned) {
DHD_INFO(("%s: read unaligned %lx\n",
__FUNCTION__, address));
*(uint32 *)data = dhdpcie_bus_rtcm32(bus, address);
data += 4;
size -= 4;
address += 4;
is_64bit_unaligned = (address & 0x7);
continue;
}
else
#endif
*(uint64 *)data = dhdpcie_bus_rtcm64(bus, address);
} else {
dsize = sizeof(uint8);
*data = dhdpcie_bus_rtcm8(bus, address);
}
/* Adjust for next transfer (if any) */
if ((size -= dsize) > 0) {
data += dsize;
address += dsize;
}
}
}
return bcmerror;
}
int BCMFASTPATH
dhd_bus_schedule_queue(struct dhd_bus *bus, uint16 flow_id, bool txs)
{
flow_ring_node_t *flow_ring_node;
int ret = BCME_OK;
DHD_INFO(("%s: flow_id is %d\n", __FUNCTION__, flow_id));
/* ASSERT on flow_id */
if (flow_id >= bus->max_sub_queues) {
DHD_ERROR(("%s: flow_id is invalid %d, max %d\n", __FUNCTION__,
flow_id, bus->max_sub_queues));
return 0;
}
flow_ring_node = DHD_FLOW_RING(bus->dhd, flow_id);
{
unsigned long flags;
void *txp = NULL;
flow_queue_t *queue;
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status != FLOW_RING_STATUS_OPEN) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
return BCME_NOTREADY;
}
while ((txp = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTORPHAN(txp);
#ifdef DHDTCPACK_SUPPRESS
if (bus->dhd->tcpack_sup_mode != TCPACK_SUP_HOLD) {
ret = dhd_tcpack_check_xmit(bus->dhd, txp);
if (ret != BCME_OK) {
DHD_ERROR(("%s: dhd_tcpack_check_xmit() error.\n",
__FUNCTION__));
}
}
#endif /* DHDTCPACK_SUPPRESS */
/* Attempt to transfer packet over flow ring */
ret = dhd_prot_txdata(bus->dhd, txp, flow_ring_node->flow_info.ifindex);
if (ret != BCME_OK) { /* may not have resources in flow ring */
DHD_INFO(("%s: Reinserrt %d\n", __FUNCTION__, ret));
dhd_prot_txdata_write_flush(bus->dhd, flow_id, FALSE);
/* reinsert at head */
dhd_flow_queue_reinsert(bus->dhd, queue, txp);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* If we are able to requeue back, return success */
return BCME_OK;
}
}
dhd_prot_txdata_write_flush(bus->dhd, flow_id, FALSE);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
}
return ret;
}
#ifndef PCIE_TX_DEFERRAL
/* Send a data frame to the dongle. Callee disposes of txp. */
int BCMFASTPATH
dhd_bus_txdata(struct dhd_bus *bus, void *txp, uint8 ifidx)
{
unsigned long flags;
int ret = BCME_OK;
void *txp_pend = NULL;
if (!bus->txmode_push) {
uint16 flowid;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
if (!bus->dhd->flowid_allocator) {
DHD_ERROR(("%s: Flow ring not intited yet \n", __FUNCTION__));
goto toss;
}
flowid = DHD_PKTTAG_FLOWID((dhd_pkttag_fr_t*)PKTTAG(txp));
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
DHD_TRACE(("%s: pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
if ((flowid >= bus->dhd->num_flow_rings) ||
(!flow_ring_node->active) ||
(flow_ring_node->status == FLOW_RING_STATUS_DELETE_PENDING)) {
DHD_INFO(("%s: Dropping pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
ret = BCME_ERROR;
goto toss;
}
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp)) != BCME_OK)
txp_pend = txp;
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status) {
DHD_INFO(("%s: Enq pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
if (txp_pend) {
txp = txp_pend;
goto toss;
}
return BCME_OK;
}
ret = dhd_bus_schedule_queue(bus, flowid, FALSE);
/* If we have anything pending, try to push into q */
if (txp_pend) {
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp_pend)) != BCME_OK) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
txp = txp_pend;
goto toss;
}
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
}
return ret;
} else { /* bus->txmode_push */
return dhd_prot_txdata(bus->dhd, txp, ifidx);
}
toss:
DHD_INFO(("%s: Toss %d\n", __FUNCTION__, ret));
PKTCFREE(bus->dhd->osh, txp, TRUE);
return ret;
}
#else /* PCIE_TX_DEFERRAL */
int BCMFASTPATH
dhd_bus_txdata(struct dhd_bus *bus, void *txp, uint8 ifidx)
{
unsigned long flags;
int ret = BCME_OK;
uint16 flowid;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
uint8 *pktdata = (uint8 *)PKTDATA(bus->dhd->osh, txp);
struct ether_header *eh = (struct ether_header *)pktdata;
if (!bus->dhd->flowid_allocator) {
DHD_ERROR(("%s: Flow ring not intited yet \n", __FUNCTION__));
goto toss;
}
flowid = dhd_flowid_find(bus->dhd, ifidx,
bus->dhd->flow_prio_map[(PKTPRIO(txp))],
eh->ether_shost, eh->ether_dhost);
if (flowid == FLOWID_INVALID) {
DHD_PKTTAG_SET_FLOWID((dhd_pkttag_fr_t *)PKTTAG(txp), ifidx);
skb_queue_tail(&bus->orphan_list, txp);
queue_work(bus->tx_wq, &bus->create_flow_work);
return BCME_OK;
}
DHD_PKTTAG_SET_FLOWID((dhd_pkttag_fr_t *)PKTTAG(txp), flowid);
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_DATA(("%s: pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if ((flowid >= bus->dhd->num_flow_rings) ||
(!flow_ring_node->active) ||
(flow_ring_node->status == FLOW_RING_STATUS_DELETE_PENDING)) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
DHD_DATA(("%s: Dropping pkt flowid %d, status %d active %d\n",
__FUNCTION__, flowid, flow_ring_node->status,
flow_ring_node->active));
ret = BCME_ERROR;
goto toss;
}
if (flow_ring_node->status == FLOW_RING_STATUS_PENDING) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
DHD_PKTTAG_SET_FLOWID((dhd_pkttag_fr_t *)PKTTAG(txp), ifidx);
skb_queue_tail(&bus->orphan_list, txp);
queue_work(bus->tx_wq, &bus->create_flow_work);
return BCME_OK;
}
if ((ret = dhd_flow_queue_enqueue(bus->dhd, queue, txp)) != BCME_OK) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
goto toss;
}
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
ret = dhd_bus_schedule_queue(bus, flowid, FALSE);
return ret;
toss:
DHD_DATA(("%s: Toss %d\n", __FUNCTION__, ret));
PKTCFREE(bus->dhd->osh, txp, TRUE);
return ret;
}
#endif /* !PCIE_TX_DEFERRAL */
void
dhd_bus_stop_queue(struct dhd_bus *bus)
{
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON);
bus->bus_flowctrl = TRUE;
}
void
dhd_bus_start_queue(struct dhd_bus *bus)
{
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF);
bus->bus_flowctrl = TRUE;
}
void
dhd_bus_update_retlen(dhd_bus_t *bus, uint32 retlen, uint32 pkt_id, uint16 status,
uint32 resp_len)
{
bus->ioct_resp.cmn_hdr.request_id = pkt_id;
bus->ioct_resp.compl_hdr.status = status;
bus->ioct_resp.resp_len = (uint16)resp_len;
bus->rxlen = retlen;
}
#if defined(DHD_DEBUG)
/* Device console input function */
int dhd_bus_console_in(dhd_pub_t *dhd, uchar *msg, uint msglen)
{
dhd_bus_t *bus = dhd->bus;
uint32 addr, val;
int rv;
/* Address could be zero if CONSOLE := 0 in dongle Makefile */
if (bus->console_addr == 0)
return BCME_UNSUPPORTED;
/* Don't allow input if dongle is in reset */
if (bus->dhd->dongle_reset) {
dhd_os_sdunlock(bus->dhd);
return BCME_NOTREADY;
}
/* Zero cbuf_index */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf_idx);
val = htol32(0);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* Write message into cbuf */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)msg, msglen)) < 0)
goto done;
/* Write length into vcons_in */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, vcons_in);
val = htol32(msglen);
if ((rv = dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* generate an interurpt to dongle to indicate that it needs to process cons command */
dhdpcie_send_mb_data(bus, H2D_HOST_CONS_INT);
done:
return rv;
}
#endif /* defined(DHD_DEBUG) */
/* Process rx frame , Send up the layer to netif */
void BCMFASTPATH
dhd_bus_rx_frame(struct dhd_bus *bus, void* pkt, int ifidx, uint pkt_count)
{
dhd_rx_frame(bus->dhd, ifidx, pkt, pkt_count, 0);
}
#ifdef CONFIG_ARCH_MSM8994
static ulong dhd_bus_cmn_check_offset(dhd_bus_t *bus, ulong offset)
{
uint new_bar1_wbase = 0;
ulong address = 0;
new_bar1_wbase = (uint)offset & bus->bar1_win_mask;
if (bus->bar1_win_base != new_bar1_wbase) {
bus->bar1_win_base = new_bar1_wbase;
dhdpcie_bus_cfg_set_bar1_win(bus, bus->bar1_win_base);
DHD_ERROR(("%s: offset=%lx, switch bar1_win_base to %x\n",
__FUNCTION__, offset, bus->bar1_win_base));
}
address = offset - bus->bar1_win_base;
return address;
}
#else
#define dhd_bus_cmn_check_offset(x, y) y
#endif /* CONFIG_ARCH_MSM8994 */
/** 'offset' is a backplane address */
void
dhdpcie_bus_wtcm8(dhd_bus_t *bus, ulong offset, uint8 data)
{
*(volatile uint8 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint8)data;
}
uint8
dhdpcie_bus_rtcm8(dhd_bus_t *bus, ulong offset)
{
volatile uint8 data;
data = *(volatile uint8 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
return data;
}
void
dhdpcie_bus_wtcm32(dhd_bus_t *bus, ulong offset, uint32 data)
{
*(volatile uint32 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint32)data;
}
void
dhdpcie_bus_wtcm16(dhd_bus_t *bus, ulong offset, uint16 data)
{
*(volatile uint16 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint16)data;
}
void
dhdpcie_bus_wtcm64(dhd_bus_t *bus, ulong offset, uint64 data)
{
*(volatile uint64 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset)) = (uint64)data;
}
uint16
dhdpcie_bus_rtcm16(dhd_bus_t *bus, ulong offset)
{
volatile uint16 data;
data = *(volatile uint16 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
return data;
}
uint32
dhdpcie_bus_rtcm32(dhd_bus_t *bus, ulong offset)
{
volatile uint32 data;
data = *(volatile uint32 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
return data;
}
uint64
dhdpcie_bus_rtcm64(dhd_bus_t *bus, ulong offset)
{
volatile uint64 data;
data = *(volatile uint64 *)(bus->tcm + dhd_bus_cmn_check_offset(bus, offset));
return data;
}
void
dhd_bus_cmn_writeshared(dhd_bus_t *bus, void * data, uint32 len, uint8 type, uint16 ringid)
{
uint64 long_data;
ulong tcm_offset;
pciedev_shared_t *sh;
pciedev_shared_t *shmem = NULL;
sh = (pciedev_shared_t*)bus->shared_addr;
DHD_INFO(("%s: writing to msgbuf type %d, len %d\n", __FUNCTION__, type, len));
switch (type) {
case DNGL_TO_HOST_DMA_SCRATCH_BUFFER:
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)&(sh->host_dma_scratch_buffer);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case DNGL_TO_HOST_DMA_SCRATCH_BUFFER_LEN :
tcm_offset = (ulong)&(sh->host_dma_scratch_buffer_len);
dhdpcie_bus_wtcm32(bus, tcm_offset, (uint32) HTOL32(*(uint32 *)data));
prhex(__FUNCTION__, data, len);
break;
case HOST_TO_DNGL_DMA_WRITEINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, h2d_w_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case HOST_TO_DNGL_DMA_READINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, h2d_r_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case DNGL_TO_HOST_DMA_WRITEINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, d2h_w_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case DNGL_TO_HOST_DMA_READINDX_BUFFER:
/* ring_info_ptr stored in pcie_sh */
shmem = (pciedev_shared_t *)bus->pcie_sh;
long_data = HTOL64(*(uint64 *)data);
tcm_offset = (ulong)shmem->rings_info_ptr;
tcm_offset += OFFSETOF(ring_info_t, d2h_r_idx_hostaddr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8*) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case RING_LEN_ITEMS :
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, len_items);
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_MAX_ITEM :
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, max_item);
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_BUF_ADDR :
long_data = HTOL64(*(uint64 *)data);
tcm_offset = bus->ring_sh[ringid].ring_mem_addr;
tcm_offset += OFFSETOF(ring_mem_t, base_addr);
dhdpcie_bus_membytes(bus, TRUE, tcm_offset, (uint8 *) &long_data, len);
prhex(__FUNCTION__, data, len);
break;
case RING_WRITE_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_w;
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case RING_READ_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_r;
dhdpcie_bus_wtcm16(bus, tcm_offset, (uint16) HTOL16(*(uint16 *)data));
break;
case DTOH_MB_DATA:
dhdpcie_bus_wtcm32(bus, bus->d2h_mb_data_ptr_addr,
(uint32) HTOL32(*(uint32 *)data));
break;
case HTOD_MB_DATA:
dhdpcie_bus_wtcm32(bus, bus->h2d_mb_data_ptr_addr,
(uint32) HTOL32(*(uint32 *)data));
break;
default:
break;
}
}
void
dhd_bus_cmn_readshared(dhd_bus_t *bus, void* data, uint8 type, uint16 ringid)
{
pciedev_shared_t *sh;
ulong tcm_offset;
sh = (pciedev_shared_t*)bus->shared_addr;
switch (type) {
case RING_WRITE_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_w;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus, tcm_offset));
break;
case RING_READ_PTR :
tcm_offset = bus->ring_sh[ringid].ring_state_r;
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus, tcm_offset));
break;
case TOTAL_LFRAG_PACKET_CNT :
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus,
(ulong) &sh->total_lfrag_pkt_cnt));
break;
case HTOD_MB_DATA:
*(uint32*)data = LTOH32(dhdpcie_bus_rtcm32(bus, bus->h2d_mb_data_ptr_addr));
break;
case DTOH_MB_DATA:
*(uint32*)data = LTOH32(dhdpcie_bus_rtcm32(bus, bus->d2h_mb_data_ptr_addr));
break;
case MAX_HOST_RXBUFS :
*(uint16*)data = LTOH16(dhdpcie_bus_rtcm16(bus,
(ulong) &sh->max_host_rxbufs));
break;
default :
break;
}
}
uint32 dhd_bus_get_sharedflags(dhd_bus_t *bus)
{
return ((pciedev_shared_t*)bus->pcie_sh)->flags;
}
void
dhd_bus_clearcounts(dhd_pub_t *dhdp)
{
}
int
dhd_bus_iovar_op(dhd_pub_t *dhdp, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
dhd_bus_t *bus = dhdp->bus;
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
uint32 actionid;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(name);
ASSERT(len >= 0);
/* Get MUST have return space */
ASSERT(set || (arg && len));
/* Set does NOT take qualifiers */
ASSERT(!set || (!params && !plen));
DHD_INFO(("%s: %s %s, len %d plen %d\n", __FUNCTION__,
name, (set ? "set" : "get"), len, plen));
/* Look up var locally; if not found pass to host driver */
if ((vi = bcm_iovar_lookup(dhdpcie_iovars, name)) == NULL) {
goto exit;
}
/* set up 'params' pointer in case this is a set command so that
* the convenience int and bool code can be common to set and get
*/
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
/* all other types are integer sized */
val_size = sizeof(int);
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
bcmerror = dhdpcie_bus_doiovar(bus, vi, actionid, name, params, plen, arg, len, val_size);
exit:
return bcmerror;
}
#ifdef BCM_BUZZZ
#include <bcm_buzzz.h>
int dhd_buzzz_dump_cntrs3(char *p, uint32 *core, uint32 * ovhd, uint32 *log)
{
int bytes = 0;
uint32 ctr, curr[3], prev[3], delta[3];
/* Compute elapsed counter values per counter event type */
for (ctr = 0U; ctr < 3; ctr++) {
prev[ctr] = core[ctr];
curr[ctr] = *log++;
core[ctr] = curr[ctr]; /* saved for next log */
if (curr[ctr] < prev[ctr])
delta[ctr] = curr[ctr] + (~0U - prev[ctr]);
else
delta[ctr] = (curr[ctr] - prev[ctr]);
/* Adjust for instrumentation overhead */
if (delta[ctr] >= ovhd[ctr])
delta[ctr] -= ovhd[ctr];
else
delta[ctr] = 0;
bytes += sprintf(p + bytes, "%12u ", delta[ctr]);
}
return bytes;
}
typedef union cm3_cnts { /* export this in bcm_buzzz.h */
uint32 u32;
uint8 u8[4];
struct {
uint8 cpicnt;
uint8 exccnt;
uint8 sleepcnt;
uint8 lsucnt;
};
} cm3_cnts_t;
int dhd_buzzz_dump_cntrs6(char *p, uint32 *core, uint32 * ovhd, uint32 *log)
{
int bytes = 0;
uint32 cyccnt, instrcnt;
cm3_cnts_t cm3_cnts;
uint8 foldcnt;
{ /* 32bit cyccnt */
uint32 curr, prev, delta;
prev = core[0]; curr = *log++; core[0] = curr;
if (curr < prev)
delta = curr + (~0U - prev);
else
delta = (curr - prev);
if (delta >= ovhd[0])
delta -= ovhd[0];
else
delta = 0;
bytes += sprintf(p + bytes, "%12u ", delta);
cyccnt = delta;
}
{ /* Extract the 4 cnts: cpi, exc, sleep and lsu */
int i;
uint8 max8 = ~0;
cm3_cnts_t curr, prev, delta;
prev.u32 = core[1]; curr.u32 = * log++; core[1] = curr.u32;
for (i = 0; i < 4; i++) {
if (curr.u8[i] < prev.u8[i])
delta.u8[i] = curr.u8[i] + (max8 - prev.u8[i]);
else
delta.u8[i] = (curr.u8[i] - prev.u8[i]);
if (delta.u8[i] >= ovhd[i + 1])
delta.u8[i] -= ovhd[i + 1];
else
delta.u8[i] = 0;
bytes += sprintf(p + bytes, "%4u ", delta.u8[i]);
}
cm3_cnts.u32 = delta.u32;
}
{ /* Extract the foldcnt from arg0 */
uint8 curr, prev, delta, max8 = ~0;
buzzz_arg0_t arg0; arg0.u32 = *log;
prev = core[2]; curr = arg0.klog.cnt; core[2] = curr;
if (curr < prev)
delta = curr + (max8 - prev);
else
delta = (curr - prev);
if (delta >= ovhd[5])
delta -= ovhd[5];
else
delta = 0;
bytes += sprintf(p + bytes, "%4u ", delta);
foldcnt = delta;
}
instrcnt = cyccnt - (cm3_cnts.u8[0] + cm3_cnts.u8[1] + cm3_cnts.u8[2]
+ cm3_cnts.u8[3]) + foldcnt;
if (instrcnt > 0xFFFFFF00)
bytes += sprintf(p + bytes, "[%10s] ", "~");
else
bytes += sprintf(p + bytes, "[%10u] ", instrcnt);
return bytes;
}
int dhd_buzzz_dump_log(char * p, uint32 * core, uint32 * log, buzzz_t * buzzz)
{
int bytes = 0;
buzzz_arg0_t arg0;
static uint8 * fmt[] = BUZZZ_FMT_STRINGS;
if (buzzz->counters == 6) {
bytes += dhd_buzzz_dump_cntrs6(p, core, buzzz->ovhd, log);
log += 2; /* 32bit cyccnt + (4 x 8bit) CM3 */
} else {
bytes += dhd_buzzz_dump_cntrs3(p, core, buzzz->ovhd, log);
log += 3; /* (3 x 32bit) CR4 */
}
/* Dump the logged arguments using the registered formats */
arg0.u32 = *log++;
switch (arg0.klog.args) {
case 0:
bytes += sprintf(p + bytes, fmt[arg0.klog.id]);
break;
case 1:
{
uint32 arg1 = *log++;
bytes += sprintf(p + bytes, fmt[arg0.klog.id], arg1);
break;
}
default:
printf("Maximum one argument supported\n");
break;
}
bytes += sprintf(p + bytes, "\n");
return bytes;
}
void dhd_buzzz_dump(buzzz_t * buzzz_p, void * buffer_p, char * p)
{
int i;
uint32 total, part1, part2, log_sz, core[BUZZZ_COUNTERS_MAX];
void * log;
for (i = 0; i < BUZZZ_COUNTERS_MAX; i++)
core[i] = 0;
log_sz = buzzz_p->log_sz;
part1 = ((uint32)buzzz_p->cur - (uint32)buzzz_p->log) / log_sz;
if (buzzz_p->wrap == TRUE) {
part2 = ((uint32)buzzz_p->end - (uint32)buzzz_p->cur) / log_sz;
total = (buzzz_p->buffer_sz - BUZZZ_LOGENTRY_MAXSZ) / log_sz;
} else {
part2 = 0U;
total = buzzz_p->count;
}
if (total == 0U) {
printf("buzzz_dump total<%u> done\n", total);
return;
} else {
printf("buzzz_dump total<%u> : part2<%u> + part1<%u>\n",
total, part2, part1);
}
if (part2) { /* with wrap */
log = (void*)((size_t)buffer_p + (buzzz_p->cur - buzzz_p->log));
while (part2--) { /* from cur to end : part2 */
p[0] = '\0';
dhd_buzzz_dump_log(p, core, (uint32 *)log, buzzz_p);
printf("%s", p);
log = (void*)((size_t)log + buzzz_p->log_sz);
}
}
log = (void*)buffer_p;
while (part1--) {
p[0] = '\0';
dhd_buzzz_dump_log(p, core, (uint32 *)log, buzzz_p);
printf("%s", p);
log = (void*)((size_t)log + buzzz_p->log_sz);
}
printf("buzzz_dump done.\n");
}
int dhd_buzzz_dump_dngl(dhd_bus_t *bus)
{
buzzz_t * buzzz_p = NULL;
void * buffer_p = NULL;
char * page_p = NULL;
pciedev_shared_t *sh;
int ret = 0;
if (bus->dhd->busstate != DHD_BUS_DATA) {
return BCME_UNSUPPORTED;
}
if ((page_p = (char *)MALLOC(bus->dhd->osh, 4096)) == NULL) {
printf("Page memory allocation failure\n");
goto done;
}
if ((buzzz_p = MALLOC(bus->dhd->osh, sizeof(buzzz_t))) == NULL) {
printf("Buzzz memory allocation failure\n");
goto done;
}
ret = dhdpcie_readshared(bus);
if (ret < 0) {
DHD_ERROR(("%s :Shared area read failed \n", __FUNCTION__));
goto done;
}
sh = bus->pcie_sh;
DHD_INFO(("%s buzzz:%08x\n", __FUNCTION__, sh->buzzz));
if (sh->buzzz != 0U) { /* Fetch and display dongle BUZZZ Trace */
dhdpcie_bus_membytes(bus, FALSE, (ulong)sh->buzzz,
(uint8 *)buzzz_p, sizeof(buzzz_t));
if (buzzz_p->count == 0) {
printf("Empty dongle BUZZZ trace\n\n");
goto done;
}
if (buzzz_p->counters != 3) { /* 3 counters for CR4 */
printf("Counters<%u> mismatch\n", buzzz_p->counters);
goto done;
}
/* Allocate memory for trace buffer and format strings */
buffer_p = MALLOC(bus->dhd->osh, buzzz_p->buffer_sz);
if (buffer_p == NULL) {
printf("Buffer memory allocation failure\n");
goto done;
}
/* Fetch the trace and format strings */
dhdpcie_bus_membytes(bus, FALSE, (uint32)buzzz_p->log, /* Trace */
(uint8 *)buffer_p, buzzz_p->buffer_sz);
/* Process and display the trace using formatted output */
printf("<#cycle> <#instruction> <#ctr3> <event information>\n");
dhd_buzzz_dump(buzzz_p, buffer_p, page_p);
printf("----- End of dongle BUZZZ Trace -----\n\n");
MFREE(bus->dhd->osh, buffer_p, buzzz_p->buffer_sz); buffer_p = NULL;
}
done:
if (page_p) MFREE(bus->dhd->osh, page_p, 4096);
if (buzzz_p) MFREE(bus->dhd->osh, buzzz_p, sizeof(buzzz_t));
if (buffer_p) MFREE(bus->dhd->osh, buffer_p, buzzz_p->buffer_sz);
return BCME_OK;
}
#endif /* BCM_BUZZZ */
#define PCIE_GEN2(sih) ((BUSTYPE((sih)->bustype) == PCI_BUS) && \
((sih)->buscoretype == PCIE2_CORE_ID))
static bool
pcie2_mdiosetblock(dhd_bus_t *bus, uint blk)
{
uint mdiodata, mdioctrl, i = 0;
uint pcie_serdes_spinwait = 200;
mdioctrl = MDIOCTL2_DIVISOR_VAL | (0x1F << MDIOCTL2_REGADDR_SHF);
mdiodata = (blk << MDIODATA2_DEVADDR_SHF) | MDIODATA2_DONE;
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_CONTROL, ~0, mdioctrl);
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_WR_DATA, ~0, mdiodata);
OSL_DELAY(10);
/* retry till the transaction is complete */
while (i < pcie_serdes_spinwait) {
uint mdioctrl_read = si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_WR_DATA,
0, 0);
if (!(mdioctrl_read & MDIODATA2_DONE)) {
break;
}
OSL_DELAY(1000);
i++;
}
if (i >= pcie_serdes_spinwait) {
DHD_ERROR(("pcie_mdiosetblock: timed out\n"));
return FALSE;
}
return TRUE;
}
static int
pcie2_mdioop(dhd_bus_t *bus, uint physmedia, uint regaddr, bool write, uint *val,
bool slave_bypass)
{
uint pcie_serdes_spinwait = 200, i = 0, mdio_ctrl;
uint32 reg32;
pcie2_mdiosetblock(bus, physmedia);
/* enable mdio access to SERDES */
mdio_ctrl = MDIOCTL2_DIVISOR_VAL;
mdio_ctrl |= (regaddr << MDIOCTL2_REGADDR_SHF);
if (slave_bypass)
mdio_ctrl |= MDIOCTL2_SLAVE_BYPASS;
if (!write)
mdio_ctrl |= MDIOCTL2_READ;
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_CONTROL, ~0, mdio_ctrl);
if (write) {
reg32 = PCIE2_MDIO_WR_DATA;
si_corereg(bus->sih, bus->sih->buscoreidx, PCIE2_MDIO_WR_DATA, ~0,
*val | MDIODATA2_DONE);
}
else
reg32 = PCIE2_MDIO_RD_DATA;
/* retry till the transaction is complete */
while (i < pcie_serdes_spinwait) {
uint done_val = si_corereg(bus->sih, bus->sih->buscoreidx, reg32, 0, 0);
if (!(done_val & MDIODATA2_DONE)) {
if (!write) {
*val = si_corereg(bus->sih, bus->sih->buscoreidx,
PCIE2_MDIO_RD_DATA, 0, 0);
*val = *val & MDIODATA2_MASK;
}
return 0;
}
OSL_DELAY(1000);
i++;
}
return -1;
}
int
dhd_bus_devreset(dhd_pub_t *dhdp, uint8 flag)
{
dhd_bus_t *bus = dhdp->bus;
int bcmerror = 0;
#ifdef CONFIG_ARCH_MSM
int retry = POWERUP_MAX_RETRY;
#endif /* CONFIG_ARCH_MSM */
if (dhd_download_fw_on_driverload) {
bcmerror = dhd_bus_start(dhdp);
} else {
if (flag == TRUE) { /* Turn off WLAN */
/* Removing Power */
DHD_ERROR(("%s: == Power OFF ==\n", __FUNCTION__));
bus->dhd->up = FALSE;
if (bus->dhd->busstate != DHD_BUS_DOWN) {
if (bus->intr) {
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
#ifdef BCMPCIE_OOB_HOST_WAKE
/* Clean up any pending host wake IRQ */
dhd_bus_oob_intr_set(bus->dhd, FALSE);
dhd_bus_oob_intr_unregister(bus->dhd);
#endif /* BCMPCIE_OOB_HOST_WAKE */
dhd_os_wd_timer(dhdp, 0);
dhd_bus_stop(bus, TRUE);
dhd_prot_clear(dhdp);
dhd_clear(dhdp);
dhd_bus_release_dongle(bus);
dhdpcie_bus_free_resource(bus);
bcmerror = dhdpcie_bus_disable_device(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_disable_device: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#ifdef CONFIG_ARCH_MSM
bcmerror = dhdpcie_bus_clock_stop(bus);
if (bcmerror) {
DHD_ERROR(("%s: host clock stop failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
bus->dhd->busstate = DHD_BUS_DOWN;
} else {
if (bus->intr) {
dhdpcie_bus_intr_disable(bus);
dhdpcie_free_irq(bus);
}
#ifdef BCMPCIE_OOB_HOST_WAKE
/* Clean up any pending host wake IRQ */
dhd_bus_oob_intr_set(bus->dhd, FALSE);
dhd_bus_oob_intr_unregister(bus->dhd);
#endif /* BCMPCIE_OOB_HOST_WAKE */
dhd_prot_clear(dhdp);
dhd_clear(dhdp);
dhd_bus_release_dongle(bus);
dhdpcie_bus_free_resource(bus);
bcmerror = dhdpcie_bus_disable_device(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_disable_device: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#ifdef CONFIG_ARCH_MSM
bcmerror = dhdpcie_bus_clock_stop(bus);
if (bcmerror) {
DHD_ERROR(("%s: host clock stop failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
}
bus->dhd->dongle_reset = TRUE;
DHD_ERROR(("%s: WLAN OFF Done\n", __FUNCTION__));
} else { /* Turn on WLAN */
if (bus->dhd->busstate == DHD_BUS_DOWN) {
/* Powering On */
DHD_ERROR(("%s: == Power ON ==\n", __FUNCTION__));
#ifdef CONFIG_ARCH_MSM
while (--retry) {
bcmerror = dhdpcie_bus_clock_start(bus);
if (!bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_clock_start OK\n",
__FUNCTION__));
break;
}
else
OSL_SLEEP(10);
}
if (bcmerror && !retry) {
DHD_ERROR(("%s: host pcie clock enable failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
#endif /* CONFIG_ARCH_MSM */
bcmerror = dhdpcie_bus_enable_device(bus);
if (bcmerror) {
DHD_ERROR(("%s: host configuration restore failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bcmerror = dhdpcie_bus_alloc_resource(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_resource_alloc failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bcmerror = dhdpcie_bus_dongle_attach(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhdpcie_bus_dongle_attach failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bcmerror = dhd_bus_request_irq(bus);
if (bcmerror) {
DHD_ERROR(("%s: dhd_bus_request_irq failed: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bus->dhd->dongle_reset = FALSE;
bcmerror = dhd_bus_start(dhdp);
if (bcmerror) {
DHD_ERROR(("%s: dhd_bus_start: %d\n",
__FUNCTION__, bcmerror));
goto done;
}
bus->dhd->up = TRUE;
DHD_ERROR(("%s: WLAN Power On Done\n", __FUNCTION__));
} else {
DHD_ERROR(("%s: what should we do here\n", __FUNCTION__));
goto done;
}
}
}
done:
if (bcmerror)
bus->dhd->busstate = DHD_BUS_DOWN;
return bcmerror;
}
static int
dhdpcie_bus_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid, const char *name,
void *params, int plen, void *arg, int len, int val_size)
{
int bcmerror = 0;
int32 int_val = 0;
int32 int_val2 = 0;
int32 int_val3 = 0;
bool bool_val = 0;
DHD_TRACE(("%s: Enter, action %d name %s params %p plen %d arg %p len %d val_size %d\n",
__FUNCTION__, actionid, name, params, plen, arg, len, val_size));
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, IOV_ISSET(actionid))) != 0)
goto exit;
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
if (plen >= (int)sizeof(int_val) * 2)
bcopy((void*)((uintptr)params + sizeof(int_val)), &int_val2, sizeof(int_val2));
if (plen >= (int)sizeof(int_val) * 3)
bcopy((void*)((uintptr)params + 2 * sizeof(int_val)), &int_val3, sizeof(int_val3));
bool_val = (int_val != 0) ? TRUE : FALSE;
/* Check if dongle is in reset. If so, only allow DEVRESET iovars */
if (bus->dhd->dongle_reset && !(actionid == IOV_SVAL(IOV_DEVRESET) ||
actionid == IOV_GVAL(IOV_DEVRESET))) {
bcmerror = BCME_NOTREADY;
goto exit;
}
switch (actionid) {
case IOV_SVAL(IOV_VARS):
bcmerror = dhdpcie_downloadvars(bus, arg, len);
break;
case IOV_SVAL(IOV_PCIEREG):
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configaddr), ~0,
int_val);
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configdata), ~0,
int_val2);
break;
case IOV_GVAL(IOV_PCIEREG):
si_corereg(bus->sih, bus->sih->buscoreidx, OFFSETOF(sbpcieregs_t, configaddr), ~0,
int_val);
int_val = si_corereg(bus->sih, bus->sih->buscoreidx,
OFFSETOF(sbpcieregs_t, configdata), 0, 0);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_GVAL(IOV_BAR0_SECWIN_REG):
{
uint32 cur_base, base;
uchar *bar0;
volatile uint32 *offset;
/* set the bar0 secondary window to this */
/* write the register value */
cur_base = dhdpcie_bus_cfg_read_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint));
base = int_val & 0xFFFFF000;
dhdpcie_bus_cfg_write_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint32), base);
bar0 = (uchar *)bus->regs;
offset = (uint32 *)(bar0 + 0x4000 + (int_val & 0xFFF));
int_val = *offset;
bcopy(&int_val, arg, val_size);
dhdpcie_bus_cfg_write_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint32), cur_base);
}
break;
case IOV_SVAL(IOV_BAR0_SECWIN_REG):
{
uint32 cur_base, base;
uchar *bar0;
volatile uint32 *offset;
/* set the bar0 secondary window to this */
/* write the register value */
cur_base = dhdpcie_bus_cfg_read_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint));
base = int_val & 0xFFFFF000;
dhdpcie_bus_cfg_write_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint32), base);
bar0 = (uchar *)bus->regs;
offset = (uint32 *)(bar0 + 0x4000 + (int_val & 0xFFF));
*offset = int_val2;
bcopy(&int_val2, arg, val_size);
dhdpcie_bus_cfg_write_dword(bus, PCIE2_BAR0_CORE2_WIN, sizeof(uint32), cur_base);
}
break;
case IOV_SVAL(IOV_PCIECOREREG):
si_corereg(bus->sih, bus->sih->buscoreidx, int_val, ~0, int_val2);
break;
case IOV_GVAL(IOV_SBREG):
{
sdreg_t sdreg;
uint32 addr, coreidx;
bcopy(params, &sdreg, sizeof(sdreg));
addr = sdreg.offset;
coreidx = (addr & 0xF000) >> 12;
int_val = si_corereg(bus->sih, coreidx, (addr & 0xFFF), 0, 0);
bcopy(&int_val, arg, sizeof(int32));
break;
}
case IOV_SVAL(IOV_SBREG):
{
sdreg_t sdreg;
uint32 addr, coreidx;
bcopy(params, &sdreg, sizeof(sdreg));
addr = sdreg.offset;
coreidx = (addr & 0xF000) >> 12;
si_corereg(bus->sih, coreidx, (addr & 0xFFF), ~0, sdreg.value);
break;
}
case IOV_GVAL(IOV_PCIESERDESREG):
{
uint val;
if (!PCIE_GEN2(bus->sih)) {
DHD_ERROR(("supported only in pcie gen2\n"));
bcmerror = BCME_ERROR;
break;
}
if (!pcie2_mdioop(bus, int_val, int_val2, FALSE, &val, FALSE)) {
bcopy(&val, arg, sizeof(int32));
}
else {
DHD_ERROR(("pcie2_mdioop failed.\n"));
bcmerror = BCME_ERROR;
}
break;
}
case IOV_SVAL(IOV_PCIESERDESREG):
if (!PCIE_GEN2(bus->sih)) {
DHD_ERROR(("supported only in pcie gen2\n"));
bcmerror = BCME_ERROR;
break;
}
if (pcie2_mdioop(bus, int_val, int_val2, TRUE, &int_val3, FALSE)) {
DHD_ERROR(("pcie2_mdioop failed.\n"));
bcmerror = BCME_ERROR;
}
break;
case IOV_GVAL(IOV_PCIECOREREG):
int_val = si_corereg(bus->sih, bus->sih->buscoreidx, int_val, 0, 0);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_SVAL(IOV_PCIECFGREG):
OSL_PCI_WRITE_CONFIG(bus->osh, int_val, 4, int_val2);
break;
case IOV_GVAL(IOV_PCIECFGREG):
int_val = OSL_PCI_READ_CONFIG(bus->osh, int_val, 4);
bcopy(&int_val, arg, sizeof(int_val));
break;
case IOV_SVAL(IOV_PCIE_LPBK):
bcmerror = dhdpcie_bus_lpback_req(bus, int_val);
break;
case IOV_SVAL(IOV_PCIE_DMAXFER):
bcmerror = dhdpcie_bus_dmaxfer_req(bus, int_val, int_val2, int_val3);
break;
case IOV_GVAL(IOV_PCIE_SUSPEND):
int_val = (bus->dhd->busstate == DHD_BUS_SUSPEND) ? 1 : 0;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_PCIE_SUSPEND):
bus->force_suspend = 1;
dhdpcie_bus_suspend(bus, bool_val);
bus->force_suspend = 0;
break;
case IOV_GVAL(IOV_MEMSIZE):
int_val = (int32)bus->ramsize;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_MEMBYTES):
case IOV_GVAL(IOV_MEMBYTES):
{
uint32 address; /* absolute backplane address */
uint size, dsize;
uint8 *data;
bool set = (actionid == IOV_SVAL(IOV_MEMBYTES));
ASSERT(plen >= 2*sizeof(int));
address = (uint32)int_val;
bcopy((char *)params + sizeof(int_val), &int_val, sizeof(int_val));
size = (uint)int_val;
/* Do some validation */
dsize = set ? plen - (2 * sizeof(int)) : len;
if (dsize < size) {
DHD_ERROR(("%s: error on %s membytes, addr 0x%08x size %d dsize %d\n",
__FUNCTION__, (set ? "set" : "get"), address, size, dsize));
bcmerror = BCME_BADARG;
break;
}
DHD_INFO(("%s: Request to %s %d bytes at address 0x%08x\n dsize %d ", __FUNCTION__,
(set ? "write" : "read"), size, address, dsize));
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (set && address == bus->dongle_ram_base) {
bus->resetinstr = *(((uint32*)params) + 2);
}
} else {
/* If we know about SOCRAM, check for a fit */
if ((bus->orig_ramsize) &&
((address > bus->orig_ramsize) || (address + size > bus->orig_ramsize)))
{
uint8 enable, protect, remap;
si_socdevram(bus->sih, FALSE, &enable, &protect, &remap);
if (!enable || protect) {
DHD_ERROR(("%s: ramsize 0x%08x doesn't have %d bytes at 0x%08x\n",
__FUNCTION__, bus->orig_ramsize, size, address));
DHD_ERROR(("%s: socram enable %d, protect %d\n",
__FUNCTION__, enable, protect));
bcmerror = BCME_BADARG;
break;
}
if (!REMAP_ENAB(bus) && (address >= SOCDEVRAM_ARM_ADDR)) {
uint32 devramsize = si_socdevram_size(bus->sih);
if ((address < SOCDEVRAM_ARM_ADDR) ||
(address + size > (SOCDEVRAM_ARM_ADDR + devramsize))) {
DHD_ERROR(("%s: bad address 0x%08x, size 0x%08x\n",
__FUNCTION__, address, size));
DHD_ERROR(("%s: socram range 0x%08x,size 0x%08x\n",
__FUNCTION__, SOCDEVRAM_ARM_ADDR, devramsize));
bcmerror = BCME_BADARG;
break;
}
/* move it such that address is real now */
address -= SOCDEVRAM_ARM_ADDR;
address += SOCDEVRAM_BP_ADDR;
DHD_INFO(("%s: Request to %s %d bytes @ Mapped address 0x%08x\n",
__FUNCTION__, (set ? "write" : "read"), size, address));
} else if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address) && remap) {
/* Can not access remap region while devram remap bit is set
* ROM content would be returned in this case
*/
DHD_ERROR(("%s: Need to disable remap for address 0x%08x\n",
__FUNCTION__, address));
bcmerror = BCME_ERROR;
break;
}
}
}
/* Generate the actual data pointer */
data = set ? (uint8*)params + 2 * sizeof(int): (uint8*)arg;
/* Call to do the transfer */
bcmerror = dhdpcie_bus_membytes(bus, set, address, data, size);
break;
}
#ifdef BCM_BUZZZ
case IOV_GVAL(IOV_BUZZZ_DUMP):
bcmerror = dhd_buzzz_dump_dngl(bus);
break;
#endif /* BCM_BUZZZ */
case IOV_SVAL(IOV_SET_DOWNLOAD_STATE):
bcmerror = dhdpcie_bus_download_state(bus, bool_val);
break;
case IOV_GVAL(IOV_RAMSIZE):
int_val = (int32)bus->ramsize;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_RAMSTART):
int_val = (int32)bus->dongle_ram_base;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_CC_NVMSHADOW):
{
struct bcmstrbuf dump_b;
bcm_binit(&dump_b, arg, len);
bcmerror = dhdpcie_cc_nvmshadow(bus, &dump_b);
break;
}
case IOV_GVAL(IOV_SLEEP_ALLOWED):
bool_val = bus->sleep_allowed;
bcopy(&bool_val, arg, val_size);
break;
case IOV_SVAL(IOV_SLEEP_ALLOWED):
bus->sleep_allowed = bool_val;
break;
case IOV_GVAL(IOV_DONGLEISOLATION):
int_val = bus->dhd->dongle_isolation;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DONGLEISOLATION):
bus->dhd->dongle_isolation = bool_val;
break;
case IOV_GVAL(IOV_LTRSLEEPON_UNLOOAD):
int_val = bus->ltrsleep_on_unload;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_LTRSLEEPON_UNLOOAD):
bus->ltrsleep_on_unload = bool_val;
break;
case IOV_GVAL(IOV_DUMP_RINGUPD_BLOCK):
{
struct bcmstrbuf dump_b;
bcm_binit(&dump_b, arg, len);
bcmerror = dhd_prot_ringupd_dump(bus->dhd, &dump_b);
break;
}
case IOV_GVAL(IOV_DMA_RINGINDICES):
{ int h2d_support, d2h_support;
d2h_support = DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support) ? 1 : 0;
h2d_support = DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support) ? 1 : 0;
int_val = d2h_support | (h2d_support << 1);
bcopy(&int_val, arg, sizeof(int_val));
break;
}
case IOV_SVAL(IOV_DMA_RINGINDICES):
/* Can change it only during initialization/FW download */
if (bus->dhd->busstate == DHD_BUS_DOWN) {
if ((int_val > 3) || (int_val < 0)) {
DHD_ERROR(("Bad argument. Possible values: 0, 1, 2 & 3\n"));
bcmerror = BCME_BADARG;
} else {
bus->dhd->dma_d2h_ring_upd_support = (int_val & 1) ? TRUE : FALSE;
bus->dhd->dma_h2d_ring_upd_support = (int_val & 2) ? TRUE : FALSE;
}
} else {
DHD_ERROR(("%s: Can change only when bus down (before FW download)\n",
__FUNCTION__));
bcmerror = BCME_NOTDOWN;
}
break;
case IOV_GVAL(IOV_RX_METADATALEN):
int_val = dhd_prot_metadatalen_get(bus->dhd, TRUE);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RX_METADATALEN):
if (int_val > 64) {
bcmerror = BCME_BUFTOOLONG;
break;
}
dhd_prot_metadatalen_set(bus->dhd, int_val, TRUE);
break;
case IOV_SVAL(IOV_TXP_THRESHOLD):
dhd_prot_txp_threshold(bus->dhd, TRUE, int_val);
break;
case IOV_GVAL(IOV_TXP_THRESHOLD):
int_val = dhd_prot_txp_threshold(bus->dhd, FALSE, int_val);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DB1_FOR_MB):
if (int_val)
bus->db1_for_mb = TRUE;
else
bus->db1_for_mb = FALSE;
break;
case IOV_GVAL(IOV_DB1_FOR_MB):
if (bus->db1_for_mb)
int_val = 1;
else
int_val = 0;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_TX_METADATALEN):
int_val = dhd_prot_metadatalen_get(bus->dhd, FALSE);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TX_METADATALEN):
if (int_val > 64) {
bcmerror = BCME_BUFTOOLONG;
break;
}
dhd_prot_metadatalen_set(bus->dhd, int_val, FALSE);
break;
case IOV_GVAL(IOV_FLOW_PRIO_MAP):
int_val = bus->dhd->flow_prio_map_type;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_FLOW_PRIO_MAP):
int_val = (int32)dhd_update_flow_prio_map(bus->dhd, (uint8)int_val);
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_TXBOUND):
int_val = (int32)dhd_txbound;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TXBOUND):
dhd_txbound = (uint)int_val;
break;
case IOV_GVAL(IOV_RXBOUND):
int_val = (int32)dhd_rxbound;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RXBOUND):
dhd_rxbound = (uint)int_val;
break;
default:
bcmerror = BCME_UNSUPPORTED;
break;
}
exit:
return bcmerror;
}
/* Transfers bytes from host to dongle using pio mode */
static int
dhdpcie_bus_lpback_req(struct dhd_bus *bus, uint32 len)
{
if (bus->dhd == NULL) {
DHD_ERROR(("bus not inited\n"));
return 0;
}
if (bus->dhd->prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return 0;
}
if (bus->dhd->busstate != DHD_BUS_DATA) {
DHD_ERROR(("not in a readystate to LPBK is not inited\n"));
return 0;
}
dhdmsgbuf_lpbk_req(bus->dhd, len);
return 0;
}
void
dhd_bus_set_suspend_resume(dhd_pub_t *dhdp, bool state)
{
struct dhd_bus *bus = dhdp->bus;
if (bus) {
dhdpcie_bus_suspend(bus, state);
}
}
int
dhdpcie_bus_suspend(struct dhd_bus *bus, bool state)
{
int timeleft;
bool pending;
int rc = 0;
if (bus->dhd == NULL) {
DHD_ERROR(("bus not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->busstate != DHD_BUS_DATA && bus->dhd->busstate != DHD_BUS_SUSPEND) {
DHD_ERROR(("not in a readystate to LPBK is not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->dongle_reset)
return -EIO;
if (bus->suspended == state) /* Set to same state */
return BCME_OK;
if (state) {
bus->wait_for_d3_ack = 0;
bus->suspended = TRUE;
bus->dhd->busstate = DHD_BUS_SUSPEND;
DHD_OS_WAKE_LOCK_WAIVE(bus->dhd);
dhd_os_set_ioctl_resp_timeout(DEFAULT_IOCTL_RESP_TIMEOUT);
dhdpcie_send_mb_data(bus, H2D_HOST_D3_INFORM);
timeleft = dhd_os_d3ack_wait(bus->dhd, &bus->wait_for_d3_ack, &pending);
dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT);
DHD_OS_WAKE_LOCK_RESTORE(bus->dhd);
if (bus->wait_for_d3_ack) {
/* Got D3 Ack. Suspend the bus */
if (!bus->force_suspend && dhd_os_check_wakelock_all(bus->dhd)) {
DHD_ERROR(("Suspend failed because of wakelock\n"));
bus->dev->current_state = PCI_D3hot;
pci_set_master(bus->dev);
rc = pci_set_power_state(bus->dev, PCI_D0);
if (rc) {
DHD_ERROR(("%s: pci_set_power_state failed:"
" current_state[%d], ret[%d]\n",
__FUNCTION__, bus->dev->current_state, rc));
}
bus->suspended = FALSE;
bus->dhd->busstate = DHD_BUS_DATA;
rc = BCME_ERROR;
} else {
dhdpcie_bus_intr_disable(bus);
rc = dhdpcie_pci_suspend_resume(bus, state);
}
} else if (timeleft == 0) {
DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__));
bus->dev->current_state = PCI_D3hot;
pci_set_master(bus->dev);
rc = pci_set_power_state(bus->dev, PCI_D0);
if (rc) {
DHD_ERROR(("%s: pci_set_power_state failed:"
" current_state[%d], ret[%d]\n",
__FUNCTION__, bus->dev->current_state, rc));
}
bus->suspended = FALSE;
bus->dhd->busstate = DHD_BUS_DATA;
rc = -ETIMEDOUT;
}
bus->wait_for_d3_ack = 1;
} else {
/* Resume */
#ifdef BCMPCIE_OOB_HOST_WAKE
DHD_OS_OOB_IRQ_WAKE_UNLOCK(bus->dhd);
#endif /* BCMPCIE_OOB_HOST_WAKE */
rc = dhdpcie_pci_suspend_resume(bus, state);
bus->suspended = FALSE;
bus->dhd->busstate = DHD_BUS_DATA;
dhdpcie_bus_intr_enable(bus);
}
return rc;
}
/* Transfers bytes from host to dongle and to host again using DMA */
static int
dhdpcie_bus_dmaxfer_req(struct dhd_bus *bus, uint32 len, uint32 srcdelay, uint32 destdelay)
{
if (bus->dhd == NULL) {
DHD_ERROR(("bus not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return BCME_ERROR;
}
if (bus->dhd->busstate != DHD_BUS_DATA) {
DHD_ERROR(("not in a readystate to LPBK is not inited\n"));
return BCME_ERROR;
}
if (len < 5 || len > 4194296) {
DHD_ERROR(("len is too small or too large\n"));
return BCME_ERROR;
}
return dhdmsgbuf_dmaxfer_req(bus->dhd, len, srcdelay, destdelay);
}
static int
dhdpcie_bus_download_state(dhd_bus_t *bus, bool enter)
{
int bcmerror = 0;
uint32 *cr4_regs;
if (!bus->sih)
return BCME_ERROR;
/* To enter download state, disable ARM and reset SOCRAM.
* To exit download state, simply reset ARM (default is RAM boot).
*/
if (enter) {
bus->alp_only = TRUE;
/* some chips (e.g. 43602) have two ARM cores, the CR4 is receives the firmware. */
cr4_regs = si_setcore(bus->sih, ARMCR4_CORE_ID, 0);
if (cr4_regs == NULL && !(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (cr4_regs == NULL) { /* no CR4 present on chip */
si_core_disable(bus->sih, 0);
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
si_core_reset(bus->sih, 0, 0);
/* Clear the top bit of memory */
if (bus->ramsize) {
uint32 zeros = 0;
if (dhdpcie_bus_membytes(bus, TRUE, bus->ramsize - 4,
(uint8*)&zeros, 4) < 0) {
bcmerror = BCME_ERROR;
goto fail;
}
}
} else {
/* For CR4,
* Halt ARM
* Remove ARM reset
* Read RAM base address [0x18_0000]
* [next] Download firmware
* [done at else] Populate the reset vector
* [done at else] Remove ARM halt
*/
/* Halt ARM & remove reset */
si_core_reset(bus->sih, SICF_CPUHALT, SICF_CPUHALT);
if (bus->sih->chip == BCM43602_CHIP_ID) {
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKIDX, 5);
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKPDA, 0);
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKIDX, 7);
W_REG(bus->pcie_mb_intr_osh, cr4_regs + ARMCR4REG_BANKPDA, 0);
}
/* reset last 4 bytes of RAM address. to be used for shared area */
dhdpcie_init_shared_addr(bus);
}
} else {
if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (!si_iscoreup(bus->sih)) {
DHD_ERROR(("%s: SOCRAM core is down after reset?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
/* Enable remap before ARM reset but after vars.
* No backplane access in remap mode
*/
if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) &&
!si_setcore(bus->sih, SDIOD_CORE_ID, 0)) {
DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
} else {
if (bus->sih->chip == BCM43602_CHIP_ID) {
/* Firmware crashes on SOCSRAM access when core is in reset */
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n",
__FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
si_core_reset(bus->sih, 0, 0);
si_setcore(bus->sih, ARMCR4_CORE_ID, 0);
}
/* write vars */
if ((bcmerror = dhdpcie_bus_write_vars(bus))) {
DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__));
goto fail;
}
/* switch back to arm core again */
if (!(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM CR4 core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
/* write address 0 with reset instruction */
bcmerror = dhdpcie_bus_membytes(bus, TRUE, 0,
(uint8 *)&bus->resetinstr, sizeof(bus->resetinstr));
/* now remove reset and halt and continue to run CR4 */
}
si_core_reset(bus->sih, 0, 0);
/* Allow HT Clock now that the ARM is running. */
bus->alp_only = FALSE;
bus->dhd->busstate = DHD_BUS_LOAD;
}
fail:
/* Always return to PCIE core */
si_setcore(bus->sih, PCIE2_CORE_ID, 0);
return bcmerror;
}
static int
dhdpcie_bus_write_vars(dhd_bus_t *bus)
{
int bcmerror = 0;
uint32 varsize, phys_size;
uint32 varaddr;
uint8 *vbuffer;
uint32 varsizew;
#ifdef DHD_DEBUG
uint8 *nvram_ularray;
#endif /* DHD_DEBUG */
/* Even if there are no vars are to be written, we still need to set the ramsize. */
varsize = bus->varsz ? ROUNDUP(bus->varsz, 4) : 0;
varaddr = (bus->ramsize - 4) - varsize;
varaddr += bus->dongle_ram_base;
if (bus->vars) {
vbuffer = (uint8 *)MALLOC(bus->dhd->osh, varsize);
if (!vbuffer)
return BCME_NOMEM;
bzero(vbuffer, varsize);
bcopy(bus->vars, vbuffer, bus->varsz);
/* Write the vars list */
bcmerror = dhdpcie_bus_membytes(bus, TRUE, varaddr, vbuffer, varsize);
/* Implement read back and verify later */
#ifdef DHD_DEBUG
/* Verify NVRAM bytes */
DHD_INFO(("Compare NVRAM dl & ul; varsize=%d\n", varsize));
nvram_ularray = (uint8*)MALLOC(bus->dhd->osh, varsize);
if (!nvram_ularray)
return BCME_NOMEM;
/* Upload image to verify downloaded contents. */
memset(nvram_ularray, 0xaa, varsize);
/* Read the vars list to temp buffer for comparison */
bcmerror = dhdpcie_bus_membytes(bus, FALSE, varaddr, nvram_ularray, varsize);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d nvram bytes at 0x%08x\n",
__FUNCTION__, bcmerror, varsize, varaddr));
}
/* Compare the org NVRAM with the one read from RAM */
if (memcmp(vbuffer, nvram_ularray, varsize)) {
DHD_ERROR(("%s: Downloaded NVRAM image is corrupted.\n", __FUNCTION__));
} else
DHD_ERROR(("%s: Download, Upload and compare of NVRAM succeeded.\n",
__FUNCTION__));
MFREE(bus->dhd->osh, nvram_ularray, varsize);
#endif /* DHD_DEBUG */
MFREE(bus->dhd->osh, vbuffer, varsize);
}
phys_size = REMAP_ENAB(bus) ? bus->ramsize : bus->orig_ramsize;
phys_size += bus->dongle_ram_base;
/* adjust to the user specified RAM */
DHD_INFO(("Physical memory size: %d, usable memory size: %d\n",
phys_size, bus->ramsize));
DHD_INFO(("Vars are at %d, orig varsize is %d\n",
varaddr, varsize));
varsize = ((phys_size - 4) - varaddr);
/*
* Determine the length token:
* Varsize, converted to words, in lower 16-bits, checksum in upper 16-bits.
*/
if (bcmerror) {
varsizew = 0;
bus->nvram_csm = varsizew;
} else {
varsizew = varsize / 4;
varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF);
bus->nvram_csm = varsizew;
varsizew = htol32(varsizew);
}
DHD_INFO(("New varsize is %d, length token=0x%08x\n", varsize, varsizew));
/* Write the length token to the last word */
bcmerror = dhdpcie_bus_membytes(bus, TRUE, (phys_size - 4),
(uint8*)&varsizew, 4);
return bcmerror;
}
int
dhdpcie_downloadvars(dhd_bus_t *bus, void *arg, int len)
{
int bcmerror = BCME_OK;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Basic sanity checks */
if (bus->dhd->up) {
bcmerror = BCME_NOTDOWN;
goto err;
}
if (!len) {
bcmerror = BCME_BUFTOOSHORT;
goto err;
}
/* Free the old ones and replace with passed variables */
if (bus->vars)
MFREE(bus->dhd->osh, bus->vars, bus->varsz);
bus->vars = MALLOC(bus->dhd->osh, len);
bus->varsz = bus->vars ? len : 0;
if (bus->vars == NULL) {
bcmerror = BCME_NOMEM;
goto err;
}
/* Copy the passed variables, which should include the terminating double-null */
bcopy(arg, bus->vars, bus->varsz);
err:
return bcmerror;
}
#ifndef BCMPCIE_OOB_HOST_WAKE
/* loop through the capability list and see if the pcie capabilty exists */
uint8
dhdpcie_find_pci_capability(osl_t *osh, uint8 req_cap_id)
{
uint8 cap_id;
uint8 cap_ptr = 0;
uint8 byte_val;
/* check for Header type 0 */
byte_val = read_pci_cfg_byte(PCI_CFG_HDR);
if ((byte_val & 0x7f) != PCI_HEADER_NORMAL) {
DHD_ERROR(("%s : PCI config header not normal.\n", __FUNCTION__));
goto end;
}
/* check if the capability pointer field exists */
byte_val = read_pci_cfg_byte(PCI_CFG_STAT);
if (!(byte_val & PCI_CAPPTR_PRESENT)) {
DHD_ERROR(("%s : PCI CAP pointer not present.\n", __FUNCTION__));
goto end;
}
cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR);
/* check if the capability pointer is 0x00 */
if (cap_ptr == 0x00) {
DHD_ERROR(("%s : PCI CAP pointer is 0x00.\n", __FUNCTION__));
goto end;
}
/* loop thr'u the capability list and see if the pcie capabilty exists */
cap_id = read_pci_cfg_byte(cap_ptr);
while (cap_id != req_cap_id) {
cap_ptr = read_pci_cfg_byte((cap_ptr + 1));
if (cap_ptr == 0x00) break;
cap_id = read_pci_cfg_byte(cap_ptr);
}
end:
return cap_ptr;
}
void
dhdpcie_pme_active(osl_t *osh, bool enable)
{
uint8 cap_ptr;
uint32 pme_csr;
cap_ptr = dhdpcie_find_pci_capability(osh, PCI_CAP_POWERMGMTCAP_ID);
if (!cap_ptr) {
DHD_ERROR(("%s : Power Management Capability not present\n", __FUNCTION__));
return;
}
pme_csr = OSL_PCI_READ_CONFIG(osh, cap_ptr + PME_CSR_OFFSET, sizeof(uint32));
DHD_ERROR(("%s : pme_sts_ctrl 0x%x\n", __FUNCTION__, pme_csr));
pme_csr |= PME_CSR_PME_STAT;
if (enable) {
pme_csr |= PME_CSR_PME_EN;
} else {
pme_csr &= ~PME_CSR_PME_EN;
}
OSL_PCI_WRITE_CONFIG(osh, cap_ptr + PME_CSR_OFFSET, sizeof(uint32), pme_csr);
}
#endif /* BCMPCIE_OOB_HOST_WAKE */
/* Add bus dump output to a buffer */
void dhd_bus_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf)
{
uint16 flowid;
flow_ring_node_t *flow_ring_node;
dhd_prot_print_info(dhdp, strbuf);
for (flowid = 0; flowid < dhdp->num_flow_rings; flowid++) {
flow_ring_node = DHD_FLOW_RING(dhdp, flowid);
if (flow_ring_node->active) {
bcm_bprintf(strbuf, "Flow:%d IF %d Prio %d Qlen %d ",
flow_ring_node->flowid, flow_ring_node->flow_info.ifindex,
flow_ring_node->flow_info.tid, flow_ring_node->queue.len);
dhd_prot_print_flow_ring(dhdp, flow_ring_node->prot_info, strbuf);
}
}
}
static void
dhd_update_txflowrings(dhd_pub_t *dhd)
{
dll_t *item, *next;
flow_ring_node_t *flow_ring_node;
struct dhd_bus *bus = dhd->bus;
for (item = dll_head_p(&bus->const_flowring);
!dll_end(&bus->const_flowring, item); item = next) {
next = dll_next_p(item);
flow_ring_node = dhd_constlist_to_flowring(item);
dhd_prot_update_txflowring(dhd, flow_ring_node->flowid, flow_ring_node->prot_info);
}
}
/* Mailbox ringbell Function */
static void
dhd_bus_gen_devmb_intr(struct dhd_bus *bus)
{
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
DHD_ERROR(("mailbox communication not supported\n"));
return;
}
if (bus->db1_for_mb) {
/* this is a pcie core register, not the config regsiter */
DHD_INFO(("writing a mail box interrupt to the device, through doorbell 1\n"));
si_corereg(bus->sih, bus->sih->buscoreidx, PCIH2D_DB1, ~0, 0x12345678);
}
else {
DHD_INFO(("writing a mail box interrupt to the device, through config space\n"));
dhdpcie_bus_cfg_write_dword(bus, PCISBMbx, 4, (1 << 0));
dhdpcie_bus_cfg_write_dword(bus, PCISBMbx, 4, (1 << 0));
}
}
/* doorbell ring Function */
void
dhd_bus_ringbell(struct dhd_bus *bus, uint32 value)
{
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxInt, PCIE_INTB, PCIE_INTB);
} else {
/* this is a pcie core register, not the config regsiter */
DHD_INFO(("writing a door bell to the device\n"));
si_corereg(bus->sih, bus->sih->buscoreidx, PCIH2D_MailBox, ~0, 0x12345678);
}
}
static void
dhd_bus_ringbell_fast(struct dhd_bus *bus, uint32 value)
{
W_REG(bus->pcie_mb_intr_osh, bus->pcie_mb_intr_addr, value);
}
static void
dhd_bus_ringbell_oldpcie(struct dhd_bus *bus, uint32 value)
{
uint32 w;
w = (R_REG(bus->pcie_mb_intr_osh, bus->pcie_mb_intr_addr) & ~PCIE_INTB) | PCIE_INTB;
W_REG(bus->pcie_mb_intr_osh, bus->pcie_mb_intr_addr, w);
}
dhd_mb_ring_t
dhd_bus_get_mbintr_fn(struct dhd_bus *bus)
{
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
bus->pcie_mb_intr_addr = si_corereg_addr(bus->sih, bus->sih->buscoreidx,
PCIMailBoxInt);
if (bus->pcie_mb_intr_addr) {
bus->pcie_mb_intr_osh = si_osh(bus->sih);
return dhd_bus_ringbell_oldpcie;
}
} else {
bus->pcie_mb_intr_addr = si_corereg_addr(bus->sih, bus->sih->buscoreidx,
PCIH2D_MailBox);
if (bus->pcie_mb_intr_addr) {
bus->pcie_mb_intr_osh = si_osh(bus->sih);
return dhd_bus_ringbell_fast;
}
}
return dhd_bus_ringbell;
}
bool BCMFASTPATH
dhd_bus_dpc(struct dhd_bus *bus)
{
uint32 intstatus = 0;
uint32 newstatus = 0;
bool resched = FALSE; /* Flag indicating resched wanted */
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: Bus down, ret\n", __FUNCTION__));
bus->intstatus = 0;
return 0;
}
intstatus = bus->intstatus;
if ((bus->sih->buscorerev == 6) || (bus->sih->buscorerev == 4) ||
(bus->sih->buscorerev == 2)) {
newstatus = dhdpcie_bus_cfg_read_dword(bus, PCIIntstatus, 4);
dhdpcie_bus_cfg_write_dword(bus, PCIIntstatus, 4, newstatus);
/* Merge new bits with previous */
intstatus |= newstatus;
bus->intstatus = 0;
if (intstatus & I_MB) {
resched = dhdpcie_bus_process_mailbox_intr(bus, intstatus);
}
} else {
/* this is a PCIE core register..not a config register... */
newstatus = si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxInt, 0, 0);
intstatus |= (newstatus & bus->def_intmask);
si_corereg(bus->sih, bus->sih->buscoreidx, PCIMailBoxInt, newstatus, newstatus);
if (intstatus & bus->def_intmask) {
resched = dhdpcie_bus_process_mailbox_intr(bus, intstatus);
intstatus &= ~bus->def_intmask;
}
}
if (!resched)
dhdpcie_bus_intr_enable(bus);
return resched;
}
static void
dhdpcie_send_mb_data(dhd_bus_t *bus, uint32 h2d_mb_data)
{
uint32 cur_h2d_mb_data = 0;
dhd_bus_cmn_readshared(bus, &cur_h2d_mb_data, HTOD_MB_DATA, 0);
if (cur_h2d_mb_data != 0) {
uint32 i = 0;
DHD_INFO(("GRRRRRRR: MB transaction is already pending 0x%04x\n", cur_h2d_mb_data));
while ((i++ < 100) && cur_h2d_mb_data) {
OSL_DELAY(10);
dhd_bus_cmn_readshared(bus, &cur_h2d_mb_data, HTOD_MB_DATA, 0);
}
if (i >= 100)
DHD_ERROR(("waited 1ms for the dngl to ack the previous mb transaction\n"));
}
dhd_bus_cmn_writeshared(bus, &h2d_mb_data, sizeof(uint32), HTOD_MB_DATA, 0);
dhd_bus_gen_devmb_intr(bus);
if (h2d_mb_data == H2D_HOST_D3_INFORM)
DHD_INFO_HW4(("%s: send H2D_HOST_D3_INFORM to dongle\n", __FUNCTION__));
}
static void
dhdpcie_handle_mb_data(dhd_bus_t *bus)
{
uint32 d2h_mb_data = 0;
uint32 zero = 0;
dhd_bus_cmn_readshared(bus, &d2h_mb_data, DTOH_MB_DATA, 0);
if (!d2h_mb_data)
return;
dhd_bus_cmn_writeshared(bus, &zero, sizeof(uint32), DTOH_MB_DATA, 0);
DHD_INFO(("D2H_MB_DATA: 0x%04x\n", d2h_mb_data));
if (d2h_mb_data & D2H_DEV_DS_ENTER_REQ) {
/* what should we do */
DHD_INFO(("D2H_MB_DATA: DEEP SLEEP REQ\n"));
dhdpcie_send_mb_data(bus, H2D_HOST_DS_ACK);
DHD_INFO(("D2H_MB_DATA: sent DEEP SLEEP ACK\n"));
}
if (d2h_mb_data & D2H_DEV_DS_EXIT_NOTE) {
/* what should we do */
DHD_INFO(("D2H_MB_DATA: DEEP SLEEP EXIT\n"));
}
if (d2h_mb_data & D2H_DEV_D3_ACK) {
/* what should we do */
DHD_INFO_HW4(("%s D2H_MB_DATA: Received D3 ACK\n", __FUNCTION__));
if (!bus->wait_for_d3_ack) {
bus->wait_for_d3_ack = 1;
dhd_os_d3ack_wake(bus->dhd);
}
}
if (d2h_mb_data & D2H_DEV_FWHALT) {
DHD_INFO(("FW trap has happened\n"));
#ifdef DHD_DEBUG
dhdpcie_checkdied(bus, NULL, 0);
#endif
bus->dhd->busstate = DHD_BUS_DOWN;
}
}
static bool
dhdpcie_bus_process_mailbox_intr(dhd_bus_t *bus, uint32 intstatus)
{
bool resched = FALSE;
if ((bus->sih->buscorerev == 2) || (bus->sih->buscorerev == 6) ||
(bus->sih->buscorerev == 4)) {
/* Msg stream interrupt */
if (intstatus & I_BIT1) {
resched = dhdpci_bus_read_frames(bus);
} else if (intstatus & I_BIT0) {
/* do nothing for Now */
}
}
else {
if (intstatus & (PCIE_MB_TOPCIE_FN0_0 | PCIE_MB_TOPCIE_FN0_1))
dhdpcie_handle_mb_data(bus);
if (bus->dhd->busstate == DHD_BUS_SUSPEND) {
goto exit;
}
if (intstatus & PCIE_MB_D2H_MB_MASK) {
resched = dhdpci_bus_read_frames(bus);
}
}
exit:
return resched;
}
/* Decode dongle to host message stream */
static bool
dhdpci_bus_read_frames(dhd_bus_t *bus)
{
bool more = FALSE;
/* There may be frames in both ctrl buf and data buf; check ctrl buf first */
DHD_PERIM_LOCK(bus->dhd); /* Take the perimeter lock */
dhd_prot_process_ctrlbuf(bus->dhd);
/* Unlock to give chance for resp to be handled */
DHD_PERIM_UNLOCK(bus->dhd); /* Release the perimeter lock */
DHD_PERIM_LOCK(bus->dhd); /* Take the perimeter lock */
/* update the flow ring cpls */
dhd_update_txflowrings(bus->dhd);
/* With heavy TX traffic, we could get a lot of TxStatus
* so add bound
*/
more |= dhd_prot_process_msgbuf_txcpl(bus->dhd, dhd_txbound);
/* With heavy RX traffic, this routine potentially could spend some time
* processing RX frames without RX bound
*/
more |= dhd_prot_process_msgbuf_rxcpl(bus->dhd, dhd_rxbound);
DHD_PERIM_UNLOCK(bus->dhd); /* Release the perimeter lock */
return more;
}
static int
dhdpcie_readshared(dhd_bus_t *bus)
{
uint32 addr = 0;
int rv, w_init, r_init;
uint32 shaddr = 0;
pciedev_shared_t *sh = bus->pcie_sh;
dhd_timeout_t tmo;
shaddr = bus->dongle_ram_base + bus->ramsize - 4;
/* start a timer for 5 seconds */
dhd_timeout_start(&tmo, MAX_READ_TIMEOUT);
while (((addr == 0) || (addr == bus->nvram_csm)) && !dhd_timeout_expired(&tmo)) {
/* Read last word in memory to determine address of sdpcm_shared structure */
addr = LTOH32(dhdpcie_bus_rtcm32(bus, shaddr));
}
if ((addr == 0) || (addr == bus->nvram_csm) || (addr < bus->dongle_ram_base) ||
(addr > shaddr)) {
DHD_ERROR(("%s: address (0x%08x) of pciedev_shared invalid\n",
__FUNCTION__, addr));
DHD_ERROR(("Waited %u usec, dongle is not ready\n", tmo.elapsed));
return BCME_ERROR;
} else {
bus->shared_addr = (ulong)addr;
DHD_ERROR(("PCIe shared addr read took %u usec "
"before dongle is ready\n", tmo.elapsed));
}
/* Read hndrte_shared structure */
if ((rv = dhdpcie_bus_membytes(bus, FALSE, addr, (uint8 *)sh,
sizeof(pciedev_shared_t))) < 0) {
DHD_ERROR(("Failed to read PCIe shared struct,"
"size read %d < %d\n", rv, (int)sizeof(pciedev_shared_t)));
return rv;
}
/* Endianness */
sh->flags = ltoh32(sh->flags);
sh->trap_addr = ltoh32(sh->trap_addr);
sh->assert_exp_addr = ltoh32(sh->assert_exp_addr);
sh->assert_file_addr = ltoh32(sh->assert_file_addr);
sh->assert_line = ltoh32(sh->assert_line);
sh->console_addr = ltoh32(sh->console_addr);
sh->msgtrace_addr = ltoh32(sh->msgtrace_addr);
sh->dma_rxoffset = ltoh32(sh->dma_rxoffset);
sh->rings_info_ptr = ltoh32(sh->rings_info_ptr);
/* load bus console address */
#ifdef DHD_DEBUG
bus->console_addr = sh->console_addr;
#endif
/* Read the dma rx offset */
bus->dma_rxoffset = bus->pcie_sh->dma_rxoffset;
dhd_prot_rx_dataoffset(bus->dhd, bus->dma_rxoffset);
DHD_ERROR(("DMA RX offset from shared Area %d\n", bus->dma_rxoffset));
if ((sh->flags & PCIE_SHARED_VERSION_MASK) > PCIE_SHARED_VERSION) {
DHD_ERROR(("%s: pcie_shared version %d in dhd "
"is older than pciedev_shared version %d in dongle\n",
__FUNCTION__, PCIE_SHARED_VERSION,
sh->flags & PCIE_SHARED_VERSION_MASK));
return BCME_ERROR;
}
if ((sh->flags & PCIE_SHARED_VERSION_MASK) >= 4) {
if (sh->flags & PCIE_SHARED_TXPUSH_SPRT) {
#ifdef DHDTCPACK_SUPPRESS
/* Do not use tcpack suppress as packets don't stay in queue */
dhd_tcpack_suppress_set(bus->dhd, TCPACK_SUP_OFF);
#endif
bus->txmode_push = TRUE;
} else
bus->txmode_push = FALSE;
}
DHD_ERROR(("bus->txmode_push is set to %d\n", bus->txmode_push));
/* Does the FW support DMA'ing r/w indices */
if (sh->flags & PCIE_SHARED_DMA_INDEX) {
DHD_ERROR(("%s: Host support DMAing indices: H2D:%d - D2H:%d. FW supports it\n",
__FUNCTION__,
(DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support) ? 1 : 0),
(DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support) ? 1 : 0)));
} else if (DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support) ||
DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support)) {
#ifdef BCM_INDX_DMA
DHD_ERROR(("%s: Incompatible FW. FW does not support DMAing indices\n",
__FUNCTION__));
return BCME_ERROR;
#endif
DHD_ERROR(("%s: Host supports DMAing indices but FW does not\n",
__FUNCTION__));
bus->dhd->dma_d2h_ring_upd_support = FALSE;
bus->dhd->dma_h2d_ring_upd_support = FALSE;
}
/* get ring_info, ring_state and mb data ptrs and store the addresses in bus structure */
{
ring_info_t ring_info;
if ((rv = dhdpcie_bus_membytes(bus, FALSE, sh->rings_info_ptr,
(uint8 *)&ring_info, sizeof(ring_info_t))) < 0)
return rv;
bus->h2d_mb_data_ptr_addr = ltoh32(sh->h2d_mb_data_ptr);
bus->d2h_mb_data_ptr_addr = ltoh32(sh->d2h_mb_data_ptr);
bus->max_sub_queues = ltoh16(ring_info.max_sub_queues);
/* If both FW and Host support DMA'ing indices, allocate memory and notify FW
* The max_sub_queues is read from FW initialized ring_info
*/
if (DMA_INDX_ENAB(bus->dhd->dma_h2d_ring_upd_support)) {
w_init = dhd_prot_init_index_dma_block(bus->dhd,
HOST_TO_DNGL_DMA_WRITEINDX_BUFFER,
bus->max_sub_queues);
r_init = dhd_prot_init_index_dma_block(bus->dhd,
DNGL_TO_HOST_DMA_READINDX_BUFFER,
BCMPCIE_D2H_COMMON_MSGRINGS);
if ((w_init != BCME_OK) || (r_init != BCME_OK)) {
DHD_ERROR(("%s: Failed to allocate memory for dma'ing h2d indices"
"Host will use w/r indices in TCM\n",
__FUNCTION__));
bus->dhd->dma_h2d_ring_upd_support = FALSE;
}
}
if (DMA_INDX_ENAB(bus->dhd->dma_d2h_ring_upd_support)) {
w_init = dhd_prot_init_index_dma_block(bus->dhd,
DNGL_TO_HOST_DMA_WRITEINDX_BUFFER,
BCMPCIE_D2H_COMMON_MSGRINGS);
r_init = dhd_prot_init_index_dma_block(bus->dhd,
HOST_TO_DNGL_DMA_READINDX_BUFFER,
bus->max_sub_queues);
if ((w_init != BCME_OK) || (r_init != BCME_OK)) {
DHD_ERROR(("%s: Failed to allocate memory for dma'ing d2h indices"
"Host will use w/r indices in TCM\n",
__FUNCTION__));
bus->dhd->dma_d2h_ring_upd_support = FALSE;
}
}
/* read ringmem and ringstate ptrs from shared area and store in host variables */
dhd_fillup_ring_sharedptr_info(bus, &ring_info);
bcm_print_bytes("ring_info_raw", (uchar *)&ring_info, sizeof(ring_info_t));
DHD_INFO(("ring_info\n"));
DHD_ERROR(("max H2D queues %d\n", ltoh16(ring_info.max_sub_queues)));
DHD_INFO(("mail box address\n"));
DHD_INFO(("h2d_mb_data_ptr_addr 0x%04x\n", bus->h2d_mb_data_ptr_addr));
DHD_INFO(("d2h_mb_data_ptr_addr 0x%04x\n", bus->d2h_mb_data_ptr_addr));
}
bus->dhd->d2h_sync_mode = sh->flags & PCIE_SHARED_D2H_SYNC_MODE_MASK;
DHD_INFO(("d2h_sync_mode 0x%08x\n", bus->dhd->d2h_sync_mode));
return BCME_OK;
}
/* Read ring mem and ring state ptr info from shared are in TCM */
static void
dhd_fillup_ring_sharedptr_info(dhd_bus_t *bus, ring_info_t *ring_info)
{
uint16 i = 0;
uint16 j = 0;
uint32 tcm_memloc;
uint32 d2h_w_idx_ptr, d2h_r_idx_ptr, h2d_w_idx_ptr, h2d_r_idx_ptr;
/* Ring mem ptr info */
/* Alloated in the order
H2D_MSGRING_CONTROL_SUBMIT 0
H2D_MSGRING_RXPOST_SUBMIT 1
D2H_MSGRING_CONTROL_COMPLETE 2
D2H_MSGRING_TX_COMPLETE 3
D2H_MSGRING_RX_COMPLETE 4
TX_FLOW_RING 5
*/
{
/* ringmemptr holds start of the mem block address space */
tcm_memloc = ltoh32(ring_info->ringmem_ptr);
/* Find out ringmem ptr for each ring common ring */
for (i = 0; i <= BCMPCIE_COMMON_MSGRING_MAX_ID; i++) {
bus->ring_sh[i].ring_mem_addr = tcm_memloc;
/* Update mem block */
tcm_memloc = tcm_memloc + sizeof(ring_mem_t);
DHD_INFO(("ring id %d ring mem addr 0x%04x \n",
i, bus->ring_sh[i].ring_mem_addr));
}
/* Tx flow Ring */
if (bus->txmode_push) {
bus->ring_sh[i].ring_mem_addr = tcm_memloc;
DHD_INFO(("TX ring ring id %d ring mem addr 0x%04x \n",
i, bus->ring_sh[i].ring_mem_addr));
}
}
/* Ring state mem ptr info */
{
d2h_w_idx_ptr = ltoh32(ring_info->d2h_w_idx_ptr);
d2h_r_idx_ptr = ltoh32(ring_info->d2h_r_idx_ptr);
h2d_w_idx_ptr = ltoh32(ring_info->h2d_w_idx_ptr);
h2d_r_idx_ptr = ltoh32(ring_info->h2d_r_idx_ptr);
/* Store h2d common ring write/read pointers */
for (i = 0; i < BCMPCIE_H2D_COMMON_MSGRINGS; i++) {
bus->ring_sh[i].ring_state_w = h2d_w_idx_ptr;
bus->ring_sh[i].ring_state_r = h2d_r_idx_ptr;
/* update mem block */
h2d_w_idx_ptr = h2d_w_idx_ptr + sizeof(uint32);
h2d_r_idx_ptr = h2d_r_idx_ptr + sizeof(uint32);
DHD_INFO(("h2d w/r : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w, bus->ring_sh[i].ring_state_r));
}
/* Store d2h common ring write/read pointers */
for (j = 0; j < BCMPCIE_D2H_COMMON_MSGRINGS; j++, i++) {
bus->ring_sh[i].ring_state_w = d2h_w_idx_ptr;
bus->ring_sh[i].ring_state_r = d2h_r_idx_ptr;
/* update mem block */
d2h_w_idx_ptr = d2h_w_idx_ptr + sizeof(uint32);
d2h_r_idx_ptr = d2h_r_idx_ptr + sizeof(uint32);
DHD_INFO(("d2h w/r : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w, bus->ring_sh[i].ring_state_r));
}
/* Store txflow ring write/read pointers */
if (bus->txmode_push) {
bus->ring_sh[i].ring_state_w = h2d_w_idx_ptr;
bus->ring_sh[i].ring_state_r = h2d_r_idx_ptr;
DHD_INFO(("txflow : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w, bus->ring_sh[i].ring_state_r));
} else {
for (j = 0; j < (bus->max_sub_queues - BCMPCIE_H2D_COMMON_MSGRINGS);
i++, j++)
{
bus->ring_sh[i].ring_state_w = h2d_w_idx_ptr;
bus->ring_sh[i].ring_state_r = h2d_r_idx_ptr;
/* update mem block */
h2d_w_idx_ptr = h2d_w_idx_ptr + sizeof(uint32);
h2d_r_idx_ptr = h2d_r_idx_ptr + sizeof(uint32);
DHD_INFO(("FLOW Rings h2d w/r : idx %d write %x read %x \n", i,
bus->ring_sh[i].ring_state_w,
bus->ring_sh[i].ring_state_r));
}
}
}
}
/* Initialize bus module: prepare for communication w/dongle */
int dhd_bus_init(dhd_pub_t *dhdp, bool enforce_mutex)
{
dhd_bus_t *bus = dhdp->bus;
int ret = 0;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(bus->dhd);
if (!bus->dhd)
return 0;
/* Make sure we're talking to the core. */
bus->reg = si_setcore(bus->sih, PCIE2_CORE_ID, 0);
ASSERT(bus->reg != NULL);
/* before opening up bus for data transfer, check if shared are is intact */
ret = dhdpcie_readshared(bus);
if (ret < 0) {
DHD_ERROR(("%s :Shared area read failed \n", __FUNCTION__));
return ret;
}
/* Make sure we're talking to the core. */
bus->reg = si_setcore(bus->sih, PCIE2_CORE_ID, 0);
ASSERT(bus->reg != NULL);
/* Set bus state according to enable result */
dhdp->busstate = DHD_BUS_DATA;
/* Enable the interrupt after device is up */
dhdpcie_bus_intr_enable(bus);
/* bcmsdh_intr_unmask(bus->sdh); */
return ret;
}
static void
dhdpcie_init_shared_addr(dhd_bus_t *bus)
{
uint32 addr = 0;
uint32 val = 0;
addr = bus->dongle_ram_base + bus->ramsize - 4;
dhdpcie_bus_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val));
}
bool
dhdpcie_chipmatch(uint16 vendor, uint16 device)
{
if (vendor != PCI_VENDOR_ID_BROADCOM) {
DHD_ERROR(("%s: Unsupported vendor %x device %x\n", __FUNCTION__,
vendor, device));
return (-ENODEV);
}
if ((device == BCM4350_D11AC_ID) || (device == BCM4350_D11AC2G_ID) ||
(device == BCM4350_D11AC5G_ID) || BCM4350_CHIP(device))
return 0;
if ((device == BCM4354_D11AC_ID) || (device == BCM4354_D11AC2G_ID) ||
(device == BCM4354_D11AC5G_ID) || (device == BCM4354_CHIP_ID))
return 0;
if ((device == BCM4356_D11AC_ID) || (device == BCM4356_D11AC2G_ID) ||
(device == BCM4356_D11AC5G_ID) || (device == BCM4356_CHIP_ID))
return 0;
if ((device == BCM4345_D11AC_ID) || (device == BCM4345_D11AC2G_ID) ||
(device == BCM4345_D11AC5G_ID) || (device == BCM4345_CHIP_ID))
return 0;
if ((device == BCM4335_D11AC_ID) || (device == BCM4335_D11AC2G_ID) ||
(device == BCM4335_D11AC5G_ID) || (device == BCM4335_CHIP_ID))
return 0;
if ((device == BCM43602_D11AC_ID) || (device == BCM43602_D11AC2G_ID) ||
(device == BCM43602_D11AC5G_ID) || (device == BCM43602_CHIP_ID))
return 0;
if ((device == BCM43569_D11AC_ID) || (device == BCM43569_D11AC2G_ID) ||
(device == BCM43569_D11AC5G_ID) || (device == BCM43569_CHIP_ID))
return 0;
if ((device == BCM4358_D11AC_ID) || (device == BCM4358_D11AC2G_ID) ||
(device == BCM4358_D11AC5G_ID) || (device == BCM4358_CHIP_ID))
return 0;
if ((device == BCM4349_D11AC_ID) || (device == BCM4349_D11AC2G_ID) ||
(device == BCM4349_D11AC5G_ID) || (device == BCM4349_CHIP_ID))
return 0;
if ((device == BCM4355_D11AC_ID) || (device == BCM4355_D11AC2G_ID) ||
(device == BCM4355_D11AC5G_ID) || (device == BCM4355_CHIP_ID))
return 0;
if ((device == BCM4359_D11AC_ID) || (device == BCM4359_D11AC2G_ID) ||
(device == BCM4359_D11AC5G_ID) || (device == BCM4359_CHIP_ID))
return 0;
DHD_ERROR(("%s: Unsupported vendor %x device %x\n", __FUNCTION__, vendor, device));
return (-ENODEV);
}
/*
Name: dhdpcie_cc_nvmshadow
Description:
A shadow of OTP/SPROM exists in ChipCommon Region
betw. 0x800 and 0xBFF (Backplane Addr. 0x1800_0800 and 0x1800_0BFF).
Strapping option (SPROM vs. OTP), presence of OTP/SPROM and its size
can also be read from ChipCommon Registers.
*/
static int
dhdpcie_cc_nvmshadow(dhd_bus_t *bus, struct bcmstrbuf *b)
{
uint16 dump_offset = 0;
uint32 dump_size = 0, otp_size = 0, sprom_size = 0;
/* Table for 65nm OTP Size (in bits) */
int otp_size_65nm[8] = {0, 2048, 4096, 8192, 4096, 6144, 512, 1024};
volatile uint16 *nvm_shadow;
uint cur_coreid;
uint chipc_corerev;
chipcregs_t *chipcregs;
/* Save the current core */
cur_coreid = si_coreid(bus->sih);
/* Switch to ChipC */
chipcregs = (chipcregs_t *)si_setcore(bus->sih, CC_CORE_ID, 0);
chipc_corerev = si_corerev(bus->sih);
/* Check ChipcommonCore Rev */
if (chipc_corerev < 44) {
DHD_ERROR(("%s: ChipcommonCore Rev %d < 44\n", __FUNCTION__, chipc_corerev));
return BCME_UNSUPPORTED;
}
/* Check ChipID */
if (((uint16)bus->sih->chip != BCM4350_CHIP_ID) &&
((uint16)bus->sih->chip != BCM4345_CHIP_ID)) {
DHD_ERROR(("%s: cc_nvmdump cmd. supported for 4350/4345 only\n",
__FUNCTION__));
return BCME_UNSUPPORTED;
}
/* Check if SRC_PRESENT in SpromCtrl(0x190 in ChipCommon Regs) is set */
if (chipcregs->sromcontrol & SRC_PRESENT) {
/* SPROM Size: 1Kbits (0x0), 4Kbits (0x1), 16Kbits(0x2) */
sprom_size = (1 << (2 * ((chipcregs->sromcontrol & SRC_SIZE_MASK)
>> SRC_SIZE_SHIFT))) * 1024;
bcm_bprintf(b, "\nSPROM Present (Size %d bits)\n", sprom_size);
}
if (chipcregs->sromcontrol & SRC_OTPPRESENT) {
bcm_bprintf(b, "\nOTP Present");
if (((chipcregs->otplayout & OTPL_WRAP_TYPE_MASK) >> OTPL_WRAP_TYPE_SHIFT)
== OTPL_WRAP_TYPE_40NM) {
/* 40nm OTP: Size = (OtpSize + 1) * 1024 bits */
otp_size = (((chipcregs->capabilities & CC_CAP_OTPSIZE)
>> CC_CAP_OTPSIZE_SHIFT) + 1) * 1024;
bcm_bprintf(b, "(Size %d bits)\n", otp_size);
} else {
/* This part is untested since newer chips have 40nm OTP */
otp_size = otp_size_65nm[(chipcregs->capabilities & CC_CAP_OTPSIZE)
>> CC_CAP_OTPSIZE_SHIFT];
bcm_bprintf(b, "(Size %d bits)\n", otp_size);
DHD_INFO(("%s: 65nm/130nm OTP Size not tested. \n",
__FUNCTION__));
}
}
if (((chipcregs->sromcontrol & SRC_PRESENT) == 0) &&
((chipcregs->capabilities & CC_CAP_OTPSIZE) == 0)) {
DHD_ERROR(("%s: SPROM and OTP could not be found \n",
__FUNCTION__));
return BCME_NOTFOUND;
}
/* Check the strapping option in SpromCtrl: Set = OTP otherwise SPROM */
if ((chipcregs->sromcontrol & SRC_OTPSEL) &&
(chipcregs->sromcontrol & SRC_OTPPRESENT)) {
bcm_bprintf(b, "OTP Strap selected.\n"
"\nOTP Shadow in ChipCommon:\n");
dump_size = otp_size / 16 ; /* 16bit words */
} else if (((chipcregs->sromcontrol & SRC_OTPSEL) == 0) &&
(chipcregs->sromcontrol & SRC_PRESENT)) {
bcm_bprintf(b, "SPROM Strap selected\n"
"\nSPROM Shadow in ChipCommon:\n");
/* If SPROM > 8K only 8Kbits is mapped to ChipCommon (0x800 - 0xBFF) */
/* dump_size in 16bit words */
dump_size = sprom_size > 8 ? (8 * 1024) / 16 : sprom_size / 16;
}
else {
DHD_ERROR(("%s: NVM Shadow does not exist in ChipCommon\n",
__FUNCTION__));
return BCME_NOTFOUND;
}
if (bus->regs == NULL) {
DHD_ERROR(("ChipCommon Regs. not initialized\n"));
return BCME_NOTREADY;
} else {
bcm_bprintf(b, "\n OffSet:");
/* Point to the SPROM/OTP shadow in ChipCommon */
nvm_shadow = chipcregs->sromotp;
/*
* Read 16 bits / iteration.
* dump_size & dump_offset in 16-bit words
*/
while (dump_offset < dump_size) {
if (dump_offset % 2 == 0)
/* Print the offset in the shadow space in Bytes */
bcm_bprintf(b, "\n 0x%04x", dump_offset * 2);
bcm_bprintf(b, "\t0x%04x", *(nvm_shadow + dump_offset));
dump_offset += 0x1;
}
}
/* Switch back to the original core */
si_setcore(bus->sih, cur_coreid, 0);
return BCME_OK;
}
uint8 BCMFASTPATH
dhd_bus_is_txmode_push(dhd_bus_t *bus)
{
return bus->txmode_push;
}
void dhd_bus_clean_flow_ring(dhd_bus_t *bus, void *node)
{
void *pkt;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node = (flow_ring_node_t *)node;
unsigned long flags;
queue = &flow_ring_node->queue;
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* clean up BUS level info */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
/* Flush all pending packets in the queue, if any */
while ((pkt = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTFREE(bus->dhd->osh, pkt, TRUE);
}
ASSERT(flow_queue_empty(queue));
flow_ring_node->status = FLOW_RING_STATUS_CLOSED;
flow_ring_node->active = FALSE;
dll_delete(&flow_ring_node->list);
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* Call Flow ring clean up */
dhd_prot_clean_flow_ring(bus->dhd, flow_ring_node->prot_info);
dhd_flowid_free(bus->dhd, flow_ring_node->flow_info.ifindex,
flow_ring_node->flowid);
}
/*
* Allocate a Flow ring buffer,
* Init Ring buffer,
* Send Msg to device about flow ring creation
*/
int
dhd_bus_flow_ring_create_request(dhd_bus_t *bus, void *arg)
{
flow_ring_node_t *flow_ring_node = (flow_ring_node_t *)arg;
DHD_INFO(("%s :Flow create\n", __FUNCTION__));
/* Send Msg to device about flow ring creation */
if (dhd_prot_flow_ring_create(bus->dhd, flow_ring_node) != BCME_OK)
return BCME_NOMEM;
return BCME_OK;
}
void
dhd_bus_flow_ring_create_response(dhd_bus_t *bus, uint16 flowid, int32 status)
{
flow_ring_node_t *flow_ring_node;
unsigned long flags;
DHD_INFO(("%s :Flow Response %d \n", __FUNCTION__, flowid));
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
ASSERT(flow_ring_node->flowid == flowid);
if (status != BCME_OK) {
DHD_ERROR(("%s Flow create Response failure error status = %d \n",
__FUNCTION__, status));
/* Call Flow clean up */
dhd_bus_clean_flow_ring(bus, flow_ring_node);
return;
}
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
flow_ring_node->status = FLOW_RING_STATUS_OPEN;
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
dhd_bus_schedule_queue(bus, flowid, FALSE);
return;
}
int
dhd_bus_flow_ring_delete_request(dhd_bus_t *bus, void *arg)
{
void * pkt;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
unsigned long flags;
DHD_INFO(("%s :Flow Delete\n", __FUNCTION__));
flow_ring_node = (flow_ring_node_t *)arg;
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
if (flow_ring_node->status & FLOW_RING_STATUS_DELETE_PENDING) {
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
DHD_ERROR(("%s :Delete Pending\n", __FUNCTION__));
return BCME_ERROR;
}
flow_ring_node->status = FLOW_RING_STATUS_DELETE_PENDING;
queue = &flow_ring_node->queue; /* queue associated with flow ring */
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* Flush all pending packets in the queue, if any */
while ((pkt = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTFREE(bus->dhd->osh, pkt, TRUE);
}
ASSERT(flow_queue_empty(queue));
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* Send Msg to device about flow ring deletion */
dhd_prot_flow_ring_delete(bus->dhd, flow_ring_node);
return BCME_OK;
}
void
dhd_bus_flow_ring_delete_response(dhd_bus_t *bus, uint16 flowid, uint32 status)
{
flow_ring_node_t *flow_ring_node;
DHD_INFO(("%s :Flow Delete Response %d \n", __FUNCTION__, flowid));
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
ASSERT(flow_ring_node->flowid == flowid);
if (status != BCME_OK) {
DHD_ERROR(("%s Flow Delete Response failure error status = %d \n",
__FUNCTION__, status));
return;
}
/* Call Flow clean up */
dhd_bus_clean_flow_ring(bus, flow_ring_node);
return;
}
int dhd_bus_flow_ring_flush_request(dhd_bus_t *bus, void *arg)
{
void *pkt;
flow_queue_t *queue;
flow_ring_node_t *flow_ring_node;
unsigned long flags;
DHD_INFO(("%s :Flow Delete\n", __FUNCTION__));
flow_ring_node = (flow_ring_node_t *)arg;
queue = &flow_ring_node->queue; /* queue associated with flow ring */
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* Flush all pending packets in the queue, if any */
while ((pkt = dhd_flow_queue_dequeue(bus->dhd, queue)) != NULL) {
PKTFREE(bus->dhd->osh, pkt, TRUE);
}
ASSERT(flow_queue_empty(queue));
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
/* Send Msg to device about flow ring flush */
dhd_prot_flow_ring_flush(bus->dhd, flow_ring_node);
flow_ring_node->status = FLOW_RING_STATUS_FLUSH_PENDING;
return BCME_OK;
}
void
dhd_bus_flow_ring_flush_response(dhd_bus_t *bus, uint16 flowid, uint32 status)
{
flow_ring_node_t *flow_ring_node;
if (status != BCME_OK) {
DHD_ERROR(("%s Flow flush Response failure error status = %d \n",
__FUNCTION__, status));
return;
}
flow_ring_node = DHD_FLOW_RING(bus->dhd, flowid);
ASSERT(flow_ring_node->flowid == flowid);
flow_ring_node->status = FLOW_RING_STATUS_OPEN;
return;
}
uint32
dhd_bus_max_h2d_queues(struct dhd_bus *bus, uint8 *txpush)
{
if (bus->txmode_push)
*txpush = 1;
else
*txpush = 0;
return bus->max_sub_queues;
}
int
dhdpcie_bus_clock_start(struct dhd_bus *bus)
{
return dhdpcie_start_host_pcieclock(bus);
}
int
dhdpcie_bus_clock_stop(struct dhd_bus *bus)
{
return dhdpcie_stop_host_pcieclock(bus);
}
int
dhdpcie_bus_disable_device(struct dhd_bus *bus)
{
return dhdpcie_disable_device(bus);
}
int
dhdpcie_bus_enable_device(struct dhd_bus *bus)
{
return dhdpcie_enable_device(bus);
}
int
dhdpcie_bus_alloc_resource(struct dhd_bus *bus)
{
return dhdpcie_alloc_resource(bus);
}
void
dhdpcie_bus_free_resource(struct dhd_bus *bus)
{
dhdpcie_free_resource(bus);
}
int
dhd_bus_request_irq(struct dhd_bus *bus)
{
return dhdpcie_bus_request_irq(bus);
}
bool
dhdpcie_bus_dongle_attach(struct dhd_bus *bus)
{
return dhdpcie_dongle_attach(bus);
}
int
dhd_bus_release_dongle(struct dhd_bus *bus)
{
bool dongle_isolation;
osl_t *osh;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
osh = bus->osh;
ASSERT(osh);
if (bus->dhd) {
dongle_isolation = bus->dhd->dongle_isolation;
dhdpcie_bus_release_dongle(bus, osh, dongle_isolation, TRUE);
}
}
return 0;
}
#ifdef BCMPCIE_OOB_HOST_WAKE
int dhd_bus_oob_intr_register(dhd_pub_t *dhdp)
{
return dhdpcie_oob_intr_register(dhdp->bus);
}
void dhd_bus_oob_intr_unregister(dhd_pub_t *dhdp)
{
dhdpcie_oob_intr_unregister(dhdp->bus);
}
void dhd_bus_oob_intr_set(dhd_pub_t *dhdp, bool enable)
{
dhdpcie_oob_intr_set(dhdp->bus, enable);
}
#endif /* BCMPCIE_OOB_HOST_WAKE */