tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/bcmwifi_channels.c

1256 lines
33 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* Misc utility routines used by kernel or app-level.
* Contents are wifi-specific, used by any kernel or app-level
* software that might want wifi things as it grows.
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: bcmwifi_channels.c 591285 2015-10-07 11:56:29Z $
*/
#include <bcm_cfg.h>
#include <typedefs.h>
#include <bcmutils.h>
#ifdef BCMDRIVER
#include <osl.h>
#define strtoul(nptr, endptr, base) bcm_strtoul((nptr), (endptr), (base))
#define tolower(c) (bcm_isupper((c)) ? ((c) + 'a' - 'A') : (c))
#else
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#ifndef ASSERT
#define ASSERT(exp)
#endif
#endif /* BCMDRIVER */
#include <bcmwifi_channels.h>
#if defined(WIN32) && (defined(BCMDLL) || defined(WLMDLL))
#include <bcmstdlib.h> /* For wl/exe/GNUmakefile.brcm_wlu and GNUmakefile.wlm_dll */
#endif
/* Definitions for D11AC capable Chanspec type */
/* Chanspec ASCII representation with 802.11ac capability:
* [<band> 'g'] <channel> ['/'<bandwidth> [<ctl-sideband>]['/'<1st80channel>'-'<2nd80channel>]]
*
* <band>:
* (optional) 2, 3, 4, 5 for 2.4GHz, 3GHz, 4GHz, and 5GHz respectively.
* Default value is 2g if channel <= 14, otherwise 5g.
* <channel>:
* channel number of the 5MHz, 10MHz, 20MHz channel,
* or primary channel of 40MHz, 80MHz, 160MHz, or 80+80MHz channel.
* <bandwidth>:
* (optional) 5, 10, 20, 40, 80, 160, or 80+80. Default value is 20.
* <primary-sideband>:
* (only for 2.4GHz band 40MHz) U for upper sideband primary, L for lower.
*
* For 2.4GHz band 40MHz channels, the same primary channel may be the
* upper sideband for one 40MHz channel, and the lower sideband for an
* overlapping 40MHz channel. The U/L disambiguates which 40MHz channel
* is being specified.
*
* For 40MHz in the 5GHz band and all channel bandwidths greater than
* 40MHz, the U/L specificaion is not allowed since the channels are
* non-overlapping and the primary sub-band is derived from its
* position in the wide bandwidth channel.
*
* <1st80Channel>:
* <2nd80Channel>:
* Required for 80+80, otherwise not allowed.
* Specifies the center channel of the first and second 80MHz band.
*
* In its simplest form, it is a 20MHz channel number, with the implied band
* of 2.4GHz if channel number <= 14, and 5GHz otherwise.
*
* To allow for backward compatibility with scripts, the old form for
* 40MHz channels is also allowed: <channel><ctl-sideband>
*
* <channel>:
* primary channel of 40MHz, channel <= 14 is 2GHz, otherwise 5GHz
* <ctl-sideband>:
* "U" for upper, "L" for lower (or lower case "u" "l")
*
* 5 GHz Examples:
* Chanspec BW Center Ch Channel Range Primary Ch
* 5g8 20MHz 8 - -
* 52 20MHz 52 - -
* 52/40 40MHz 54 52-56 52
* 56/40 40MHz 54 52-56 56
* 52/80 80MHz 58 52-64 52
* 56/80 80MHz 58 52-64 56
* 60/80 80MHz 58 52-64 60
* 64/80 80MHz 58 52-64 64
* 52/160 160MHz 50 36-64 52
* 36/160 160MGz 50 36-64 36
* 36/80+80/42-106 80+80MHz 42,106 36-48,100-112 36
*
* 2 GHz Examples:
* Chanspec BW Center Ch Channel Range Primary Ch
* 2g8 20MHz 8 - -
* 8 20MHz 8 - -
* 6 20MHz 6 - -
* 6/40l 40MHz 8 6-10 6
* 6l 40MHz 8 6-10 6
* 6/40u 40MHz 4 2-6 6
* 6u 40MHz 4 2-6 6
*/
/* bandwidth ASCII string */
static const char *wf_chspec_bw_str[] =
{
"5",
"10",
"20",
"40",
"80",
"160",
"80+80",
#ifdef WL11ULB
"2.5"
#else /* WL11ULB */
"na"
#endif /* WL11ULB */
};
static const uint8 wf_chspec_bw_mhz[] =
{5, 10, 20, 40, 80, 160, 160};
#define WF_NUM_BW \
(sizeof(wf_chspec_bw_mhz)/sizeof(uint8))
/* 40MHz channels in 5GHz band */
static const uint8 wf_5g_40m_chans[] =
{38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159};
#define WF_NUM_5G_40M_CHANS \
(sizeof(wf_5g_40m_chans)/sizeof(uint8))
/* 80MHz channels in 5GHz band */
static const uint8 wf_5g_80m_chans[] =
{42, 58, 106, 122, 138, 155};
#define WF_NUM_5G_80M_CHANS \
(sizeof(wf_5g_80m_chans)/sizeof(uint8))
/* 160MHz channels in 5GHz band */
static const uint8 wf_5g_160m_chans[] =
{50, 114};
#define WF_NUM_5G_160M_CHANS \
(sizeof(wf_5g_160m_chans)/sizeof(uint8))
/* convert bandwidth from chanspec to MHz */
static uint
bw_chspec_to_mhz(chanspec_t chspec)
{
uint bw;
bw = (chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT;
return (bw >= WF_NUM_BW ? 0 : wf_chspec_bw_mhz[bw]);
}
/* bw in MHz, return the channel count from the center channel to the
* the channel at the edge of the band
*/
static uint8
center_chan_to_edge(uint bw)
{
/* edge channels separated by BW - 10MHz on each side
* delta from cf to edge is half of that,
* MHz to channel num conversion is 5MHz/channel
*/
return (uint8)(((bw - 20) / 2) / 5);
}
/* return channel number of the low edge of the band
* given the center channel and BW
*/
static uint8
channel_low_edge(uint center_ch, uint bw)
{
return (uint8)(center_ch - center_chan_to_edge(bw));
}
/* return side band number given center channel and control channel
* return -1 on error
*/
static int
channel_to_sb(uint center_ch, uint ctl_ch, uint bw)
{
uint lowest = channel_low_edge(center_ch, bw);
uint sb;
if ((ctl_ch - lowest) % 4) {
/* bad ctl channel, not mult 4 */
return -1;
}
sb = ((ctl_ch - lowest) / 4);
/* sb must be a index to a 20MHz channel in range */
if (sb >= (bw / 20)) {
/* ctl_ch must have been too high for the center_ch */
return -1;
}
return sb;
}
/* return control channel given center channel and side band */
static uint8
channel_to_ctl_chan(uint center_ch, uint bw, uint sb)
{
return (uint8)(channel_low_edge(center_ch, bw) + sb * 4);
}
/* return index of 80MHz channel from channel number
* return -1 on error
*/
static int
channel_80mhz_to_id(uint ch)
{
uint i;
for (i = 0; i < WF_NUM_5G_80M_CHANS; i ++) {
if (ch == wf_5g_80m_chans[i])
return i;
}
return -1;
}
/* wrapper function for wf_chspec_ntoa. In case of an error it puts
* the original chanspec in the output buffer, prepended with "invalid".
* Can be directly used in print routines as it takes care of null
*/
char *
wf_chspec_ntoa_ex(chanspec_t chspec, char *buf)
{
if (wf_chspec_ntoa(chspec, buf) == NULL)
snprintf(buf, CHANSPEC_STR_LEN, "invalid 0x%04x", chspec);
return buf;
}
/* given a chanspec and a string buffer, format the chanspec as a
* string, and return the original pointer a.
* Min buffer length must be CHANSPEC_STR_LEN.
* On error return NULL
*/
char *
wf_chspec_ntoa(chanspec_t chspec, char *buf)
{
const char *band;
uint ctl_chan;
if (wf_chspec_malformed(chspec))
return NULL;
band = "";
/* check for non-default band spec */
if ((CHSPEC_IS2G(chspec) && CHSPEC_CHANNEL(chspec) > CH_MAX_2G_CHANNEL) ||
(CHSPEC_IS5G(chspec) && CHSPEC_CHANNEL(chspec) <= CH_MAX_2G_CHANNEL))
band = (CHSPEC_IS2G(chspec)) ? "2g" : "5g";
/* ctl channel */
ctl_chan = wf_chspec_ctlchan(chspec);
/* bandwidth and ctl sideband */
if (CHSPEC_IS20(chspec)) {
snprintf(buf, CHANSPEC_STR_LEN, "%s%d", band, ctl_chan);
} else if (!CHSPEC_IS8080(chspec)) {
const char *bw;
const char *sb = "";
bw = wf_chspec_bw_str[(chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT];
#ifdef CHANSPEC_NEW_40MHZ_FORMAT
/* ctl sideband string if needed for 2g 40MHz */
if (CHSPEC_IS40(chspec) && CHSPEC_IS2G(chspec)) {
sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l";
}
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, ctl_chan, bw, sb);
#else
/* ctl sideband string instead of BW for 40MHz */
if (CHSPEC_IS40(chspec)) {
sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l";
snprintf(buf, CHANSPEC_STR_LEN, "%s%d%s", band, ctl_chan, sb);
} else {
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, ctl_chan, bw);
}
#endif /* CHANSPEC_NEW_40MHZ_FORMAT */
} else {
/* 80+80 */
uint chan1 = (chspec & WL_CHANSPEC_CHAN1_MASK) >> WL_CHANSPEC_CHAN1_SHIFT;
uint chan2 = (chspec & WL_CHANSPEC_CHAN2_MASK) >> WL_CHANSPEC_CHAN2_SHIFT;
/* convert to channel number */
chan1 = (chan1 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan1] : 0;
chan2 = (chan2 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan2] : 0;
/* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */
snprintf(buf, CHANSPEC_STR_LEN, "%d/80+80/%d-%d", ctl_chan, chan1, chan2);
}
return (buf);
}
static int
read_uint(const char **p, unsigned int *num)
{
unsigned long val;
char *endp = NULL;
val = strtoul(*p, &endp, 10);
/* if endp is the initial pointer value, then a number was not read */
if (endp == *p)
return 0;
/* advance the buffer pointer to the end of the integer string */
*p = endp;
/* return the parsed integer */
*num = (unsigned int)val;
return 1;
}
/* given a chanspec string, convert to a chanspec.
* On error return 0
*/
chanspec_t
wf_chspec_aton(const char *a)
{
chanspec_t chspec;
uint chspec_ch, chspec_band, bw, chspec_bw, chspec_sb;
uint num, ctl_ch;
uint ch1, ch2;
char c, sb_ul = '\0';
int i;
bw = 20;
chspec_sb = 0;
chspec_ch = ch1 = ch2 = 0;
/* parse channel num or band */
if (!read_uint(&a, &num))
return 0;
/* if we are looking at a 'g', then the first number was a band */
c = tolower((int)a[0]);
if (c == 'g') {
a++; /* consume the char */
/* band must be "2" or "5" */
if (num == 2)
chspec_band = WL_CHANSPEC_BAND_2G;
else if (num == 5)
chspec_band = WL_CHANSPEC_BAND_5G;
else
return 0;
/* read the channel number */
if (!read_uint(&a, &ctl_ch))
return 0;
c = tolower((int)a[0]);
}
else {
/* first number is channel, use default for band */
ctl_ch = num;
chspec_band = ((ctl_ch <= CH_MAX_2G_CHANNEL) ?
WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G);
}
if (c == '\0') {
/* default BW of 20MHz */
chspec_bw = WL_CHANSPEC_BW_20;
goto done_read;
}
a ++; /* consume the 'u','l', or '/' */
/* check 'u'/'l' */
if (c == 'u' || c == 'l') {
sb_ul = c;
chspec_bw = WL_CHANSPEC_BW_40;
goto done_read;
}
/* next letter must be '/' */
if (c != '/')
return 0;
/* read bandwidth */
if (!read_uint(&a, &bw))
return 0;
/* convert to chspec value */
if (bw == 2) {
chspec_bw = WL_CHANSPEC_BW_2P5;
} else if (bw == 5) {
chspec_bw = WL_CHANSPEC_BW_5;
} else if (bw == 10) {
chspec_bw = WL_CHANSPEC_BW_10;
} else if (bw == 20) {
chspec_bw = WL_CHANSPEC_BW_20;
} else if (bw == 40) {
chspec_bw = WL_CHANSPEC_BW_40;
} else if (bw == 80) {
chspec_bw = WL_CHANSPEC_BW_80;
} else if (bw == 160) {
chspec_bw = WL_CHANSPEC_BW_160;
} else {
return 0;
}
/* So far we have <band>g<chan>/<bw>
* Can now be followed by u/l if bw = 40,
* or '+80' if bw = 80, to make '80+80' bw,
* or '.5' if bw = 2.5 to make '2.5' bw .
*/
c = tolower((int)a[0]);
/* if we have a 2g/40 channel, we should have a l/u spec now */
if (chspec_band == WL_CHANSPEC_BAND_2G && bw == 40) {
if (c == 'u' || c == 'l') {
a ++; /* consume the u/l char */
sb_ul = c;
goto done_read;
}
}
/* check for 80+80 */
if (c == '+') {
/* 80+80 */
const char plus80[] = "80/";
/* must be looking at '+80/'
* check and consume this string.
*/
chspec_bw = WL_CHANSPEC_BW_8080;
a ++; /* consume the char '+' */
/* consume the '80/' string */
for (i = 0; i < 3; i++) {
if (*a++ != plus80[i]) {
return 0;
}
}
/* read primary 80MHz channel */
if (!read_uint(&a, &ch1))
return 0;
/* must followed by '-' */
if (a[0] != '-')
return 0;
a ++; /* consume the char */
/* read secondary 80MHz channel */
if (!read_uint(&a, &ch2))
return 0;
} else if (c == '.') {
/* 2.5 */
/* must be looking at '.5'
* check and consume this string.
*/
chspec_bw = WL_CHANSPEC_BW_2P5;
a ++; /* consume the char '.' */
/* consume the '5' string */
if (*a++ != '5') {
return 0;
}
}
done_read:
/* skip trailing white space */
while (a[0] == ' ') {
a ++;
}
/* must be end of string */
if (a[0] != '\0')
return 0;
/* Now have all the chanspec string parts read;
* chspec_band, ctl_ch, chspec_bw, sb_ul, ch1, ch2.
* chspec_band and chspec_bw are chanspec values.
* Need to convert ctl_ch, sb_ul, and ch1,ch2 into
* a center channel (or two) and sideband.
*/
/* if a sb u/l string was given, just use that,
* guaranteed to be bw = 40 by sting parse.
*/
if (sb_ul != '\0') {
if (sb_ul == 'l') {
chspec_ch = UPPER_20_SB(ctl_ch);
chspec_sb = WL_CHANSPEC_CTL_SB_LLL;
} else if (sb_ul == 'u') {
chspec_ch = LOWER_20_SB(ctl_ch);
chspec_sb = WL_CHANSPEC_CTL_SB_LLU;
}
}
/* if the bw is 20, center and sideband are trivial */
else if (BW_LE20(chspec_bw)) {
chspec_ch = ctl_ch;
chspec_sb = WL_CHANSPEC_CTL_SB_NONE;
}
/* if the bw is 40/80/160, not 80+80, a single method
* can be used to to find the center and sideband
*/
else if (chspec_bw != WL_CHANSPEC_BW_8080) {
/* figure out ctl sideband based on ctl channel and bandwidth */
const uint8 *center_ch = NULL;
int num_ch = 0;
int sb = -1;
if (chspec_bw == WL_CHANSPEC_BW_40) {
center_ch = wf_5g_40m_chans;
num_ch = WF_NUM_5G_40M_CHANS;
} else if (chspec_bw == WL_CHANSPEC_BW_80) {
center_ch = wf_5g_80m_chans;
num_ch = WF_NUM_5G_80M_CHANS;
} else if (chspec_bw == WL_CHANSPEC_BW_160) {
center_ch = wf_5g_160m_chans;
num_ch = WF_NUM_5G_160M_CHANS;
} else {
return 0;
}
for (i = 0; i < num_ch; i ++) {
sb = channel_to_sb(center_ch[i], ctl_ch, bw);
if (sb >= 0) {
chspec_ch = center_ch[i];
chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT;
break;
}
}
/* check for no matching sb/center */
if (sb < 0) {
return 0;
}
}
/* Otherwise, bw is 80+80. Figure out channel pair and sb */
else {
int ch1_id = 0, ch2_id = 0;
int sb;
/* look up the channel ID for the specified channel numbers */
ch1_id = channel_80mhz_to_id(ch1);
ch2_id = channel_80mhz_to_id(ch2);
/* validate channels */
if (ch1_id < 0 || ch2_id < 0)
return 0;
/* combine 2 channel IDs in channel field of chspec */
chspec_ch = (((uint)ch1_id << WL_CHANSPEC_CHAN1_SHIFT) |
((uint)ch2_id << WL_CHANSPEC_CHAN2_SHIFT));
/* figure out primary 20 MHz sideband */
/* is the primary channel contained in the 1st 80MHz channel? */
sb = channel_to_sb(ch1, ctl_ch, bw);
if (sb < 0) {
/* no match for primary channel 'ctl_ch' in segment0 80MHz channel */
return 0;
}
chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT;
}
chspec = (chspec_ch | chspec_band | chspec_bw | chspec_sb);
if (wf_chspec_malformed(chspec))
return 0;
return chspec;
}
/*
* Verify the chanspec is using a legal set of parameters, i.e. that the
* chanspec specified a band, bw, ctl_sb and channel and that the
* combination could be legal given any set of circumstances.
* RETURNS: TRUE is the chanspec is malformed, false if it looks good.
*/
bool
wf_chspec_malformed(chanspec_t chanspec)
{
uint chspec_bw = CHSPEC_BW(chanspec);
uint chspec_ch = CHSPEC_CHANNEL(chanspec);
/* must be 2G or 5G band */
if (CHSPEC_IS2G(chanspec)) {
/* must be valid bandwidth */
if (!BW_LE40(chspec_bw)) {
return TRUE;
}
} else if (CHSPEC_IS5G(chanspec)) {
if (chspec_bw == WL_CHANSPEC_BW_8080) {
uint ch1_id, ch2_id;
/* channel IDs in 80+80 must be in range */
ch1_id = CHSPEC_CHAN1(chanspec);
ch2_id = CHSPEC_CHAN2(chanspec);
if (ch1_id >= WF_NUM_5G_80M_CHANS || ch2_id >= WF_NUM_5G_80M_CHANS)
return TRUE;
} else if (BW_LE160(chspec_bw)) {
if (chspec_ch > MAXCHANNEL) {
return TRUE;
}
} else {
/* invalid bandwidth */
return TRUE;
}
} else {
/* must be 2G or 5G band */
return TRUE;
}
/* side band needs to be consistent with bandwidth */
if (BW_LE20(chspec_bw)) {
if (CHSPEC_CTL_SB(chanspec) != WL_CHANSPEC_CTL_SB_LLL)
return TRUE;
} else if (chspec_bw == WL_CHANSPEC_BW_40) {
if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LLU)
return TRUE;
} else if (chspec_bw == WL_CHANSPEC_BW_80 ||
chspec_bw == WL_CHANSPEC_BW_8080) {
if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LUU)
return TRUE;
}
else if (chspec_bw == WL_CHANSPEC_BW_160) {
ASSERT(CHSPEC_CTL_SB(chanspec) <= WL_CHANSPEC_CTL_SB_UUU);
}
return FALSE;
}
/*
* Verify the chanspec specifies a valid channel according to 802.11.
* RETURNS: TRUE if the chanspec is a valid 802.11 channel
*/
bool
wf_chspec_valid(chanspec_t chanspec)
{
uint chspec_bw = CHSPEC_BW(chanspec);
uint chspec_ch = CHSPEC_CHANNEL(chanspec);
if (wf_chspec_malformed(chanspec))
return FALSE;
if (CHSPEC_IS2G(chanspec)) {
/* must be valid bandwidth and channel range */
if (BW_LE20(chspec_bw)) {
if (chspec_ch >= 1 && chspec_ch <= 14)
return TRUE;
} else if (chspec_bw == WL_CHANSPEC_BW_40) {
if (chspec_ch >= 3 && chspec_ch <= 11)
return TRUE;
}
} else if (CHSPEC_IS5G(chanspec)) {
if (chspec_bw == WL_CHANSPEC_BW_8080) {
uint16 ch1, ch2;
ch1 = wf_5g_80m_chans[CHSPEC_CHAN1(chanspec)];
ch2 = wf_5g_80m_chans[CHSPEC_CHAN2(chanspec)];
/* the two channels must be separated by more than 80MHz by VHT req */
if ((ch2 > ch1 + CH_80MHZ_APART) ||
(ch1 > ch2 + CH_80MHZ_APART))
return TRUE;
} else {
const uint8 *center_ch;
uint num_ch, i;
if (BW_LE40(chspec_bw)) {
center_ch = wf_5g_40m_chans;
num_ch = WF_NUM_5G_40M_CHANS;
} else if (chspec_bw == WL_CHANSPEC_BW_80) {
center_ch = wf_5g_80m_chans;
num_ch = WF_NUM_5G_80M_CHANS;
} else if (chspec_bw == WL_CHANSPEC_BW_160) {
center_ch = wf_5g_160m_chans;
num_ch = WF_NUM_5G_160M_CHANS;
} else {
/* invalid bandwidth */
return FALSE;
}
/* check for a valid center channel */
if (BW_LE20(chspec_bw)) {
/* We don't have an array of legal 20MHz 5G channels, but they are
* each side of the legal 40MHz channels. Check the chanspec
* channel against either side of the 40MHz channels.
*/
for (i = 0; i < num_ch; i ++) {
if (chspec_ch == (uint)LOWER_20_SB(center_ch[i]) ||
chspec_ch == (uint)UPPER_20_SB(center_ch[i]))
break; /* match found */
}
if (i == num_ch) {
/* check for channel 165 which is not the side band
* of 40MHz 5G channel
*/
if (chspec_ch == 165)
i = 0;
/* check for legacy JP channels on failure */
if (chspec_ch == 34 || chspec_ch == 38 ||
chspec_ch == 42 || chspec_ch == 46)
i = 0;
}
} else {
/* check the chanspec channel to each legal channel */
for (i = 0; i < num_ch; i ++) {
if (chspec_ch == center_ch[i])
break; /* match found */
}
}
if (i < num_ch) {
/* match found */
return TRUE;
}
}
}
return FALSE;
}
/*
* This function returns the channel number that control traffic is being sent on, for 20MHz
* channels this is just the channel number, for 40MHZ, 80MHz, 160MHz channels it is the 20MHZ
* sideband depending on the chanspec selected
*/
uint8
wf_chspec_ctlchan(chanspec_t chspec)
{
uint center_chan;
uint bw_mhz;
uint sb;
ASSERT(!wf_chspec_malformed(chspec));
/* Is there a sideband ? */
if (CHSPEC_BW_LE20(chspec)) {
return CHSPEC_CHANNEL(chspec);
} else {
sb = CHSPEC_CTL_SB(chspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
if (CHSPEC_IS8080(chspec)) {
/* For an 80+80 MHz channel, the sideband 'sb' field is an 80 MHz sideband
* (LL, LU, UL, LU) for the 80 MHz frequency segment 0.
*/
uint chan_id = CHSPEC_CHAN1(chspec);
bw_mhz = 80;
/* convert from channel index to channel number */
center_chan = wf_5g_80m_chans[chan_id];
}
else {
bw_mhz = bw_chspec_to_mhz(chspec);
center_chan = CHSPEC_CHANNEL(chspec) >> WL_CHANSPEC_CHAN_SHIFT;
}
return (channel_to_ctl_chan(center_chan, bw_mhz, sb));
}
}
/* given a chanspec, return the bandwidth string */
char *
wf_chspec_to_bw_str(chanspec_t chspec)
{
return (char *)wf_chspec_bw_str[(CHSPEC_BW(chspec) >> WL_CHANSPEC_BW_SHIFT)];
}
/*
* This function returns the chanspec of the control channel of a given chanspec
*/
chanspec_t
wf_chspec_ctlchspec(chanspec_t chspec)
{
chanspec_t ctl_chspec = chspec;
uint8 ctl_chan;
ASSERT(!wf_chspec_malformed(chspec));
/* Is there a sideband ? */
if (!CHSPEC_BW_LE20(chspec)) {
ctl_chan = wf_chspec_ctlchan(chspec);
ctl_chspec = ctl_chan | WL_CHANSPEC_BW_20;
ctl_chspec |= CHSPEC_BAND(chspec);
}
return ctl_chspec;
}
/* return chanspec given control channel and bandwidth
* return 0 on error
*/
uint16
wf_channel2chspec(uint ctl_ch, uint bw)
{
uint16 chspec;
const uint8 *center_ch = NULL;
int num_ch = 0;
int sb = -1;
int i = 0;
chspec = ((ctl_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G);
chspec |= bw;
if (bw == WL_CHANSPEC_BW_40) {
center_ch = wf_5g_40m_chans;
num_ch = WF_NUM_5G_40M_CHANS;
bw = 40;
} else if (bw == WL_CHANSPEC_BW_80) {
center_ch = wf_5g_80m_chans;
num_ch = WF_NUM_5G_80M_CHANS;
bw = 80;
} else if (bw == WL_CHANSPEC_BW_160) {
center_ch = wf_5g_160m_chans;
num_ch = WF_NUM_5G_160M_CHANS;
bw = 160;
} else if (BW_LE20(bw)) {
chspec |= ctl_ch;
return chspec;
} else {
return 0;
}
for (i = 0; i < num_ch; i ++) {
sb = channel_to_sb(center_ch[i], ctl_ch, bw);
if (sb >= 0) {
chspec |= center_ch[i];
chspec |= (sb << WL_CHANSPEC_CTL_SB_SHIFT);
break;
}
}
/* check for no matching sb/center */
if (sb < 0) {
return 0;
}
return chspec;
}
/*
* This function returns the chanspec for the primary 40MHz of an 80MHz channel.
* The control sideband specifies the same 20MHz channel that the 80MHz channel is using
* as the primary 20MHz channel.
*/
extern chanspec_t wf_chspec_primary40_chspec(chanspec_t chspec)
{
chanspec_t chspec40 = chspec;
uint center_chan;
uint sb;
ASSERT(!wf_chspec_malformed(chspec));
/* if the chanspec is > 80MHz, use the helper routine to find the primary 80 MHz channel */
if (CHSPEC_IS8080(chspec) || CHSPEC_IS160(chspec)) {
chspec = wf_chspec_primary80_chspec(chspec);
}
/* determine primary 40 MHz sub-channel of an 80 MHz chanspec */
if (CHSPEC_IS80(chspec)) {
center_chan = CHSPEC_CHANNEL(chspec);
sb = CHSPEC_CTL_SB(chspec);
if (sb < WL_CHANSPEC_CTL_SB_UL) {
/* Primary 40MHz is on lower side */
center_chan -= CH_20MHZ_APART;
/* sideband bits are the same for LL/LU and L/U */
} else {
/* Primary 40MHz is on upper side */
center_chan += CH_20MHZ_APART;
/* sideband bits need to be adjusted by UL offset */
sb -= WL_CHANSPEC_CTL_SB_UL;
}
/* Create primary 40MHz chanspec */
chspec40 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_40 |
sb | center_chan);
}
return chspec40;
}
/*
* Return the channel number for a given frequency and base frequency.
* The returned channel number is relative to the given base frequency.
* If the given base frequency is zero, a base frequency of 5 GHz is assumed for
* frequencies from 5 - 6 GHz, and 2.407 GHz is assumed for 2.4 - 2.5 GHz.
*
* Frequency is specified in MHz.
* The base frequency is specified as (start_factor * 500 kHz).
* Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G are defined for
* 2.4 GHz and 5 GHz bands.
*
* The returned channel will be in the range [1, 14] in the 2.4 GHz band
* and [0, 200] otherwise.
* -1 is returned if the start_factor is WF_CHAN_FACTOR_2_4_G and the
* frequency is not a 2.4 GHz channel, or if the frequency is not and even
* multiple of 5 MHz from the base frequency to the base plus 1 GHz.
*
* Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2
*/
int
wf_mhz2channel(uint freq, uint start_factor)
{
int ch = -1;
uint base;
int offset;
/* take the default channel start frequency */
if (start_factor == 0) {
if (freq >= 2400 && freq <= 2500)
start_factor = WF_CHAN_FACTOR_2_4_G;
else if (freq >= 5000 && freq <= 6000)
start_factor = WF_CHAN_FACTOR_5_G;
}
if (freq == 2484 && start_factor == WF_CHAN_FACTOR_2_4_G)
return 14;
base = start_factor / 2;
/* check that the frequency is in 1GHz range of the base */
if ((freq < base) || (freq > base + 1000))
return -1;
offset = freq - base;
ch = offset / 5;
/* check that frequency is a 5MHz multiple from the base */
if (offset != (ch * 5))
return -1;
/* restricted channel range check for 2.4G */
if (start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 13))
return -1;
return ch;
}
/*
* Return the center frequency in MHz of the given channel and base frequency.
* The channel number is interpreted relative to the given base frequency.
*
* The valid channel range is [1, 14] in the 2.4 GHz band and [0, 200] otherwise.
* The base frequency is specified as (start_factor * 500 kHz).
* Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_4_G, and WF_CHAN_FACTOR_5_G
* are defined for 2.4 GHz, 4 GHz, and 5 GHz bands.
* The channel range of [1, 14] is only checked for a start_factor of
* WF_CHAN_FACTOR_2_4_G (4814 = 2407 * 2).
* Odd start_factors produce channels on .5 MHz boundaries, in which case
* the answer is rounded down to an integral MHz.
* -1 is returned for an out of range channel.
*
* Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2
*/
int
wf_channel2mhz(uint ch, uint start_factor)
{
int freq;
if ((start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 14)) ||
(ch > 200))
freq = -1;
else if ((start_factor == WF_CHAN_FACTOR_2_4_G) && (ch == 14))
freq = 2484;
else
freq = ch * 5 + start_factor / 2;
return freq;
}
static const uint16 sidebands[] = {
WL_CHANSPEC_CTL_SB_LLL, WL_CHANSPEC_CTL_SB_LLU,
WL_CHANSPEC_CTL_SB_LUL, WL_CHANSPEC_CTL_SB_LUU,
WL_CHANSPEC_CTL_SB_ULL, WL_CHANSPEC_CTL_SB_ULU,
WL_CHANSPEC_CTL_SB_UUL, WL_CHANSPEC_CTL_SB_UUU
};
/*
* Returns the chanspec 80Mhz channel corresponding to the following input
* parameters
*
* primary_channel - primary 20Mhz channel
* center_channel - center frequecny of the 80Mhz channel
*
* The center_channel can be one of {42, 58, 106, 122, 138, 155}
*
* returns INVCHANSPEC in case of error
*/
chanspec_t
wf_chspec_80(uint8 center_channel, uint8 primary_channel)
{
chanspec_t chanspec = INVCHANSPEC;
chanspec_t chanspec_cur;
uint i;
for (i = 0; i < WF_NUM_SIDEBANDS_80MHZ; i++) {
chanspec_cur = CH80MHZ_CHSPEC(center_channel, sidebands[i]);
if (primary_channel == wf_chspec_ctlchan(chanspec_cur)) {
chanspec = chanspec_cur;
break;
}
}
/* If the loop ended early, we are good, otherwise we did not
* find a 80MHz chanspec with the given center_channel that had a primary channel
*matching the given primary_channel.
*/
return chanspec;
}
/*
* Returns the 80+80 chanspec corresponding to the following input parameters
*
* primary_20mhz - Primary 20 MHz channel
* chan0 - center channel number of one frequency segment
* chan1 - center channel number of the other frequency segment
*
* Parameters chan0 and chan1 are channel numbers in {42, 58, 106, 122, 138, 155}.
* The primary channel must be contained in one of the 80MHz channels. This routine
* will determine which frequency segment is the primary 80 MHz segment.
*
* Returns INVCHANSPEC in case of error.
*
* Refer to IEEE802.11ac section 22.3.14 "Channelization".
*/
chanspec_t
wf_chspec_get8080_chspec(uint8 primary_20mhz, uint8 chan0, uint8 chan1)
{
int sb = 0;
uint16 chanspec = 0;
int chan0_id = 0, chan1_id = 0;
int seg0, seg1;
chan0_id = channel_80mhz_to_id(chan0);
chan1_id = channel_80mhz_to_id(chan1);
/* make sure the channel numbers were valid */
if (chan0_id == -1 || chan1_id == -1)
return INVCHANSPEC;
/* does the primary channel fit with the 1st 80MHz channel ? */
sb = channel_to_sb(chan0, primary_20mhz, 80);
if (sb >= 0) {
/* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */
seg0 = chan0_id;
seg1 = chan1_id;
} else {
/* no, so does the primary channel fit with the 2nd 80MHz channel ? */
sb = channel_to_sb(chan1, primary_20mhz, 80);
if (sb < 0) {
/* no match for ctl_ch to either 80MHz center channel */
return INVCHANSPEC;
}
/* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */
seg0 = chan1_id;
seg1 = chan0_id;
}
chanspec = ((seg0 << WL_CHANSPEC_CHAN1_SHIFT) |
(seg1 << WL_CHANSPEC_CHAN2_SHIFT) |
(sb << WL_CHANSPEC_CTL_SB_SHIFT) |
WL_CHANSPEC_BW_8080 |
WL_CHANSPEC_BAND_5G);
return chanspec;
}
/*
* This function returns the 80Mhz channel for the given id.
*/
static uint8
wf_chspec_get80Mhz_ch(uint8 chan_80Mhz_id)
{
if (chan_80Mhz_id < WF_NUM_5G_80M_CHANS)
return wf_5g_80m_chans[chan_80Mhz_id];
return 0;
}
/*
* Returns the primary 80 Mhz channel for the provided chanspec
*
* chanspec - Input chanspec for which the 80MHz primary channel has to be retrieved
*
* returns -1 in case the provided channel is 20/40 Mhz chanspec
*/
uint8
wf_chspec_primary80_channel(chanspec_t chanspec)
{
uint8 primary80_chan;
if (CHSPEC_IS80(chanspec)) {
primary80_chan = CHSPEC_CHANNEL(chanspec);
}
else if (CHSPEC_IS8080(chanspec)) {
/* Channel ID 1 corresponds to frequency segment 0, the primary 80 MHz segment */
primary80_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chanspec));
}
else if (CHSPEC_IS160(chanspec)) {
uint8 center_chan = CHSPEC_CHANNEL(chanspec);
uint sb = CHSPEC_CTL_SB(chanspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
/* based on the sb value primary 80 channel can be retrieved
* if sb is in range 0 to 3 the lower band is the 80Mhz primary band
*/
if (sb < 4) {
primary80_chan = center_chan - CH_40MHZ_APART;
}
/* if sb is in range 4 to 7 the upper band is the 80Mhz primary band */
else
{
primary80_chan = center_chan + CH_40MHZ_APART;
}
}
else {
/* for 20 and 40 Mhz */
primary80_chan = -1;
}
return primary80_chan;
}
/*
* Returns the secondary 80 Mhz channel for the provided chanspec
*
* chanspec - Input chanspec for which the 80MHz secondary channel has to be retrieved
*
* returns -1 in case the provided channel is 20/40/80 Mhz chanspec
*/
uint8
wf_chspec_secondary80_channel(chanspec_t chanspec)
{
uint8 secondary80_chan;
if (CHSPEC_IS8080(chanspec)) {
secondary80_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN2(chanspec));
}
else if (CHSPEC_IS160(chanspec)) {
uint8 center_chan = CHSPEC_CHANNEL(chanspec);
uint sb = CHSPEC_CTL_SB(chanspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
/* based on the sb value secondary 80 channel can be retrieved
* if sb is in range 0 to 3 upper band is the secondary 80Mhz band
*/
if (sb < 4) {
secondary80_chan = center_chan + CH_40MHZ_APART;
}
/* if sb is in range 4 to 7 the lower band is the secondary 80Mhz band */
else
{
secondary80_chan = center_chan - CH_40MHZ_APART;
}
}
else {
/* for 20, 40, and 80 Mhz */
secondary80_chan = -1;
}
return secondary80_chan;
}
/*
* This function returns the chanspec for the primary 80MHz of an 160MHz or 80+80 channel.
*
* chanspec - Input chanspec for which the primary 80Mhz chanspec has to be retreived
*
* returns the input chanspec in case the provided chanspec is an 80 MHz chanspec
* returns INVCHANSPEC in case the provided channel is 20/40 MHz chanspec
*/
chanspec_t
wf_chspec_primary80_chspec(chanspec_t chspec)
{
chanspec_t chspec80;
uint center_chan;
uint sb;
ASSERT(!wf_chspec_malformed(chspec));
if (CHSPEC_IS80(chspec)) {
chspec80 = chspec;
}
else if (CHSPEC_IS8080(chspec)) {
/* Channel ID 1 corresponds to frequency segment 0, the primary 80 MHz segment */
center_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chspec));
sb = CHSPEC_CTL_SB(chspec);
/* Create primary 80MHz chanspec */
chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan);
}
else if (CHSPEC_IS160(chspec)) {
center_chan = CHSPEC_CHANNEL(chspec);
sb = CHSPEC_CTL_SB(chspec);
if (sb < WL_CHANSPEC_CTL_SB_ULL) {
/* Primary 80MHz is on lower side */
center_chan -= CH_40MHZ_APART;
}
else {
/* Primary 80MHz is on upper side */
center_chan += CH_40MHZ_APART;
sb -= WL_CHANSPEC_CTL_SB_ULL;
}
/* Create primary 80MHz chanspec */
chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan);
}
else {
chspec80 = INVCHANSPEC;
}
return chspec80;
}
#ifdef WL11AC_80P80
uint8
wf_chspec_channel(chanspec_t chspec)
{
if (CHSPEC_IS8080(chspec)) {
return wf_chspec_primary80_channel(chspec);
}
else {
return ((uint8)((chspec) & WL_CHANSPEC_CHAN_MASK));
}
}
#endif /* WL11AC_80P80 */